当前位置:文档之家› 理论力学第十三章达朗贝尔原理

理论力学第十三章达朗贝尔原理

理论力学第十三章达朗贝尔原理
理论力学第十三章达朗贝尔原理

a

I

F F

C

N

m

4.0m 4.0m

8.0A

第十三章 达朗贝尔原理

[习题13-1] 一卡车运载质量为1000kg 的货物以速度h km v /54=行驶。设刹车时货车作匀减速运动,货物与板间的摩擦因数3.0=s f 。试求使货物既不倾拿倒又不滑动的刹车时间。 解:

以货物为研究对象,其受力如图所示。图中,

)/(1536001000540s m s

m

v v =?

==

0=t v

t

t v v a o t 15

-=-=

t

m

ma F I 15=

= G f N f F s s ==

虚加惯性力之后,重物在形式上“平衡”。 货物不滑动的条件是:

0=∑x

F

0=-F F I

015

≤-N f t m

s N f t

m s ≤15

)(1.58

.910003.01000

1515s N f m t s =???=≥

即货物不滑动的条件是:)(1.5s t ≥ (1)

货物不倾倒(不向前倾倒)的条件是:

)

(≥

∑i A F

M

8.0

4.0≥

?

-

?

I

F

N

8.0

15

4.0≥

?

-

?

t

m

mg

30

-

t

g

t

g

30

)

(

06

.3

8.9

30

30

s

g

t=

=

≥ (2)

(1)(2)的通解是)

(1.5s

t≥。即,使货物既不倾拿倒又不滑动的刹车时间是)

(1.5s

t≥。[习题13-2] 放在光滑斜面上的物体A,质量kg

m

A

40

=,置于A上的物体B,质量kg

m

B

15

=;力kN

F500

=,其作用线平行于斜面。为使A、B两物体不发生相对滑动,

试求它们之间的静摩擦因素

s

f的最小值。

解:以A、B构成的质点和系为研究对象,其受力如图所示。在质心加上惯性力后,在形式上构成平面一般“平衡”力系。

=

∑x F

30

sin

)

(0=

+

-

-g

m

m

F

F

B

A

I

30

sin

)

(

)

(0=

+

-

+

-g

m

m

a

m

m

F

B

A

B

A

30

sin

g

m

m

F

a

B

A

-

+

=

F g

m

B B

B

N )/(191.45.08.915

40500

2s m a =?-+=

以B 为研究对象,其受力如图所示。由达朗伯原理得:

0=∑y

F

0=--Iy B F g m N y B B a m g m N +=

)30sin (0a g m N B +=

0=∑x

F

0=-Ix s F F 0≥-x B s a m N f

N

a m f B s 0

30cos ≥

)

30sin (30cos 0

a g m a m f B B s +≥ 305.05.0191.48.9866.0191.430

sin 30cos 0

0=?+?=+≥a g a f s ,即: 305.0min ,=s f

[习题13-3] 匀质杆AB 的质量kg m 4=,置于光滑的水平面上。在杆的B 端作用一水平推力N F 60=,使杆AB 沿F 力方向作直线平动。试求AB 杆的加速度a 和角θ的值。

解:以AB 杆为研究对象,其受力与运动分析如图所示。由达朗伯原理得:

0=∑x

F

B

N

a

1

P x

0=-I F F

0=-ma F )/(154

602s m m F a ===

0)(=∑i B

F M

0cos sin =?-?θθBC mg BC F I

0cos sin =-θθmg F 0tan =-mg F θ

6533.060

8

.94tan =?==

F mg θ 016.336533.0arctan ≈=θ

[习题13-4] 重为1P 的重物A ,沿光滑斜面D 下降,同时借一绕过滑轮C 的绳子而使重为2P 的重物B 运动,斜面与水平成θ角。试求斜面D 给凸出部分E 的水平压力。

解:以A 为研究对象,其受力与运动分析如图所示。 由达朗伯原理得:

0=∑x

F

0sin 1=--I B F T P θ 0sin 1

1=-

-a g

P T P B θ………(1) 0=∑y

F

B 2

B

T

E

N D

0cos 1=-θP N A θcos 1P N A =

以B 为研究对象,其受力与运动分析如图所示。

a g

P P T B 2

2=

- )1(2g

a

P T B += (2)

(2)代入(1)得:

0)1(sin 121=-+-a g P g a

P P θ

0sin 1221=---a g P

a g P P P θ

0sin 2

121=+-

-a g

P P P P θ g P P P P a 2

12

1sin +-=

θ

以B 、C 、D 物体所构成的物体系统为研究对象,其受力如图所示。由达朗伯定理得:

