当前位置:文档之家› 调幅波的解调

调幅波的解调

调幅波的解调
调幅波的解调

1. 基本内容

调幅信号的解调是调制的逆过程。本章主要内容包括振幅调制信号的解调原理、实现方法及电路等。

2 基本要求(1)理解并掌握调幅信号解调的原理、类型及实现模型。(2)掌握二极管包络检波器的工作原理和性能参数的估算方法。(3)掌握乘积型和叠加型同步检波器的组成原理及分析方法。

第一节概述

信号的解调是振幅调制的相反过程,是从已调高频信号中取出调制信号。通常将这种解调称为检波。完成这种解调的电路称为振幅检波器。

一、检波电路的功能

检波电路的功能是从调制信号中不失真的解调出原调制信号。当输入信号为高频等幅波时,检波器输出电压为直流电压。当输入信号为脉冲调制调幅信号的时,检波器输出电压为脉冲波。从信号的频谱来看,检波电路的功能是将已调波的边频或边带信号频谱般移到原调制信号的频谱处。

二、检波电路的分类

检波电路可分为两大类,包络检波和同步检波。包络检波是指检波器的输出电压直接反映输入高频调幅波包络变化规律的波形特点,显然只适合于普通调幅波的解调。同步检波主要应用于双边带调幅波和单边带调幅波的解调。

三、检波电路的主要技术指标

1. 检波电路的电压传输系数检波电路的电压传输系是指检波电路的输出电压和输入电压振幅之比。

2. 等效输入电阻等效输入电阻定义为输入等幅高频电压的振幅与输入高频电流的基波分量振幅的比值。

3. 非线性失真系数

4.高频滤波系数高频滤波系数定义为,输入高频电压的振幅与输出高频电压的比值。

第二节二极管大信号包络检波器

大信号包络检波是高频输入信号的振幅大于0.5伏时,利用二极管对电容c充电,加反向电压时截止,电容c上电压对电阻R放电这一特性实现的。分析时采用折线法。

大信号包络检波的工作原理

1.原理电路及工作原理图6―1(a)是二极管峰值包络

检波器的原理电路。它是由输入回路、二极管VD和RC低通滤波器组成。

(6-1)式中,ωc为输入信号的载频,在超外差接收机中则为中频ωIΩ为调制频率。在理想情况下,RC网络的阻抗Z应为(6-2)

图6―1 二极管峰值包络检波器(a) 原理电路 (b)二极管导通

(c)二极管截止

图6―2 加入等幅波时检波器的工作

过程

从这个过程可以得出下列几点(1)检波过程就是信号源通过二极管给电容充电与电容对电阻R放电的过程。(2)

由于RC时常数远大于输入电压载波周期,放电慢,使得二极管负极永远

处于正的较高的电位(因为输出电压接近于高频正弦波的峰值,即

Uo≈Um)。(3)二极管电流iD包含平均分量(此种情况为直流分量)Iav及高频分量。

图6―3检波器稳态时的电流电压波形

图6―4 输入为AM信号时检波器的输出波形图

图6―5输入为AM信号时,检波器二极管的电压及电流波形

图6―6包络检波器的输出电路

2.性能分析1) 传输系数Kd 检波器传输系数

Kd或称为检波系数、检波效率,是用来描述检波器对输入已调信号的解调能力或效率的一个物理量。若输入载波电压振幅为Um,输出直流电压为Uo,则Kd定义为

(6-3) 由于输入大信号,检波器工作在大信号状态,二极管的伏安特性可用折线近似。在考虑输入为等幅波,采用理想的高频

滤波,并以通过原点的折线表示二极管特性(忽略二极管的导通电压VP),则由图6―3有:

(6-4)

(6-5)

式中,uD=ui-uo,gD=1/rD,θ为电流通角,iD是周期性余弦脉冲,其平均分量I0为 (6-6)基频分量为

(6-7)式中,α0(θ)、α1(θ)为电流分解系数。由式(6―43(a))和图6―3可得

(6-8)由此可见,检波系数Kd是检波器电流iD的通角θ的函数,求出θ后,就可得Kd。由式(6―46)Uo=I0R,有

(6-9)等式两边各除以cosθ,

可得 (6-10)

当gDR很大时,如gDR≥50时,tanθ≈θ-θ3/3,代入式(6-9),有

(6-11)

图6―7 (a)Kd~gDR关系曲线图

图6―7 (b) 滤波电路对Kd的影响

2) 输入电阻检波器的输入阻抗包括输入电阻

Ri及输入电容Ci,如图6―8所示。输入电阻是输入载波电压的振幅Um

与检波器电流的基频分量振幅I1之比值,即(6-12)

输入电阻是前级的负载,它直接并入输入回路,影响着回路的有效Q值及回路阻抗。由式(6―11),有

(6-13)当gDR≥50时,θ很

小,sinθ≈θ-θ3/6,cosθ≈1-θ2/2,代入上式,可得

(6-14)

图6―8检波器的输入阻抗

3.检波器的失真1)惰性失真在二极管截止期间,

电容C两端电压下降的速度取决于RC的时常数。

图6―9 惰

性失真的波形

为了避免产生惰性失真,必须在任何一个高频周期内,使电容C通

过R放电的速度大于或等于包络的下降速度,即(6-15) 如果输入信号为单音调制的AM波,在t1时刻其包络的变化速度为

(6-16) 二极管停止导通的瞬间,电容

两端电压uC近似为输入电压包络值,即uC=Um(1+mcosΩt)。从t1时刻

开始通过R放电的速度为

(6-17)将式(6―15)和式(6―16)代入式(6―17),可得

(6-18)实际上,不同的t1,U(t)和Cu的下降速度不同,为避免产生惰性失真,必须保证A值最大时,仍有Amax≤1。故令

da/dt1=0,得(6-19)代入式(6―18),得出不失真

条件如下:(6-20

)图6―10底部切削失真

2) 底部切削失真底部切削失真又称为负峰切削失真。

产生这种失真后,输出电压的波形如图6―10(c)所示。这种失真是因检波器的交直流负载不同引起的。因为Cg较大,在音频一周内,其两

端的直流电压基本不变,其大小约为载波振幅值UC,可以把它看作一直流电源。它在电阻R和Rg上产生分压。在电阻R上的压降为

(6-21)调幅波的最小幅度为UC(1-m),由图6―10可

以看出,要避免底部切削失真,应满足(6-22)

