当前位置:文档之家› 复变函数与积分变换(修订版-复旦大学)课后的第三章习题答案

复变函数与积分变换(修订版-复旦大学)课后的第三章习题答案

复变函数与积分变换(修订版-复旦大学)课后的第三章习题答案
复变函数与积分变换(修订版-复旦大学)课后的第三章习题答案

习题三

1. 计算积分

2

()d C

x y ix

z

-+?,其中C 为从原点到点1+i 的直线段.

解 设直线段的方程为y x =,则z x ix =+. 01x ≤≤

()()1

22

1

23

1

0()1

1

(1)(1)(1)333C

x y ix dz x y ix d x ix i i ix i dx i i x i -+=-++-=+=+?=+=??

?

2. 计算积分(1)d C

z z

-?,其中积分路径C 为

(1) 从点0到点1+i 的直线段;

(2) 沿抛物线y=x2,从点0到点1+i 的弧段. 解 (1)设z x ix =+. 01x ≤≤

()()1

11()C

z d z x i x d x i x i

-=-++

=??

(2)设2

z x ix =+. 01x ≤≤

()()1

22

211()3

C

i

z dz x ix d x ix -=-++=??

3. 计算积分d C

z

z ?,其中积分路径C 为

(1) 从点-i 到点i 的直线段;

(2) 沿单位圆周|z|=1的左半圆周,从点-i 到点i; (3) 沿单位圆周|z|=1的右半圆周,从点-i 到点i. 解 (1)设z iy =. 11y -≤≤

11

1

1

C

z dz ydiy i ydy i

--===???

(2)设i z e θ

=. θ从32π到2π

22

332

2

12i i C

z dz de i de i

π

π

θ

θππ===???

(3) 设i z e θ

=. θ从32π到2π

232

12i C

z dz de

i

π

θ

π==??

6. 计算积分()sin z

C

z e z dz

-??

,其中C 为

z a =>. 解

()sin sin z

z C

C

C

z e z dz z dz e zdz

-?=-????

∵sin z e z ?在z a

=所围的区域内解析

∴sin 0

z

C

e zdz ?=?

从而

()20

22

sin 0

z i C

C

i z e z dz z dz adae a i e d π

θ

π

θθ-?====?

??

?

故()sin 0

z

C

z e z dz -?=?

7. 计算积分2

1(1)

C

dz

z z +?

,其中积分路径C 为

(1)11

:2

C z =

(2)

23:2

C z =

(3)

31:2

C z i +=

(4)

43:2C z i -=

解:(1)在

1

2

z =

所围的区域内,

21

(1)z z +只有一个奇点0z =. 12

1

11111

()2002(1)22C C dz dz i i z z z z i z i ππ=-?-?=--=+-+?

? (2)在

2

C 所围的区域内包含三个奇点

0,z z i ==±.故

22

1

11111()20(1)22C C dz dz i i i z z z z i z i πππ=-?-?=--=+-+?

? (3)在2C 所围的区域内包含一个奇点

z i =-,故

321

11111()00(1)22C C dz dz i i

z z z z i z i ππ=-?-?=--=-+-+?? (4)在4C 所围的区域内包含两个奇点

0,z z i ==,故

42

1

11111

()2(1)22C C dz dz i i i z z z z i z i πππ=-?-?=-=+-+?

?

10.利用牛顿-莱布尼兹公式计算下列积分. (1) 20

cos 2i

z dz

π+?

(2)

z i

e dz

π

--? (3) 2

1

(2)i

iz dz

+?

(4) 1ln(1)

1i

z dz z ++? (5)

10

sin z zdz ?? (6) 211tan cos i

z

dz

z +?

解 (1)

220

1cos sin

21

222

i

i z z

dz ch ππ++==?

(2)

2

z z

i

i

e dz e ππ

----=-=-?