0=∑x

F

0sin cos '

=-+θθA B E N T N

θθθsin cos cos )1(12P g

a

P N E ++

-= θθθθsin cos cos )sin 1(12

12

12P P P P P P N E ++-+

-=

θθθθsin cos cos )sin (

1212

1212P P P P P P P P N E ++-++-=

θθθθ

sin cos cos )sin (

12

1112P P P P P P N E +++-=

θθ

θcos )]sin 1(

[sin 12

12P P P P N E ++-=

θθ

θθcos )sin sin sin (

121222121P P P P P P P P P N E ++-++=

θθ

θθcos )sin sin sin (

1212221P P P P P P P N E +--+=

θθcos )sin (

12

12

1P P P P P N E +-=

)sin (cos 212

11P P P P P N E -+=

θθ

[习题13-5]

理论力学:虚位移原理及分析力学基础

13.虚位移原理及分析力学基础 自由质点系:运动状态(轨迹、速度等)只取决于作用力和运动的起始条件的质点系。 非自由质点系:运动状态受到某些预先给定的限制(运动的起始条件也要满足这些限制条件)的质点系。 约束:非自由质点系所受到的预先给定的限制。 约束方程:用解析表达式表示的限制条件。 几何约束:只限制质点或质点系在空间位置的约束。 运动约束:对于质点或质点系不仅有位移方面的限制,还有速度或角速度方面的限制的约束。 定常约束:约束方程中不显含时间的约束。 非定常约束:约束方程中显含时间的约束。 完整约束:约束方程不包含质点速度,或者包含质点速度但是它可以积分,转换为有限形式的约束。 非完整约束:约束方程包含质点速度、且不可积分不能转换为有限形式的约束。 双面约束:不仅能限制质点在某一方向的运动,还能限制其在相反方向的运动的约束。 单面约束:只能限制质点沿某一方向运动的约束。 自由度数:在具有完整约束的质点系中,唯一地确定系统在空间的位形或构形的独立坐标的数目数。 广义坐标:用来确定质点系位置的独立参数。 虚位移:在给定位置上,质点或质点系在约束所容许的条件下可能发生的任何无限小位移,称为质点或质点系的虚位移。 虚功:作用于质点上的力在该质点的虚位移中所作的元功,用δW 表示。若用F ,δr 分别代表力和虚位移,则虚功的表达式为F W δδ=?F r 。 理想约束:约束力虚功之和等于零的约束。

虚位移原理:具有理想约束的质点系,在给定位置保持平衡的必要和充分条件是,所有作用于该质点系上的主动力在任何虚位移中所作的虚功之和等于零。 作用于质点系上的主动力对应于广义坐标q h 的广义力: 1 n i Qh i i h r F F q ? ? = =? ∑。 平衡稳定性:在保守系统中,(1)受到微小的扰动而偏离平衡位置后,它能返回到原平衡位置,这种平衡状态称为稳定平衡;(2)受到微小的扰动后,再也不能回到原平衡位置,这种平衡状态称为不稳定平衡;(3)不论在哪个位置,总是平衡的,这种平衡状态称为随遇平衡。 动力学普遍方程:在具有理想约束的质点系中,在任一瞬时,作用于各质点上的主动力和虚加的惯性力在任意虚位移上所作虚功之和等于零。

清华大学-理论力学-习题解答-2-03

2-3 圆盘绕杆AB 以角速度rad/s 转动,AB 杆及框架则绕铅垂轴以角速度 100=?10=ωrad/s 转动。已知mm ,当140=R °=90θ,rad/s ,时,试求圆盘上两相互垂直半径端点C 点及D 点的速度和加速度。 5.2=θ 0=θ 解:圆盘的运动是由三个定轴转动组成的复合运动,且三个轴交于O 点。取O 点为基点,建立动坐标系Oxyz ,Oxyz 绕铅垂轴以角速度ω转动,则牵连角速度e ω=?ωk 。圆盘相对于动坐标系的运动是由框架绕Ox 轴的转动和圆盘绕Oy 轴的转动组成,则圆盘的相对角速度为: r θ =?+?ωi j 所以圆盘的绝对角速度为: r θω′=?+??e ω=ω+ωi j k C 点及 D 点的矢径分别为: 0.140.5()C m =?+r i j 0.50.14()D m =+r j k 由公式可得C 点及D 点的速度: =×v ωr 5 1.412.75(/)C C m s ′=×=++v ωr i j k 190.35 1.25(/)D D m s ′=×=+?v ωr i j k 下面来求加速度。首先求圆盘相对于动系的相对角加速度ε,在动系中,我们可以步将 框架绕Ox 轴的转动看作牵连运动,牵连加速度为r 1e θ=?ωi 1r ,牵连角加速度为ε;将圆盘绕Oy 轴的转动看作相对运动,相对角速度为1e = θ =?j 0ωθ ,相对角加速度为。则根据角加速度合成公式并由此时1r 0==ε? e e r r =+×+εεωωε= 可得: 211250(/)r e r rad s θ =×=?×?=?εωωi j k 接下来求圆盘的绝对角加速度,再次利用角加速度合成公式,并由0e =ε可得: 2100025250(/)e r r rad s ′=×+=+?εωωεi j k 利用公式a 可得C 点及D 点的加速度 : (=×+××εr ωωr )