图6―11 减小底部切削失真的电路

第三节二极管小信号检波器

小信号检波是高频输入信号的振幅小于0。2伏,利用二极管伏安特性弯曲部分进行频率变换,然后通过低通滤波器实现检波。

一、二极管小信号检波的工作原理

图 6-12是二极管检波器的原理电路。

图 6-12

因为是小信号输入,需外加偏压VQ使其静态工作点位于二极管特性曲线部分的Q点。当加的输入信号为调幅信号时,二极管中的电流变化规律如图 6-13

图6-13

二、二极管小信号检波的分析

二极管的伏安特性在工作点Q

(6-23)因为二极管小信号检波器输出电压很小,忽略输出电压的反作用,可得

经低通滤波器取出

其中

为直流电流增量,它代表二极

管的检波作用的结果。输出电压增量为

。当输入信号为

因为

可认为

是不变的

这样检波器的输出电压增量为

(6-25)

经隔直耦合在上得到电压为

显然,产生了非线性失真。

三、二极管小信号检波的性能指标

1)输入为等幅波时,小信号检波器的电压传输系数为

(6-27)

输入为调幅波时,小信号检波器的电压传输系数为

(6-28)

上式说明,小信号检波器的电压传输系数不是常数,而是与输入高频电压的振幅成正比。2)小信号检波器的等效输入电阻可以近似认为等于二极管的导通电阻。3)小信号检波器得非线性失真系数为

(6-29)可见,调制系数越大,则越大,失真越严重。

第四节同步检波

同步检波器主要用于对抑制载波的双边带调幅波和单边带调幅波进行解调,也可以用来解调普通调幅波。

同步检波器是有相乘器和低通滤波器两部分组成。它与包络检波器的区别在于检波器的输入除了有需要进行解调的调幅信号电压

外,还必须外加一个频率和相位与输入信号载频完全相同的本地载频

信号电压。经过相乘和滤波后得到原调制信号。图6-14为同步检波

器的方框原理图。

同步检波器的原理如动画D6

图 6-14

(6-30)

本地载频信号电压为(6-31)

即本地载频信号与输入信号的载频同频同相位。经相乘器相乘,输出为

(6-32)

经低通滤波得低频信号(6-33)

对单边带信号来说,解调过程与双边带相似。设输入信号为单频调制的上边带信号电压为

(6-34)

本地载波频信号电压为(6-35)

经相乘器相乘,输出为

(6-36)

经低通滤波得低频信号(6-37)

对于普通调幅波,同样也可以采用同步检波器来实现解调。

本地载波的产生方法及不同步的影响

为了产生同频同相的本地同步载频信号,往往在发射机发射双边带或单边带调幅信号的同时,附带发射一个载频信号,其功率远低于双边带或单边带调幅信号的功率,通常称为导频信号。本地载频信号与输入信号的载频不能保持同步,对检波性能会产生什么样的影响呢?设本地载频信号与输入信号载频的不同步量为,相位

不同步量为,即

若用模拟乘法器构成同步检波电路解调双边带调幅信号,则

(6-39)

经低通滤波器取出

(6-40)

可见,当频率,相位不同步时,检出的低频信号将产生频率失真和相位失真。若用模拟乘法器构成的乘积检波电路解调单边带信号,则

(6-41)

经低通滤波器取出

(6-42)

可见,当频率,相位不同步时,检出的低频信号将产生频率失真和相位失真。

调制和解调习题

5.1 已知调制信号()2cos(2π500)V,u t t Ω=?载波信号5()4cos(2π10)V,c u t t =?令比例常数1a k =,试写出调幅波表示式,求出调幅系数及频带宽度,画出频谱图。 [解] 5()(42cos2π500)cos(2π10)AM u t t t =+?? 54(10.5cos2π500)cos(2π10)V t t =+?? 20.5,25001000Hz 4 a m BW ===?= 调幅波波形和频谱图分别如图P5.1(b)所示。 5.2 已知调幅波信号5[1cos(2π100)]cos(2π10)V o u t t =+??,试画出频谱图,求出频带宽度BW 。 [解] 2100200Hz BW =?= 调幅波波形和频谱图如图P5.2(b)所示。 5.3 已知调制信号3[2cos(2π210)3cos(2π300)]V u t t Ω=??+?,载波信号 55cos(2π510)V,1c a u t k =??=,试写出调辐波的表示式,画出频谱图,求出频带宽度BW 。 [解] 35()(52cos2π2103cos2π300)cos2π510c u t t t t =+??+??? 3555353555(10.4cos 2π2100.6cos 2π300)cos 2π5105cos 2π510cos 2π(510210)cos 2π(510210)1.5cos 2π(510300) 1.5cos 2π(510300)(V) t t t t t t t t t =+??+???=??+?+?+?-?+?++?- 3max 222104kHz BW F =?=??= 频谱图如图P5.3(s)所示。 5.4 已知调幅波表示式6()[2012cos(2π500)]cos(2π10)V u t t t =+??,试求该调幅波的载

频率调制与解调实验报告

1.熟悉LM566单片集成电路的组成和应用。 2.掌握用LM566单片集成电路实现频率调制的原理和方法。 3.了解调频方波、调频三角波的基本概念。 4.掌握用LM565单片集成电路实现频率解调的原理,并熟悉其方法。 5.了解正弦波调制的调频方波的解调方法。 6.了解方波调制的调频方波的解调方法。 二、实验准备 1.做本实验时应具备的知识点: ? LM566单片集成压控振荡器 ?LM566组成的频率调制器工作原理 ? LM565单片集成锁相环 ?LM565组成的频率解调器工作原理 2.做本实验时所用到的仪器: ?万用表 ?双踪示波器 ? AS1637函数信号发生器 ?低频函数发生器(用作调制信号源) ?实验板5(集成电路组成的频率调制器单元) 三、实验内容 1.定时元件R T、C T对LM566集成电路调频器工作的影响。 2.输入调制信号为直流时的调频方波、调频三角波观测。 3.输入调制信号为正弦波时的调频方波、调频三角波观测4.输入调制信号为方波时的调频方波、调频三角波观测。 5.无输入信号时(自激振荡产生)的输出方波观测。 6.正弦波调制的调频方波的解调。 7.方波调制的调频方波的解调。 四、实验步骤 1.实验准备 ⑴在箱体右下方插上实验板5。接通实 验箱上电源开关,此时箱体上±12V、±5V电 源指示灯点亮。 ⑵把实验板5上集成电路组成的频率 调制器单元右上方的电源开关(K5)拨到ON 位置,就接通了±5V电源(相应指示灯亮), 即可开始实验。 2.观察R T、C T对频率的影响(R T = R3+W l、