(3) 22311

111111(2)(2)(2)(2)333i

i i

i iz dz iz d iz iz i i +=

++=?+=-+?

?

(4) 222

111ln(1)11ln(1)ln(1)ln (1)(3ln 2)1284i

i i z dz z d z z z π+=++=+=-++?? (5)

1

11

100

sin cos cos cos sin1cos1

z zdz zd z z z zdz ?=-=-+=-?

??

(6) 2221121112

21tan 1sec sec tan tan cos 2111tan1tan 1t 122i

i i i i

z dz zdz z zdz tanz z z ith h +=+=+??=-+++ ??????11. 计算积分

21z

C

e dz

z +?

,其中C 为

(1)

1

z i -= (2)

1

z i += (3)

2

z =

解 (1)

221()()z z z

i

z i

C C e e e dz dz i e z z i z i z i

ππ===?=++-+?? (2)

221()()z z z

i

z i

C C e e e dz dz i e z z i z i z i ππ-=-==?=-++--??

(3) 122222sin1111z z z

i i C C C e e e dz dz dz e e i z z z πππ-=+=-=+++???

16. 求下列积分的值,其中积分路径C 均为|z|=1.

(1)

z C e dz z ?

(2)

3

cos C z dz z ?

(3) 020tan

1

2,()2C z

dz z z z <-?

解 (1)

(4)

5

2()4!

12z z z C e i i

dz e z ππ===

?

(2)

(2)

3

cos 2(cos )2!

z C z i dz z i

z ππ===-?

(3)

'2

020tan

22(tan )sec ()

2z z C z

z dz i z i z z ππ===-?

17. 计算积分331

(1)(1)C dz

z z -+? ,其中积分路径C 为 (1)中心位于点1z =,半径为2R <的正向圆周 (2) 中心位于点1z =-,半径为2R <的正向圆周

解:(1)

C

内包含了奇点1z =

∴(2)

1

333

1213()(1)(1)

2!(1)8z C

i i dz z z z ππ===

-++?

(2)

C

内包含了奇点1z =-,

(2)

133

3121

3()(1)(1)2!(1)8z C i i

dz z z z ππ=-==-

-+-?

19. 验证下列函数为调和函数.

3223(1)632;(2)e cos 1(e sin 1).x x x x y xy y y i y ωω=--+=+++

解(1) 设w u i υ=

+,3223

632u

x x y xy y

=--+ 0υ=

22

3123u x xy y

x ?=--? 22666u x xy y y ?=--+?

22612u x y x ?=-? 22612u x y y ?=-+?

从而有

2222

0u u

x y ??+=??,w 满足拉普拉斯方程,从而是调和函数.

(2)

设w u i υ=+,cos 1x

u e y =?+

sin 1x e y υ=?+ ∴cos x u e y

x ?=?? s i n x u e y y ?=-??

22

cos x u e y x ?=?? 2

2c o s x u e y y ?=-??

从而有

2222

0u u

x y ??+=??,u 满足拉普拉斯方程,从而是调和函数.

sin x

e y x υ?=?? c o s x e y y υ?=??

22sin x e y x υ?=?? 22

s i n x y e y υ?=-??

2222

0x y υυ??+=??,υ满足拉普拉斯方程,从而是调和函数.

20.证明:函数22

u x y =-,

22x

x y υ=

+都是调和函数,但()f z u i υ=+不是解析函数

证明:

2u x x ?=? 2u y y ?=-? 22

2u x ?=? 222u y ?=-?

∴222

20u u

x y ??+=??,从而u 是调和函数. 22

222()y x x x y υ?-=

?+ 2222()xy y x y υ?-=?+

223222362()xy x x x y υ?-+=?+ 223

222362()xy x y x y υ?-=?+

∴22220x y υυ

??+=??,从而υ是调和函数.