清华大学版理论力学课后习题答案大全

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂 线的夹角 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时, 轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A ==ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度=12 rad/s ,=30,=60,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 A B C v 0 h 习题6-2图 P AB v C A B C v o h 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v

理论力学(机械工业出版社)第十三章达朗伯原理习题解答

习 题 13-1 如图13-16所示,一飞机以匀加速度a 沿与水平线成仰角b 的方向作直线运动。已知装在飞机上的单摆的悬线与铅垂线所成的偏角为f ,摆锤的质量为m 。试求此时飞机的加速度a 和悬线中的张力F T 。 图13-16 ma F =I 0cos sin 0 I T =-=∑β?F F F x ? βsin cos I T F F = 0sin cos 0 I T =--=∑mg F F F y β? 0sin cos sin cos I I =--mg F F β?? β 0sin ) cos(I =-+mg F ?β? mg ma =+? β?sin ) cos( ) cos(sin β?? += g a mg ma F F ) cos(cos sin cos sin cos I T β?β ?β? β+= == 13-2 球磨机的简图如图13-17所示,滚筒作匀速转动,内装钢

球及被粉碎的原料,当钢球随滚筒转到某一角度f 时,将脱离筒壁作抛射运动,由于钢球的撞击,从而破碎与研磨原料。已知钢球脱离筒壁的最佳位置'4054?=?,滚筒半径R =0.6m 。试求使钢球在'4054?=?处脱离滚筒的滚筒转速。 图13-17 2n I ωmR ma F == 0cos 0 I N n =-+=∑F mg F F ? )cos (cos cos 22I N ?ω?ω?g R m mg mR mg F F -=-=-= 令0N =F 0cos 2=-?ωg R R g ?ωcos = min r/35.296 .00454cos 8.9π30cos π30π30='??=== R g n ?ω 13-3 一质量为m 的物块A 放在匀速转动的水平转台上,如图13-18所示。已知物块的重心距转轴的距离为r ,物块与台面之间的静摩擦因数为s μ。试求物块不致因转台旋转而滑出时水平转台的最大转速。 图13-18 2n I ωmr ma F == 00 N =-=∑mg F F y

理论力学(14.7)--虚位移原理-思考题答案

第十四章 虚位移原理 答 案 14-1 (1)若认为B处虚位移正确,则A,C处虚位移有错:A处位移应垂直于 O1A向左上方,C处虚位移应垂直向下。若认为C处虚位移正确,则B,A处虚位移有错:B处虚位移应反向,A处虚位移应垂直于O1A向右下方。C处虚位移可沿力的作用线,A处虚位移不能沿力的作用线。 (2)三处虚位移均有错,此种情况下虚位移均不能沿力的作用线。杆 AB,DE若运动应作定轴转动,B,D点的虚位移应垂直于杆AB,DE;杆BC,DE作平面运动,应按刚体平面运动的方法确定点C虚位移。 14-2 (1)可用几何法,虚速度法与坐标(解析)法;对此例几何法与虚速度法比坐标(解析)法简单,几何法与虚速度法难易程度相同。 (2)可用几何法,虚速度法与坐标(解析)法。几何法与虚速度法相似,比较简单。用坐标法也不难,但要注意δθ的正负号。

(3)同(2) (4)用几何法或虚速度法比较简单,可以用坐标法,但比较难。 (5)同(4) 14-3 (1)不需要。 (2)需要。内力投影,取矩之和为零,但内力作功之和可以不为零。 14-4 弹性力作功可用坐标法计算,也可用弹性力作功公式略去高阶小量计算;摩擦力在此虚位移中作正功。 14-5 在平面力系所在的刚体平面内建立一任意的平面直角坐标系,在此刚体平面内任选一点作为基点,写出此平面图形的运动方程。设任一力 的作用点为(x i, y i),且把此坐标以平面图形运动方程表示,设此点产生虚位移,把力 投影到坐标轴上,且写出此点直角坐标的变分,用解析法形式的虚位移表达式,把力的投影与直角坐标变分代入,运算整理之后便可得。