C T = C1) ⑴实验准备 ① K4置ON位置,从而C1连接到566的管脚⑦上; ②开关K3接通,K1、K2断开,从而W2和C2连接到566的管脚⑤上; ③调W2使V5=3.5V(用万用表监测开关K3下面的测试点); ④将OUT1端接至AS1637函数信号发生器的INPUT COUNTER来测频率。 ⑵改变W1并观察输出方波信号频率,记录当W1为最小、最大(相应地R T为最小、最大)时的输出频率,并与理论计算值进行比较,给定:R3 =3kΩ,W1=1kΩ,C1=2200pF。 ⑶用双踪示波器观察并记录当R T为最小时的输出方波、三角波波形。 ⑷若断开K4,会发生什么情况?最后还是把K4接通(正常工作时不允许断开K4)。 3.观察输入电压对输出频率的影响 ⑴直流电压控制(开关K3接通,K1、K2断开) 先把W l调至最大(振荡频率最低),然后调节W2以改变输入电压,测量当V5在2.4V~4.8V变化(按0.2V递增)时的输出频率f,并将结果填入表1。 第二部分: 1.实验准备 ⑴在箱体右下方插上实验板5。接通实验箱上电源开关,此时箱体上±12V、±5V电源指示灯点亮。 ⑵把实验板5上集成电路组成的频率调制器单元(简称566 调频单元)的电源开关(K5)和集成电路组成的频率解调器单元(简称565鉴频单元)的电源开关(K1)都拨到ON位置,就接通了这两个单元的±5V电源(相应指示灯亮),即可开始实验。 2.自激振荡观察 在565鉴频单元的IN端先不接输入信号,把示波器探头接到A点,便可观察到VCO自激振荡产生的方波(峰-峰值4.5V左右)。 3.调制信号为正弦波时的解调 ⑴先按实验十的实验内容获得正弦调制的调频方波(566调频单元上开关K1、K2接通,K3断开,K4接通)。为此,把低频函数发生器(用作调制信号源)的输出设置为:波形选择—正弦波,频率—1kHz,峰-峰值—0.4V,便可在566调频单元的OUT1端上获得正弦调制的调频方波信号。 ⑵把566调频单元OUT1端上的调频方波信号接入到565鉴频单元的IN端,并把566调频单元的W l调节到最大(从而定时电阻R T最大),便可用双踪示波器的CH1观察并记录输入调制信号(566调频单元IN端),CH2观察并记录565鉴频单元上的A点波形(峰-峰值为4.5V左右的调频方波)、B点波形(峰-峰值为40mV左右的1kHz正弦波)和OUT端波形(需仔细调节565鉴频单元上的W1,可观察到峰-峰值为4.5V左右的1kHz方波)。 ⑶调节565鉴频单元上的W1,可改变565鉴频单元OUT端解调输出方波的占空比。 五、数据处理

AM波的调制与解调

海南大学 高频电子线路课程设计报告书 题目:AM波的调制与解调 姓名: 学号: 同组人: 年级:2011级 学院:信息科学技术学院 系别:电子信息工程 专业:电子信息工程《1》班 课程教师: 完成日期:2014 年01月08 日

目录 零、摘要 (2) 一、设计指标 (3) 二、系统框图 (3) 三、设计原理 (3) 1、正弦波振荡器 (3) 2、基极调幅电路 (4) 3、包络检波 (5) 4、LC集中选择性滤波器 (6) 四、设计单元电路 (6) 1、正弦波振荡器 (6) 2、基极调幅电路 (9) 3、包络检波 (12) 4、LC集中选择性滤波器…………………………………………………………14- 五、设计总电路……………………………………………………………………15- 1、总电路图………………………………………………………………………15- 2、仿真与分析……………………………………………………………………15- 六、元件清单………………………………………………………………………18- 七、电路的优缺点…………………………………………………………………18- 八、问题与解答……………………………………………………………………19- 九、心得体会………………………………………………………………………19- 十、参考文献………………………………………………………………………20-

AM波的调制与解调 摘要 在本次课程设计中,我们组以AM波的调制与解调电路为所设计的题目,运用proteus仿真软件,根据设计要求设计出电路。而设计思路就是运用正弦波振荡器产生高频电信号作为载波,其次通过基极调幅电路将调制信号附加在高频载波上进行调制,就会得到已调信号发送出去,在接收部分,我们用包络检波电路进行解调,但是解调出来的信号不纯,所以再用LC式集中选择性滤波器进行滤波,就可以输出低频信号。在你每个通信系统中,都必须有发送设备,传输煤质,和接收设备,二在本次设计当中,我们主要设计AM波的调制与解调过程。 本设计结合proteus仿真软件来对小功率调幅发射机电路的设计与调试方法进行研究。proteus软件能实现从电学概念设计到输出物理生产数据,以及这之间的所有分析、验证、和设计数据管理。这个系统是本次设计的一个核心软件。 关键字:调幅解调正弦波振荡器基极调幅 包络检波LC集中式选择滤波器

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

FM调制与解调

FM调制与解调系统 一、目的 FM在通信系统中的使用非常广泛。FM广泛应用于高保真音乐广播、电视伴音信号的传输、卫星通信和蜂窝电话系统等。 本设计主要是利用MATLAB集成环境下的M文件,编写程序来实现FM调制与解调过程,并分别绘制出基带信号,载波信号,已调信号的时域波形;再进一步分别绘制出相干解调后解调基带信号的时域波形。该设计使用系统开发平台为Windows XP ,程序运行平台使用Windows XP,程序设计语言采用MATLAB,运行程序完成对FM调制和解调结果的观察。通过该本次设计,达到了实现FM信号调制和解调系统的仿真目的。 二、工作原理与计算 通信系统的作用就是将信息从信息源发送到一个或多个目的地。对于任何个通信系统,均可视为由发送端、信道和接收端三大部分组成(如图1所示)。 图1 通信系统一般模型 信息源的作用是把各种信息转换成原始信号,发送设备的作用产生适合传输的信号,信息源和发送设备统称为发送端。发送端将信息直接转换得到的较低频率的原始电信号称为基带信号。通常基带信号