但∵u x

y υ??≠?? u y x υ

??≠-

?? ∴不满足C-R 方程,从而()f z u i υ=+不是解析函数. 22.由下列各已知调和函数,求解析函数()f z u i υ=+

(1)

22

u x y xy =-+ (2)22

,(1)0y

u f x y =

=+

解 (1)因为 2u x y x

y υ

??=+=

?? 2u y x y x υ??=-+=-?? 所以

22

(,)

(,)(2)(2)(2)00

(0,0)(0,0)222

u u x y x y y x dx dy C y x dx x y dy C xdx x y dy C y x

x y xy C υ??=-++=-+++=-+++??????=-

+++22

2

2

()i(2)

22x y f z x y xy xy C =-++-+++

令y=0,上式变为

2

2

()i()

2x f x x C =-+

从而

2

2

()i i 2z f z z C

=-?+

(2)222

2()u xy x

x y ?=-?+ 22

2

22()u x y y x y ?-=?+ 用线积分法,取(x0,y0)为(1,0),有

2

(,)

4222

(1,0)12222

2()0()1110x y x u u x y y

dx dy C dx x dy C y x x x y x x y C x x y x y υ??=-++=-+???+=-+=-+++??2222

()i(1)y x

f z C x y x y =

+-+++

由(1)0.f =,得C=0

()11f i z z ??

∴=- ?

??

23.设

12()()()()n p z z a z a z a =--- ,其中(1,2,,)i a i n = 各不相同,闭路C 不通过

12,,,n a a a ,证明积分

1()

d 2π()C

p z z i p z '?

等于位于C 内的p(z)的零点的个数.

证明: 不妨设闭路C 内()P z 的零点的个数为k, 其零点分别为

12,,...k a a a

1112

3

12121()()()...()...()

1()1

2πi ()2πi ()()...()

111111...2πi 2πi 2πi 1111

11...1...2πi 2πi n n

k k n k k C C n C C C n

C C k n

k z a z a z a z a z a P z dz dz

P z z a z a z a dz dz dz z a z a z a dz d z a z a -==+-+--+--'=---=

+++---=++++++--∏∏??????? 个

z k

=24.试证明下述定理(无界区域的柯西积

分公式): 设f(z)在闭路C 及其外部区域D 内解析,且lim ()z f z A →∞

=≠∞

,则

(),,1()d ,.2πC f z A z D f A z G i z ξξξ-+∈?=?∈-??

其中G 为C 所围内部区域.

证明:在D 内任取一点Z ,并取充分大的R ,作圆CR: R z =,将C 与Z 包含在内

则f(z)在以C 及

R C 为边界的区域内解析,依柯西积分公式,有

R 1()()()[-]2πi C C f f f z d d z z ζζζζζζ=

--??

因为()

f z z ζζ-- 在R

ζ>上解析,且

()1

lim lim ()lim ()1

1f f f z z ζζζζζζζζζ

→∞

→∞

→∞=?==--

所以,当Z 在C 外部时,有

1()

()2πi C f f z A d z ζζζ=-

-?

即1()()2πi C f d f z A z ζζζ=-+-?

设Z 在C 内,则f(z)=0,即

R 1()()0[]2πi C C f f d d z z ζζζζζζ=

---??

故有:1()2πi C f d A z ζζζ=-?

高等数学 复旦大学出版社 课后习题答案

1. 解: (1)相等. 因为两函数的定义域相同,都是实数集R ; x =知两函数的对应法则也相同;所以两函数相等. (2)相等. 因为两函数的定义域相同,都是实数集R ,由已知函数关系式显然可得两函数的对应法则也相同,所以两函数相等. (3)不相等. 因为函数()f x 的定义域是{,1}x x x ∈≠R ,而函数()g x 的定义域是实数集R ,两函数的定义域不同,所以两函数不相等. 2. 解: (1)要使函数有意义,必须 400x x -≥?? ≠? 即 40x x ≤?? ≠? 所以函数的定义域是(,0)(0,4]-∞U . (2)要使函数有意义,必须 30lg(1)010x x x +≥?? -≠??->? 即 301x x x ≥-?? ≠??