也可以在平面力系所在的刚体平面内任选一点O(简化中心),把平面力系向此点简化得一主矢与主矩,把主矢以 表示,分别给刚体以虚位移 ,由虚位移原理也可得平衡方程。

清华大学版理论力学课后习题答案大全_____第6章刚体平面运动分析汇总

6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?c o s )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角θ 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2 000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A == ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30?,?=60?,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 习题6-2图 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v ωA ωB

理论力学(13.8)--达朗贝尔原理

第13章作业 1、已知:图示由相互铰接的水平臂连成的传送带,将圆柱形零件从一高度传送到另一个高度。设零件与臂之间的摩擦系数 f s =0.2 。试求 :(1)降落加速度 为多大时,零件不致在水平臂上滑动;(2)比值h / d 等于多少时,零件在滑动之前先倾倒。 2、已知:图示均质矩形块质量m1 =100kg ,置于平台车上。车质量为 m2 =50kg ,此车沿光滑的水平面运动。车和矩形块在一起由质量为 m3 的物体牵引,使之作加速运动。设物块与车之间的摩擦力足够阻止相互滑动。 试求:能够便车加速运动的质量 m3 的最大值,以及此时车的加速度大小。 3、已知: 图示长方形均质平板,质量为 27kg ,由两个销 A 和 B 悬挂。如果突然撤去销 B 。 试求:在撤去销 B 的瞬时平板的角加速度和销 A 的约束力。

4、已知:转速表的简化模型如图示。杆 CD 的两端各有质量为 m 的 C 球和 D 球 ,杆 CD 与转轴 AB 铰接于各自的中点,质量不计。当转轴 AB 转动且外载荷变化时,杆 CD 的转角 j 就发生变化。设 ω=0 时, φ=,且盘簧中无力。盘簧 产生的力矩 M 与转角 j 的关系为M=k(φ-),式中 k 为盘簧刚度系数。 试求: (1)角速度 ω与角 j 之间的关系;(2)当系统处于图示平面时,轴承 A , B 的约束力。 5、已知:当发射卫星实现星箭分离时,打开卫星整流罩的一种方案如图所示。先由释放机构将整流罩缓慢送到图示位置,然后令火箭加速,加速度为 a ,从而使整流罩向外转。当其质心 C 转到位置 C ′ 时, O 处铰链自动脱开,使整流罩离开火箭。设整流罩质量为 m ,对轴 O 的回转半径为 r ,质心到轴 O 的距离 OC = r 。试求:整流罩脱落时,角速度为多大 ?

清华大学版理论力学课后习题答案大全_____第12章虚位移原理及其应用习题解

解:如图(a ),应用虚位移原理: F 1 ?術 F 2 ? 8r 2 = 0 书鹵 / 、 8r 1 8r 2 tan P 如图(b ): 8 廿y ; 8 厂乔 8r i 能的任意角度B 下处于平衡时,求 M 1和M 2之间的关系 第12章 虚位移原理及其应用 12-1图示结构由8根无重杆铰接成三个相同的菱形。 试求平衡时, 解:应用解析法,如图(a ),设0D = y A = 2l sin v ; y^ 61 sin v S y A =21 cos :心; 溉=61 COST 心 应用虚位移原理: F 2 S y B - R ? S y A =0 6F 2 —2R =0 ; F i =3F 2 习题12-1图 F 2之值。已知:AC = BC 12-2图示的平面机构中, D 点作用一水平力F t ,求保持机构平衡时主动力 =EC = DE = FC = DF = l 。 解:应用解析法,如图所示: y A =lcos ) ; x D =3lsin v S y A - -l sin^ 心;S x D =3I COS ^ & 应用虚 位移原理: —F 2 ? S y A - F I 8x^0 F 2sin J - 3F t cos ^ - 0 ; F 2 = 3F t cot^ 12-3图示楔形机构处于平衡状态,尖劈角为 小关系 习题12-3 B 和3不计楔块自重与摩擦。求竖向力 F 1与F 2的大 F i F 2| (a ) (b) F i 8i - F 2 12-4图示摇杆机构位于水平面上,已知 OO i = OA 。机构上受到力偶矩 M 1和M 2的作用。机构在可