不宜直接在信道中传输。因此,在通信系统的发送端需将基带信号的频谱搬移(调制)到适合信道传输的频率范围内进行传输。这就是调制的过程。信号通过信道传输后,具有将信号放大和反变换功能的接收端将已调制的信号搬移(解调)到原来的频率范围,这就是解调的过程。 调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。在本仿真的过程中我们选择用非相干解调方法进行解调。 2.1 FM调制原理 调制在通信系统中具有十分重要的作用。一方面,通过调制可以把基带信号的频谱搬移到所希望的位置上去,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号。另一方面,通过调制可以提高信号通过信道传输时的抗干扰能力,同时,它还和传输效率有关。具体地讲,不同的调制方式产生的已调信号的带宽不同,因此调制影响传输带宽的利用率。可见,调制方式往往决定一个通信系统的性能 2.2 FM解调原理 调制信号的解调分为相干解调和非相干解调两种。相干解调仅仅适用于窄带调频信号,且需同步信号,故应用范围受限;而非相干解调不需同步信号,且对于NBFM信号和WBFM信号均适用,因此是FM 系统的主要解调方式。。

实验六调幅波解调器实验报告

实验六调幅波解调器实验报告 实验六调幅波解调器 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、了解二极管包括检波的主要指标、检波效率及波形失真。 3、掌握用集成电路实现同步检波的方法。 二、预习要求 1、复习课中有关调幅和解调原理。 2、分析二极管包络检波产生波形失真的主要因素。 三、实验仪器设备 1、双踪示波器 2、万用表 3、高频电路实验装置 四、实验电路说明 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称之为检波。调幅波解调方 法有二极管包括检波器、同 步检波器。 6 1、二极管包络检波器

适合于解调含有较大载波分量的大信号的检波过程,它具电路简单,易于实现,本实验 如图6-1所示主要由二极管D及RC低通滤波器组成,它利用二极管的单向导电特性和检波 负载RC的充放电过程实现检波,所以RC时间常数选择很重要,RC时间常数过大,则会 产生对角切割失真。RC时间常数太小,高频分量会滤不干净,综合考虑要求满足下式: ,m211/fo<

` 图 6-2 1496构成的解器 五、实验内容及步骤 注意:做出实验之前需恢复实验五的实验内容2(1)的内容。 (一)二极管包络检波器 实验电路见图6-1 1、解调全载波调幅信号 (1)m<30,的调幅波的检波 载波信号仍为Vc=100mV/100KHZ(有效值)调节调制信号幅度, 按调幅实验中实验内容3(2)的条件获得调制度m<30,的调幅度,并 将它加至图6-1二极管包括检波器V信号输入端,观察记录检波电AM 容为C1时的波形。

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波

相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。

(完整版)振幅调制与解调习题及其解答

振幅调制与解调练习题 一、选择题 1、为获得良好的调幅特性,集电极调幅电路应工作于 C 状态。 A .临界 B .欠压 C .过压 D .弱过压 2、对于同步检波器,同步电压与载波信号的关系是 C A 、同频不同相 B 、同相不同频 C 、同频同相 D 、不同频不同相 3、如图是 电路的原理方框图。图中t t U u c m i Ω=cos cos ω;t u c ωcos 0= ( C ) A. 调幅 B. 混频 C. 同步检波 D. 鉴相 4、在波形上它的包络与调制信号形状完全相同的是 ( A ) A .AM B .DSB C .SSB D .VSB 5、惰性失真和负峰切割失真是下列哪种检波器特有的失真 ( B ) A .小信号平方律检波器 B .大信号包络检波器 C .同步检波器 6、调幅波解调电路中的滤波器应采用 。 ( B ) A .带通滤波器 B .低通滤波器 C .高通滤波器 D .带阻滤波器 7、某已调波的数学表达式为t t t u 6 3102cos )102cos 1(2)(??+=ππ,这是一个( A ) A .AM 波 B .FM 波 C .DSB 波 D .SSB 波 8、AM 调幅信号频谱含有 ( D ) A 、载频 B 、上边带 C 、下边带 D 、载频、上边带和下边带 9、单频调制的AM 波,若它的最大振幅为1V ,最小振幅为0.6V ,则它的调幅度为( B ) A .0.1 B .0.25 C .0.4 D .0.6 10、二极管平衡调幅电路的输出电流中,能抵消的频率分量是 ( A ) A .载波频率ωc 及ωc 的偶次谐波 B .载波频率ωc 及ωc 的奇次谐波 C .调制信号频率Ω D .调制信号频率Ω的偶次谐波 11、普通调幅信号中,能量主要集中在 上。 ( A ) A .载频分量 B .边带 C .上边带 D .下边带 12、同步检波时,必须在检波器输入端加入一个与发射载波 的参考信号。 ( C ) A .同频 B .同相 C .同幅度 D .同频同相 13、用双踪示波器观察到下图所示的调幅波,根据所给的数值,它的调幅度为 ( C )

实验一、调频波的调制与解调

实验一、调频波的调制与解调 一、实验内容 1.调频波的调制 2.调频波的解调 二、实验目的和要求 1.熟悉MATLAB系统的基本使用方法 2.掌握调制原理和调频波的调制方法 3.掌握解调原理和调频波的解调方法 三、预习要求 1.熟悉有关调频的调制和解调原理 2.熟悉鉴频器解调的方法并了解锁相环解调 四、实验设备(软、硬件) 1.MATLAB软件通信工具箱,SIMULINK 2.电脑 五、实验注意事项 通信仿真的过程可以分为仿真建模、实验和分析三个步骤。应该注意的是,通信系统仿真是循环往复的发展过程。也就是说,其中的三个步骤需要往复的执行几次之后,以仿真结果的成功与否判断仿真的结束。 六、实验原理 1调频波的调制方法 1.1 调制信号的产生 产生调频信号有两种方法,直接调频法和间接调频法。间接调频法就是可以通过调相间接实现调频的方法。但电路较复杂,频移小,且寄生调幅较大,通常需多次倍频使频移增加。对调频器的基本要求是调频频移大,调频特性好,寄生调幅小。所以本实验中所用的方法为直接调频法。通过一振荡器,使它的振荡 f的正弦波;频率随输入电压变化。当输入电压为零时,振荡器产生一频率为 当输入基带信号的电压变化时,该振荡频率也作相应的变化。 1.2 调频波的调制原理与表达式 此振荡器可通过VCO(压控振荡器)来实现。压控振荡器是一个电压——频率转化装置,振荡频率随输入控制电压线性变化。在实际应用中有限的线性控