《理论力学》第十三章-达朗贝尔原理

a I F F C N m 4.0m 4.0m 8.0A 第十三章 达朗贝尔原理 [习题13-1] 一卡车运载质量为1000kg 的货物以速度h km v /54=行驶。设刹车时货车作匀减速运动,货物与板间的摩擦因数3.0=s f 。试求使货物既不倾拿倒又不滑动的刹车时间。 解: 以货物为研究对象,其受力如图所示。图中, )/(1536001000540s m s m v v =? == 0=t v t t v v a o t 15 -=-= t m ma F I 15= = G f N f F s s == 虚加惯性力之后,重物在形式上“平衡”。 货物不滑动的条件是: 0=∑x F 0=-F F I 015 ≤-N f t m s N f t m s ≤15 )(1.58 .910003.01000 1515s N f m t s =???=≥

N 即货物不滑动的条件是:) (1.5s t≥ (1) 货物不倾倒(不向前倾倒)的条件是: ) (≥ ∑i A F M 8.0 4.0≥ ? - ? I F N 8.0 15 4.0≥ ? - ? t m mg 30 ≥ - t g t g 30 ≥ ) ( 06 .3 8.9 30 30 s g t= = ≥ (2) (1)(2)的通解是) (1.5s t≥。即,使货物既不倾拿倒又不滑动的刹车时间是) (1.5s t≥。[习题13-2] 放在光滑斜面上的物体A,质量kg m A 40 =,置于A上的物体B,质量kg m B 15 =;力kN F500 =,其作用线平行于斜面。为使A、B两物体不发生相对滑动, 试求它们之间的静摩擦因素 s f的最小值。 解:以A、B构成的质点和系为研究对象,其受力如图所示。在质心加上惯性力后,在形式上构成平面一般“平衡”力系。 = ∑x F 30 sin ) (0= + - -g m m F F B A I

清华大学2004至2005年理论力学本科期末考试试卷

清华大学2004至2005年理论力学本科期末考试试卷 考试课程:理论力学 2004 年 1 月 班级姓名学号成绩 一、填空题( 20 分,每小题 5 分) 1. 平面内运动的组合摆,由杆OA、弹簧及小球m组成(如图 1 示)。此系统的自由度数是 3 。 2. 质量为m1的杆OA 以匀角速度ω绕O 轴转动,其A 端用铰链与质量为 m、半径为r的均质小圆盘相连,小圆盘在半径为的固定2 圆盘的圆周表面作纯滚动,如图 2 所示。系统对O 轴的动量矩的大小为 系统的动能为。

3. 图 3 所示半径为R 的圆环在力偶矩为M 的力偶作用下以角速度ω匀速转动,质量为m的小环可在圆环上自由滑动。系统为理想、完整、非定常、双面约束系统,自由度数为 1 。 4.均质细杆AB 长L,质量为m,与铅锤轴固结成角α = 30°,并以匀角速度ω转动,如图 4 所示。惯性力系的合力的大小等于 。

二、判断题(每题 2 分,共 20 分):请在每道题前面的括号内画×或√ ( √ )1. 在定常约束下质系的一组无穷小真实位移就是虚位移。( √ )2. 任意力系都可以用三个力等效代替。 ( × )3. 首尾相接构成封闭三角形的三个力构成平衡力系。 ( √ )4. 速度投影定理既适用于作平面运动的刚体,也适用于作一般运动的刚体。 ( √ )5. 如果一个两自由度系统的第二类拉格朗日方程存在两个独立的第一积分, 则其中至少有一个是广义动量积分。 ( × )6. 如果刚体的角速度不为零,在刚体或其延拓部分上一定存在速度等于零的点。 ( × )7. 作定轴转动的刚体的动量矩向量一定沿着转动轴方向。( √ )8. 刚体只受力偶作用时,其质心的运动不变。 ( × )9. 如果系统存在广义能量积分,不一定机械能守恒;而如果

理论力学(机械工业出版社)第四章虚位移原理习题解答

习 题 4-1 如图4-19所示,在曲柄式压榨机的销钉B 上作用水平力F ,此力位于平面ABC 内,作用线平分∠ABC 。设 AB =BC ,∠ABC =θ2,各处摩擦及杆重不计,试求物体所受的压 力。 图4-19 0δ)90cos(δδN =--?=∑C B F s F s F W θ )90cos(δ)902cos(δθθ-?=?-C B s s θθsin δ2sin δC B s s = 虚位移原理 0δ)90cos(δδN =--?=∑C B F s F s F W θ 0δsin δN =-C B s F s F θ θ θθθtan 2 )2sin(sin sin δδ2N F F s s F F C B === 4-2 如图4-20所示,在压缩机的手轮上作用一力偶,其矩为M 。手轮轴的两端各有螺距同为h ,但方向相反的螺纹。螺纹上各套有一个螺母A 和B ,这两个螺母分别与长为l 的杆相铰接,四杆形成棱形框,如图所示,此棱形框的点D 固定不动,而点C 连接在压缩机的水平压板上。试求当棱形