制范围体现了压控的控制特性。同时,压控振荡器的输出反馈在鉴相器上,而鉴相器反应的是相位不是频率,而这是压控相位和角频率积分关系固有的,所以需要压控的积分作用,压控输出信号的频率随输入信号幅度的变化而变化,确切的说输出信号频率域输入信号幅度成正比,若输入信号幅度大于零,输出信号频率高于中心频率;若小于零,则输出信号频率低于中心频率。从而产生所需的调频信号。 利用压控振荡器作为调频器产生调频信号,模型框图如图1所示: 图1 利用压控振荡器作为调制器 在本章的调频仿真中,用到的调制信号为单音正弦波信号。因此,这里讨论调制信号为单频余弦波的情况。 在连续波的调制中,调制载波的表达式为 ()cos()C C t A t ωφ=+ (1) 如果幅度不变,起始相位为零时,而瞬时角频率时调制信号的线性函数,则这种调制方式为频率调制。此时瞬时角频率偏移为 ()FM K f t ω?= (2) 瞬时角频率为 ()C FM K f t ωω=+ (3) 其中()f t 为调制信号,FM K 为频偏常数。 由于瞬时角频率与瞬时相位之间互为微分或积分关系,即 ()()C FM d t K f t dt φωω==+ ...........................(4) ()()C FM t dt t K f t dt φωω==+?? (5) 故调频信号可表达为 ()cos[()]FM C FM S t A t K f t dt ω=+? (6) 在本章的调频仿真中,用到的调制信号为单音正弦波信号。因此,这里讨论

信号的相位调制与解调概要

MATLAB仿真信号的相位调制与解调 专业:通信与信息系统 姓名:赵* 学号:********* 指导老师:****教授

摘要 Psk调制是通信系统中最为重要的环节之一,Psk调制技术的改进也是通信系统性能提高的重要途径。本文首先分析了数字调制系统的基本调制解调方法,然后,运用Matlab及附带的图形仿真工具——Simulink设计了这几种数字调制方法的仿真模型。通过仿真,观察了调制解调过程中各环节时域和频域的波形,并结合这几种调制方法的调制原理,跟踪分析了各个环节对调制性能的影响及仿真模型的可靠性。最后,在仿真的基础上分析比较了各种调制方法的性能,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。另外,本文还利用Matlab的图形用户界面(GUI)功能为仿真系统设计了一个便于操作的人机交互界面,使仿真系统更加完整,操作更加方便。 关键词:数字调制;分析与仿真;Matlab;Simulink;PSK;QPSK;

1.数字调制技术 (2) 2.PSK调制系统 (3) 2.1 QPSK调制部分,原理框图如图七所示 (6) 2.2 QPSK解调部分,原理框图如图八所示: (8) 3.用Simulink实现PSK调制 (9) 3.1 2PSK仿真 (9) 3.1.1调制 (9) 3.1.2 解调仿真 (12) 3.2 QPSK仿真 (13) 3.2.1 QPSK调制框图 (13) 参考文献 (18)

1.数字调制技术 通信按照传统的理解就是信息的传输与交换。在当今信息社会,通信则与遥感,计算技术紧密结合,成为整个社会的高级“神经中枢”。没有通信,人类社会是不可想象的。一般来说,社会生产力水平要求社会通信水平与之相适应。若通信水平跟不上,社会成员之间的合作程度就受到限制。可见,通信是十分重要的。 通信传输的消息是多种多样的,可以是符号的,文字的,数据和图像的等等。各种不同的消息可以分为两类:一类称为离散消息;另一类称为连续消息。离散消息的状态是可数的或离散的,比如符号,文字或数据等。离散消息也称数字消息。而连续消息则是其状态连续变化的消息,例如,连续变化的语音,图像等。连续消息也称模拟消息。因此按照信道中传输的是模拟信号还是数字信号可以将通信系统分为模拟通信系统和数字通信系统。 数字通信有以下突出的特点:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。第二,当需要保密的时候,可以有效的对基带信号进行人为的“扰乱”,即加上密码。 数字通信系统可以用下图表示: →→→→→→→→信数信信数信 信源 道 字受道源字信 息编编调 解译译信 源 码码调码码者 制 道 器 器 器 器 器 器 图一 数字通信在近20年来得到了迅速的发展,其原因是: (1) 抗干扰能力强 (2) 便于进行各种数字信号处理 (3) 易于实现集成化 (4) 经济效益正赶上或超过模拟通信 (5) 传输与交换可结合起来,传输电话与传输数据也可结合起来,成为一个 统一整体,有利于实现综合业务通信网。

数字调制与解调 实验报告材料

计算机与信息工程学院实验报告 一、实验目的 1.掌握绝对码、相对码概念及它们之间的变换关系。 2.掌握用键控法产生2FSK信号的方法。 3.掌握2FSK过零检测解调原理。 4.了解2FSK信号的频谱与数字基带信号频谱之间的关系。 二、实验仪器或设备 1.通信原理教学实验系统 TX-6(武汉华科胜达电子有限公司 2011.10) 2.LDS20410示波器(江苏绿扬电子仪器集团有限公司 2011.4.1) 三、总体设计 3.1数字调制 3.1.1实验内容: 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2FSK信号波形。 3、用频谱仪观察数字基带信号频谱及2FSK信号的频谱。 3.1.2基本原理: 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2FSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图1-1所示。 图1-1 数字调制方框图 本单元有以下测试点及输入输出点:

? CAR 2DPSK 信号载波测试点 ? BK 相对码测试点 ? 2FSK 2FSK 信号测试点/输出点,V P-P >0.5V 用1-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对 应关系如下: ? ÷2(A ) U8:双D 触发器74LS74 ? ÷2(B ) U9:双D 触发器74LS74 ? 滤波器A V6:三极管9013,调谐回路 ? 滤波器B V1:三极管9013,调谐回路 ? 码变换 U18:双D 触发器74LS74;U19:异或门74LS86 ? 2FSK 调制 U22:三路二选一模拟开关4053 ? 放大器 V5:三极管9013 ? 射随器 V3:三极管9013 2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,通过分频和滤波得到。 2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。时域表达式为 t t m t t m t S c c 21cos )(cos )()(ωω+= 式中m(t)为NRZ 码。 2FSK 信号功率谱 设码元宽度为T S ,f S =1/T S 在数值上等于码速率, 2FSK 的功率谱密度如图所示。多进制的MFSK 信号的功率谱与二进制信号功率谱类似。 本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2FSK 也具有离散谱。 3.2 数字解调 3.2.1 实验内容 1、 用示波器观察2FSK 过零检测解调器各点波形。 3.2.2 基本原理 2FSK 信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

4ASK载波调制信号的调制解调与性能分析(1)解析

****************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2014年春季学期 通信系统仿真训练课程设计 题目:4ASK载波调制信号的调制解调与性能分析 专业班级:通信工程四班 姓名:赵天宏 学号: 11250414 指导教师:彭清斌 成绩:

摘要 实际通信中的许多信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使得载波的这些参量随基带信号的变化而变化,即正弦载波调制。通过MATLAB软件平台,设计并实现了多进制幅移键控(M-ary Amplitude-Shift Keying,MASK)中的四电平调制(4-ary Amplitude Shift Keying,4ASK)的调制系统和解调系统。本文首先介绍了四电平调制和解调的原理,随后介绍载波产生、振幅调制、振幅判别等功能模块的设计,最后给出了整体调制解调的模块图和仿真波形。 关键词:载波调制、数字通信、四电平调制和解调

目录 一、设计目的和要求 (1) 1.1设计目的 (1) 1.2设计要求 (1) 二、设计内容及原理 (2) 2.1 四进制ASK信号的表示式 (2) 2.2产生方法 (3) 2.3 4ASK调制解调原理 (3) 三、运行环境及MATLAB简介 (6) 3.1运行环境 (6) 3.2 MATLAB简介 (6) 四、详细设计 (8) 4.1载波信号的调制 (8) 4.2调制信号的解调 (8) 4.3编程语言 (9) 4.4测试结果 (10) 五、调试分析 (11) 六、参考文献 (12) 总结 (13)

实验七调幅波信号的解调

实验七 调幅波信号的解调 一、实验目的 1.进一步了解调幅波的原理,掌握调幅波的解调方法。 2.了解二极管包络检波的主要指标,检波效率及波形失真。 3.掌握用集成电路实现同步检波的方法。 二、预习要求 1.复习课本中有关调幅和解调原理。 2.分析二极管包络检波产生波形失真的主要因素。 三、实验仪器设备 1.双踪示波器 2.高频信号发生器 3.万用表 4.实验板G3 四、实验电路说明 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称之为检波。调幅波解调方法有二极管包络检波器和同步检波器。 1. 二极管包络检波器 适合于解调含有较大载波分量的大信号的检波过程,它具有电路简单,易于实现,本实验如图6-1所示,主要由二极管D 及RC 低通滤波器组成,它利用二极管的单向导电特性和检波负载RC 的充放电过程实现检波。 所以RC 时间常数选择很重要, RC 时间常数过大, 则会产生对角切割失真。RC 时间常数太小,高频分量会滤不干净。 综合考虑要求满足下式: m m RC f Ω-<<<<2 011 图中A 对输入的调幅波进行幅度放大(满足大信号的要求),D 是检波二极管, R4、C2、C3滤掉残余的高频分量,R5、和R P1是可调检波直流负载,C5、R6、R P2是可

调检波交流负载,改变R P1和R P2可观察负载对检波效率和波形的影响。 2.同步检波器 利用一个和调幅信号 的载波同频同相的载波信 号与调幅波相乘,再通过低 通滤波器滤除高频分量而 获得调制信号。本实验如图 6-2所示,采用1496集成 电路构成解调器,载波信号 V C经过电容C1加在⑧、⑩ 脚之间,调幅信号V AM经电 容C2加在①、④脚之间, 相乘后信号由(12)脚输出, 经C4、C5、R6组成的低通 滤波器,在解调输出端,提 取调制信号。 图7-2 1496构成的解调器 五、实验内容及步骤 注意:做此实验之前需恢复实验五的实验内容2(1)的内容。 (一)二极管包络检波器 实验电路见图7-1 1.解调全载波调幅信号 (1).m<30%的调幅波的检波 载波信号仍为V C(t)=25sin2π×105(t)(mV)调节调制信号幅度,按调幅实验中实 验内容2(1)的条件获得调制度m<30%的调幅波,并将它加至图6-1信号输入端, (需事先接入-12V电源),由OUT1处观察放大后的调幅波(确定放大器工作正 常),在OUT2观察解调输出信号,调节R P1改变直流负载,观测二极管直流负载 改变对检波幅度和波形的影响,记录此时的波形。 (2).适当加大调制信号幅度,重复上述方法,观察记录检波输出波形。 (3).接入C4,重复(1)、(2)方法,观察记录检波输出波形。 (4).去掉C4,R P1逆时针旋至最大,短接a、b两点,在OUT3观察解调输出信号,调节 R P2改变交流负载,观测二极管交流负载对检波幅度和波形的影响,记录检波输出 波形。 2.解调抑制载波的双边带调幅信号。 载波信号不变,将调制信号V S的峰峰值电压调至160mV,调节R P1使调制器输出为抑制载波的双边带调幅信号,然后加至二极管包络检波器输入端,断开a、b两点,观察记录检波输出OUT2端波形,并与调制信号相比较。 (二)集成电路(乘法器)构成解调器 实验电路见图7-2 1.解调全载波信号