框的顶角等于2f 时,压缩机对被压物体的压力。 图4-20 ??cos δ)290cos(δC A s s =-? C A s s δsin δ2=? 而 θ?δπ 2c o s δP s A = ?θ?θ?tan δπ sin δcos π22 δP P s C == 虚位移原理 0δδδN =-=∑C F s F M W θ 0tan δπ δN =?-?θθP F M ?cot π N P M F = 4-3 试求图4-21所示各式滑轮在平衡时F 的值,摩擦力及绳索质量不计。 图4-21 虚位移原理 0δδδ=+-=∑A B F s G s F W (a) A B s s δ2δ= 2 G F = (b) A B s s δ8δ= 8 G F = (c) A B s s δ6δ= 6 G F = (d) A B s s δ5δ= 5 G F =

清华大学版理论力学课后习题答案大全第12章虚位移原理和应用习题解

第12章 虚位移原理及其应用 12-1 图示结构由8根无重杆铰接成三个相同的菱形。试求平衡时,主动力F 1与F 2的大小关系。 解:应用解析法,如图(a ),设OD = l θsin 2l y A =;θsin 6l y B = θθδcos 2δl y A =;θθδcos 6δl y B = 应用虚位移原理:0δδ12=?-?A B y F y F 02612=-F F ;213F F = 12-2图示的平面机构中,D 点作用一水平力F 1,求保持机构平衡时主动力F 2之值。已知:AC = BC = EC = DE = FC = DF = l 。 解:应用解析法,如图所示: θcos l y A =;θsin 3l x D = θθδsin δl y A -=;θθδcos 3δ l x D = 应用虚位移原理:0δδ12=?-?-D A x F y F 0cos 3sin 12=-θθF F ;θcot 312F F = 12-3 图示楔形机构处于平衡状态,尖劈角为θ和β,不计楔块自重与摩擦。求竖向力F 1与F 2的大小关系。 解:如图(a ),应用虚位移原理:0δδ2211=?+?r F r F 如图(b ): β θtan δδtan δ2 a 1r r r ==;12 δ tan tan δr r θ β = 0δtan tan δ1211=? -?r θβF r F ;θ β tan tan 21?=F F 12-4 图示摇杆机构位于水平面上,已知OO 1 = OA 。机构上受到力偶矩M 1和M 2的作用。机构在可能的任意角度θ下处于平衡时,求M 1和M 2之间的关系。 习题12-1图 (a ) 习题12-2解图 习题12-3 (a ) r a (b )

清华大学理论力学试题

清华大学理论力学试题专用纸 考试类型:期中考试 考试时间:2006年11月12日 班级:__________ 姓名:__________ 学号:_________ 成绩:________ 一.判断下列说法是否正确,并简要说明理由(共5题,15分) 1. 速度投影定理给出的刚体上两点速度间的关系只适用于作平面运动的刚体。 2. 圆轮沿曲线轨道作纯滚动,只要轮心作匀速运动,则轮缘上任意一点的加速度的方向均指向轮心。 3. 在复合运动问题中,相对加速度是相对速度对时间的绝对导数。 4. 虚位移是假想的、极微小的位移,它与时间、主动力以及运动的初条件无关。 5. 气象卫星在北半球上空拍摄到的旋风的旋转方向为顺时针方向。 二.填空题(共3题,25分) 1. (5分) 图1所示滑道连杆机构由连杆BC 、滑块A 和曲柄OA 组成。已知BO = OA = 0.1 m ,滑道连杆BC 绕轴B 按10rad t ?=的规律转动。滑块A 的速度为 ,加速度为 。 2. (5分) 点P 沿空间曲线运动,某瞬时其速度43(m/s)=+v i j ,加 速度的大小为210m/s ,两者之间的夹角为030。该瞬时点的轨迹在密切面内的曲率半径为 ,P 点的切线加速度为 。 3. (15分) 图2所示曲柄压榨机构,已知OA = r ,BD = DC = ED = l ,∠OAB = 90°,α = 30°。 记OA 杆的转动虚位移为δ?,则A r δ= ,B r δ= ,C r δ= , D r δ= ,并请在图中标出它们的方向。 图1

三、计算题(25分) 在图3所示机构中,连杆AB 以 2.5rad/s ω=的匀角速度转动,杆BD 可沿与杆EF 固连的套筒滑动。求在图示位置时杆EF 的角速度和角加速度。 四、计算题(20分)图4所示起重机左侧履带较右侧履 带快,使机身在圆弧形轨道上前进。如已知起重机机臂的根部A 点在半径为15 m 的圆弧上 以速度v = 2 m/s 运动,机臂仰角arcsin 0.6θ=,角速度4rad/s θ=? ,角加速度20.5rad/s θ= ,机臂长AB = 30 m 。试求: 1. 机臂的绝对角速度和角加速度。 2. 机臂端点B 的速度和加速度。 五、计算题(15分) 图5中OA 杆以等角速度0ω绕O 轴转动,半径为r 的滚轮在OA 杆上作纯滚动, 已知1O B =,图示瞬时O 、B 在同一水平线上,1O B 在铅垂位置,30AOB ∠=°,求在此瞬时1O B 杆的角速度与角加速度以及滚轮的角速度与角加速度 提示:依次采用点的复合运动理论和刚体复合运动理论。 δ? 图2 B n 图5 图4

(完整版)理论力学课后习题答案第11章达朗贝尔原理及其应用

(a ) 习题11-1图 第11章 达朗贝尔原理及其应用 11-1 均质圆盘作定轴转动,其中图(a ),图(c )的转动角速度为常数,而图(b ),图(d )的角速度不为常量。试对图示四种情形进行惯性力的简化。 解:设圆盘的质量为m ,半径为r ,则如习题11-1解图: (a )2 I ωmr F =,0I =O M (b )2n I ωmr F =,αmr F =t I ,αα2I 2 3mr J M O O == (c )0I =F ,0I =O M (d )0I =F ,αα2 I 2 1mr J M O O = = 11-2矩形均质平板尺寸如图,质量27kg ,由两个销子 A 、B 悬挂。若突然撤去销子B ,求在撤去的瞬时平板的角加 速度和销子A 的约束力。 解:如图(a ):设平板的质量为m ,长和宽分别为a 、b 。 αα375.3I =?=AC m F ααα5625.0])(12 1 [222I =?++==AC m b a m J M A A ∑=0)(F A M ;01.0I =-mg M A ;2 rad/s 04.47=α ∑ =0x F ;0sin I =-Ax F F θ;其中:6.05 3sin ==θ N 26.956.004.47375.3=??=Ax F ∑=0y F ;0cos I =-+mg F F Ay θ;8.05 4sin ==θ 习题11-2图 习题11-1解图 (a ) (a )

N 6.1378.004.47375.38.927=??-?=Ay F 11-3在均质直角构件ABC 中,AB 、BC 两部分的质量各为3.0kg ,用连杆AD 、DE 以及绳子AE 保持在图示位置。若突然剪断绳子,求此瞬时连杆AD 、BE 所受的力。连杆的质量忽略不计,已知l = 1.0m ,φ = 30o。 解:如图(a ):设AB 、BC 两部分的质量各为m = 3.0kg 。 直角构件ABC 作平移,其加速度为a = a A ,质心在O 处。 ma F 2I = ∑=0)(F O M ; 04 sin )(43cos 4cos =+--l F F l F l F B A A B ??? (1) ∑=0AD F ; 0cos 2=-+?mg F F B A (2) 联立式(1)和式(2),得:A B F mg F 3+= N 38.5)13(4 1 =-=mg F A ; N 5.4538.53=?+=mg F B 11-4 两种情形的定滑轮质量均为m ,半径均为 r 。图a 中的绳所受拉力为W ;图b 中块重力为W 。 试分析两种情形下定滑轮的角加速度、绳中拉力和定滑轮轴承处的约束反力是否相同。 解:1、图(a ): ① Wr J O =a α Wr mr =a 22 1 α mr W 2a =α (1) ②绳中拉力为W (2) ③∑=0x F ,0=Ox F (3) ∑=0y F ,W F Oy = (4) 2、图(b ): ① b 2I 2 1αmr M O = (5) b I αr g W a g W F == (6) ∑=0O M ,0I I =-+W r r F M O (5)、(6)代入,得 ) 2(2b W mg r Wg +=α (7) ②绳中拉力(图c ): ∑=0y F ,W F T =+I b W W mg mg a g W W T 2b +=- = (8) ③轴承反力: ∑=0x F ,0=Ox F (9) ∑=0y F ,0I =-+W F F Oy W mg mgW F Oy 2+= (10) A B C D E l l φ φ 习题11-3图 (a ) F I F A F B a A 2m g A B C 3l /4 3l/4 φ φ O a b T I F W (a) 习题11-4图 αa F Oy F Ox F Oy F Ox αb M I O F I W a