调幅波的解调

1. 基本内容 调幅信号的解调是调制的逆过程。本章主要内容包括振幅调制信号的解调原理、实现方法及电路等。 2 基本要求(1)理解并掌握调幅信号解调的原理、类型及实现模型。(2)掌握二极管包络检波器的工作原理和性能参数的估算方法。(3)掌握乘积型和叠加型同步检波器的组成原理及分析方法。 第一节概述 信号的解调是振幅调制的相反过程,是从已调高频信号中取出调制信号。通常将这种解调称为检波。完成这种解调的电路称为振幅检波器。 一、检波电路的功能 检波电路的功能是从调制信号中不失真的解调出原调制信号。当输入信号为高频等幅波时,检波器输出电压为直流电压。当输入信号为脉冲调制调幅信号的时,检波器输出电压为脉冲波。从信号的频谱来看,检波电路的功能是将已调波的边频或边带信号频谱般移到原调制信号的频谱处。 二、检波电路的分类 检波电路可分为两大类,包络检波和同步检波。包络检波是指检波器的输出电压直接反映输入高频调幅波包络变化规律的波形特点,显然只适合于普通调幅波的解调。同步检波主要应用于双边带调幅波和单边带调幅波的解调。 三、检波电路的主要技术指标

1. 检波电路的电压传输系数检波电路的电压传输系是指检波电路的输出电压和输入电压振幅之比。 2. 等效输入电阻 等效输入电阻定义为输入等幅高频电压的振幅与输入高频电流的基波分量振幅的比值。 3. 非线性失真系数 4.高频滤波系数高频滤波系数定义为,输入高频电压的振幅与输出高频电压的比值。 第二节二极管大信号包络检波器 大信号包络检波是高频输入信号的振幅大于0.5伏时,利用二极管对电容c充电,加反向电压时截止,电容c上电压对电阻R放电这一特性实现的。分析时采用折线法。 大信号包络检波的工作原理 1.原理电路及工作原理 图6―1(a)是二极管峰值包络检波器的原理电路。它是由输入回路、二极管VD和RC低通滤波器组成。 (6-1)式中,ωc为输入信号的载频,在超外差接收机中则为中频ωIΩ为调制频率。在理想情况下,RC网络的阻抗Z应为(6-2)

相位调制与解调

1.前言 1.1 序言 随着人类社会步入信息化社会,电子信息科学技术正以惊人的速度发展,开辟了社会发展的新纪元。从20世纪90年代开始至今,通信技术特别是移动通信技术取得了举世瞩目的成就。在通信技术日新月异的今天,学习通信专业知识不仅需要扎实的基础理论,同时需要学习和掌握更多的现代通信技术和网络技术。通信技术正向着数字化、网络化、智能化和宽带化的方向发展。全面、系统地论述了通信系统基本理沦、基本技术以及系统分析与设计中用到的基本工具和方法,并将重点放在数字通信系统上。通信系统又可分为数字通信与模拟通信。传统的模拟通信系统,包括模拟信号的调制与解调,以及加性噪声对幅度调制和角度调制模拟信号解调的影响。数字通信的基本原理,包括模数转换、基本AWGN信道中的数字调制方法、数字通信系统的信号同步方法、带限AWGN信道中的数字通信问题、数字信号的载波传输、数字信源编码以及信道编码与译码等,同时对多径信道中的数字通信、多载波调制、扩频、GSM与IS95数位蜂窝通信。随着数字技术的发展原来许多不得不采用的模拟技术部分已经可以由数字化来实现,但是模拟通信还是比较重要的 1.2 设计任务 本设计是基于MATLAB的模拟相位(PM)调制与解调仿真,主要设计思想是利用MATLAB这个强大的数学软件工具,其中的通信仿真模块通信工具箱以及M檔等,方便快捷灵活的功能实现仿真通信的调制解调设计。还借助MATLAB可视化交互式的操作,对调制解调处理,降低噪声干扰,提高仿真的准确度和可靠性。要求基于MATLAB的模拟调制与解调仿真,主要设计思想是利用MATLAB、simulink檔、M檔等,方便快捷的实现模拟通信的多种调制解调设计。基于simulink对数字通信系统的调制和解调建模。并编写相应的m檔,得出调试及仿真结果并进行分析。

实验九 QPSK调制与解调实验报告

实验九QPSK/OQPSK 调制与解调实验 一、实验目的 1、了解用CPLD 进行电路设计的基本方法。 2、掌握QPSK 调制与解调的原理。 3、通过本实验掌握星座图的概念、星座图的产生原理及方法,了解星座图的作用及工程上的作用。 二、实验内容 1、观察QPSK 调制的各种波形。 2、观察QPSK 解调的各种波形。 三、实验器材 1、信号源模块 一块 2、⑤号模块 一块 3、20M 双踪示波器 一台 4、 连接线 若干 四、实验原理 (一)QPSK 调制解调原理 1、QPSK 调制 QPSK 信号的产生方法可分为调相法和相位选择法。 用调相法产生QPSK 信号的组成方框图如图12-1(a )所示。图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。设两个序列中的二进制数字分别为a 和b ,每一对ab 称为一个双比特码元。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图12-1(b )中虚线矢量。将两路输出叠加,即得如图12-1(b )中实线所示的四相移相信号,其相位编码逻辑关系如表12-1所示。 (a ) a(0)b(0) b(1) a(1) (b ) 图12-1 QPSK 调制 /并变换。串/并变换器将输入的二进制序列分为两个并行的双极性序列110010*********和