清华大学版理论力学课后习题答案大全_____第1章受力分析概述习题解[1]

C (a-2) D R (a-3) (b-1) D R 第1篇 工程静力学基础 第1章 受力分析概述 1-1 图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。试将同一力F 分别对两坐标系进行分解和投影,并比较分力与力的投影。 习题1-1图 解:(a )图(c ):11 s i n c o s j i F ααF F += 分力:11 cos i F αF x = , 11 s i n j F αF y = 投影:αcos 1F F x = , αs i n 1F F y = 讨论:?= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。 (b )图(d ): 分力:22)cot sin cos (i F ?ααF F x -= ,22sin sin j F ? α F y = 投影:αcos 2F F x = , )cos(2α?-=F F y 讨论:?≠90°时,投影与分量的模不等。 1-2 试画出图a 和b 习题1-2图 比较:图(a-1)与图(b-1)不同,因两者之F R D 值大小也不同。 1 (c ) 2 x (d )

1-3 试画出图示各物体的受力图。 习题1-3图 B F 或(a-2) B (a-1) (b-1) F Ay (c-1) 或(b-2) (e-1)

F (a) 1- 4 图a 所示为三角架结构。荷载F 1作用在铰B 上。杆AB 不计自重,杆BC 自重为W 。试画出b 、c 、d 所示的隔离体的受力图,并加以讨论。 习题1-4 图 1- 5 图示刚性构件ABC 由销钉A 和拉杆D 支撑,在构件C 点作用有一水平力F 。试问如果将力F 沿其作用线移至D 或E (如图示),是否会改为销钉A 的受力状况。 解:由受力图1-5a ,1- 5b 和1-5c 分析可知,F 从C 移至E ,A 端受力不变,这是因为力F 在自身刚体ABC 上滑移;而F 从C 移至D ,则A 端受力改变,因为HG 与ABC 为不同的刚体。 (f-1) (f-2) 1 O (f-3) F F'F 1 (d-2) F y B 21 (c-1) F A B 1 B F (b-2) 1 (b-3) F y B 2 A A B 1 B F 习题1-5图

清华大学-理论力学-习题解答-2-37

2-37 OA 杆以等角速度绕轴转动,半径为0ωO r 的滚轮在OA 杆上作纯滚动,已知 r 3B O 1=,图示瞬时、O B 在同一水平线上,O 在铅垂位置,B 1°=∠30AOB ,求在此 瞬时(1)O 杆的角速度与角加速度;(2)滚轮的角速度与角加速度;(3)滚轮上B 1P 点的速度与加速度。 B n B n B τ 解:建立如图所示的动系Ox 。由于滚轮在OA 杆上作纯滚动,在动系上看,滚轮上的P 点与在杆OA 上相应点的相对速度为0。从而, 11y 0101P OP r ω==νj j (1) 以点B 为基点分析P 点运动,得到: B 1+P B r ω=ννi (2) 又: 111112B O B B O B O B O B r r ωω==ντi 11j (3) 将(1),(3)代入(2),得到: 110111112O B O B B r r r ωω=+r j i j i 得到: 1 02O B ωω=(逆时针 ) 03ωω=?B (顺时针 ) (4) B 点加速度为: 11111 2 211111332222B O B O B O B O B O B O B O B O B r r r r εωεωω=+=+?+a τn i 1 21j i j (5) 利用加速度合成公式,得到P 点加速度: P e r c =++a a a a 其中:201e r =a i 0c =,a ,1r r a =a j 从而: 2 011P r a =+i r a j (6)

以B 点为基点分析P 点加速度为: a a (7) 2 1P B B B r r ωε=++j 1i (5),(6)代入(7)得到: 111 122011111132O B O B O B B B r r r r r εωε=++i i j j j 2 r i (8) 将(4)代入(8)得到: 1 2 03 O B ε= (逆时针), 0ε=B (9) 答:(1), 021ωω=B O ( 2 03 321ε= B O 0= 轮ε(2), 03ωω=轮 (3)103j ωr p = v ,() 112 0163j i a +?=ωr p

相关主题
文本预览
相关文档 最新文档