111101*********。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,然后将两路输出叠加,即得到QPSK 调制信号。 2、QPSK 解调 图12-2 QPSK 相干解调器 由于四相绝对移相信号可以看作是两个正交2PSK 信号的合成,故它可以采用与2PSK 信号类似的解调方法进行解调,即由两个2PSK 信号相干解调器构成,其组成方框图如图12-2所示。图中的并/串变换器的作用与调制器中的串/并变换器相反,它是用来将上、下支路所得到的并行数据恢复成串行数据的。 (二)OQPSK 调制解调原理 OQPSK 又叫偏移四相相移键控,它是基于QPSK 的改进型,为了克服QPSK 中过零点的相位跃变特性,以及由此带来的幅度起伏不恒定和频带的展宽(通过带限系统后)等一系列问题。若将QPSK 中并行的I ,Q 两路码元错开时间(如半个码元),称这类QPSK 为偏移QPSK 或OQPSK 。通过I ,Q 路码元错开半个码元调制之后的波形,其载波相位跃变由180°降至90°,避免了过零点,从而大大降低了峰平比和频带的展宽。 下面通过一个具体的例子说明某个带宽波形序列的I 路,Q 路波形,以及经载波调制以后相位变化情况。 若给定基带信号序列为1 -1 -1 1 1 1 1 -1 -1 1 1 -1 对应的QPSK 与OQPSK 发送波形如图12-3所示。 1-1-11111-1-111-1111-11-111-11-1-111-11-1 基基基基I 基基Q P S K ,O Q P S K Q 基基 Q P S K Q 基基O Q P S K -1 图12-3 QPSK,OQPSK 发送信号波形 图12-3中,I 信道为U (t )的奇数数据单元,Q 信道为U (t )的偶数数据单元,而OQPSK 的Q 信道与其I 信道错开(延时)半个码元。 QPSK ,OQPSK 载波相位变化公式为 {}()33arctan ,,,()44 44j i j i Q t I t ππ?ππ? ????? =--???? ?????? ?@ QPSK 数据码元对应的相位变化如图12-4所示,OQPSK 数据码元对应相位变化如图 12-5所示

常规调幅信号的产生与解调

通信原理上机实验报告 年级:姓名:学号:时间: 常规调幅信号的产生与解调 一、实验目的 1.熟悉MATLAB软件的工作环境 2.熟练掌握AM信号产生与相干解调的MATLAB仿真 3.熟练掌握AM信号产生与相干解调的Simulink仿真 二、实验原理 在线性调制中,最先应用的一种幅度调制是常规调幅,简称调幅(AM)。调幅信号的包络与调制信号成正比,其时域表示式为 s AM(t)=[A0+m(t)]cosωc t= A0 cosωc t+ m(t)cosωc t (2-1) 式中,A0为外加直流分量;m(t)是调制信号;ωc是载波角频率。若m(t)为确知信号,则AM信号的频谱为S AM(ω)=πA0[δ(ω+ωc)+δ(ω-ωc)]+1/2[M(ω+ωc)+M(ω-ωc)] 三、实验内容与结果 1.AM信号产生与相干解调的MATLAB仿真 设调制信号为m(t)=cos(150πt),载波中心的频率为1000Hz (1)实验程序 t0=0.1; fs=12000; fc=1000; Vm=2; A0=1; n=-t0/2:1/fs:t0/2; x=cos(150*pi*n); y2=Vm*cos(2*pi*fc*n); N=length(x); Y2=fft(y2); figure(1); subplot(4,2,1);plot(n,y2); axis([-0.01,0.01,-5,5]); title('载波信号'); w=(-N/2:1:N/2-1); subplot(4,2,2);plot(w,abs(fftshift(Y2))); title('载波信号频谱'); y=(A0+x).*cos(2*pi*fc*n); subplot(4,2,3);plot(n,x); title(‘调制信号’); X=fft(x);Y=fft(y);

DBPSK调制含解调实验报告总结计划.docx

实验六 DBPSK 调制及解调实验 一、实验目的 1、 掌握 DBPSK 调制和解调的基本原理; 2、 掌握 DBPSK 数据传输过程,熟悉典型电路; 3、 熟悉 DBPSK 调制载波包络的变化; 4、 掌握 DBPSK 载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、 主控 & 信号源、 9 号、 13 号模块 各一块 2、 双踪示波器 一台 3、 连接线 若干 三、实验原理 1、 DBPSK 调制解调( 9号模块)实验原理框图 I 256K 载波 1 NRZ_I PN15 基带信号 信号源 差分 编码 取反 调制输出 CLK 差分编码时钟 NRZ_Q 反相 256K 载波 2 Q 差分 门限 低通 DBPSK 译码 判决 LPF-BPSK 滤波 解调输入 解调输出 差分译码 BPSK 解调 相干载波 时钟 输出 9# 数字调制解调模块 13# 载波同步及位同步模块 数字锁 相环 数字锁相环输入 SIN BS2 载波 同步 载波同步输入 DBPSK 调制及解调实验原理框图 2、 DBPSK 调制解调( 9号模块)实验框图说明 基带信号先经过差分编码得到相对码,再将相对码的 1 电平和 0电平信号分别与 256K 载 波及 256K 反相载波相乘,叠加后得到 DBPSK 调制输出;已调信号送入到 13模块载波提取单元

得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始相对码,最后经过差分译码恢复输出原始基带信号。其中载波同步和位同步由13号模块完成。 四、实验步骤 实验项目一 DBPSK 调制信号观测( 9号模块) 概述: DBPSK 调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。 本项目通过对比观测基带信号波形与调制输出波形来验证DBPSK 调制原理。 1、关电,按表格所示进行连线。 源端口目的端口连线说明 信号源: PN模块9: TH1( 基带信号 )调制信号输入 信号源: 256KHz模块9: TH14( 载波 1)载波 1 输入 信号源: 256KHz模块9: TH3( 载波 2)载波 2 输入 信号源: CLK模块9: TH2( 差分编码时钟 )调制时钟输入 模块 9: TH4( 调制输出 )模块13:TH2( 载波同步输入 )载波同步模块信号输入 模块 13:TH1(SIN)模块9: TH10( 相干载波输入 )用于解调的载波 模块 9: TH4( 调制输出 )模块9: TH7( 解调输入 )解调信号输入模块 9: TH12(BPSK 解调输出 ) 模块13:TH7( 数字锁相环输入 )数字锁相环信号输入 模块 13:TH5(BS2)模块9: TH11( 差分译码时钟 )用作差分译码时钟 2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK 数字调制解调】。将 9 号模块的 S1 拨为 0100,13 号模块的S3 拨为 0111。 3、此时系统初始状态为:PN 序列输出频率32KHz ,调节信号源模块的 W3 使 256KHz 载波信号的峰峰值为 3V 。 4、实验操作及波形观测。 (1)以 9 号模块“ NRZ-I ”为触发,观测“ I”; (2)以 9 号模块“ NRZ-Q ”为触发,观测“ Q”。 ( 3 )以 9 号模块“基带信号”为触发,观测“调制输出”。

相关主题
文本预览
相关文档 最新文档