概率论和数理统计 复旦大学 课后题答案4

4习题四 1.设随机变量X 的分布律为 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;82842 E X =-? +?+?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 故 ()0.58300.34010.07020.0073E X =? +?+?+?+?+? 0.501,= 5 2 ()[( )]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?= 3.设随机变量且已知E (X )=0.1,E (X )=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-= ……②, 2222 12313()(1)010.9E X P P P P P =-++=+= ……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少? 【解】记A ={从袋中任取1球为白球},则

(){|}{}N k P A P A X k P X k ===∑ 全概率公式 1{}{} 1().N N k k k P X k kP X k N N n E X N N ===== ===∑∑ 5.设随机变量X 的概率密度为 f (x )=?? ? ??≤≤-<≤.,0,21,2, 10,其他x x x x 求E (X ),D (X ). 【解】1 2 2 1 ()()d d (2)d E X xf x x x x x x x +∞ -∞ = =+-? ?? 2 1 3 32011 1.33x x x ?? ??=+-=??????? ? 1 2 2 2 3 20 1 7 ()()d d (2)d 6 E X x f x x x x x x x +∞ -∞ ==+-= ? ?? 故 2 2 1()()[()].6 D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ -4X . 【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=?+?+= (2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X - 因独立 1184568.=?-?= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ), D (2X -3Y ). 【解】(1) (32)3()2()3323 3. E X Y E X E Y -=-=?-?= (2) 2 2 (23)2()(3)412916192.D X Y D X DY -=+-=?+?= 8.设随机变量(X ,Y )的概率密度为

欧阳光中数学分析答案

欧阳光中数学分析答案 【篇一:数学分析目录】 合1.1集合1.2数集及其确界第二章数列极限2.1数列极限 2.2数列极限(续)2.3单调数列的极限2.4子列第三章映射和实函数 3.1映射3.2一元实函数3.3函数的几何特性第四章函数极限和连续性4.1函数极限4.2函数极限的性质4.3无穷小量、无穷大量和有界量第五章连续函数和单调函数5.1区间上的连续函数5.2区间上连续函数的基本性质5.3单调函数的性质第六章导数和微分6.1导数概念6.2求导法则6.3高阶导数和其他求导法则6.4微分第七章微分学基本定理及使用7.1微分中值定理7.2taylor展开式及使用7.3lhospital法则及使用第八章导数的使用8.1判别函数的单调性8.2寻求极值和最值8.3函数的凸性8.4函数作图8.5向量值函数第九章积分9.1不定积分9.2不定积分的换元法和分部积分法9.3定积分9.4可积函数类r[a,b] 9.5定积分性质9.6广义积分9.7定积分和广义积分的计算9.8若干初等可积函数类第十章定积分的使用10.1平面图形的面积10.2曲线的弧长10.3旋转体的体积和侧面积10.4物理使用10.5近似求积第十一章极限论及实数理论的补充11.1cauchy收敛准则及迭代法11.2上极限和下极限11.3实数系基本定理第十二章级数的一般理论12.1级数的敛散性12.2绝对收敛的判别法12.3收敛级数的性质12.4abel-dirichlet判别法12.5无穷乘积第十三章广义积分的敛散性13.1广又积分的绝对收敛性判别法13.2广义积分的abel-dirichlet判别法第十四章函数项级数及幂级数14.1一致收敛性14.2一致收敛性的判别14.3一致收敛级数的性质14.4幂级数14.5函数的幂级数展开第十五章fourier级数15.1fourier级数15.2fourier级数的收敛性15.3fourier级数的

概率论与数理统计复旦大学出版社第二章课后答案(供参考)

概率论与数理统计习题二答案 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最大号码,写出随机变量X 的分布律. 【解】X 的可能取值为3,4,5,其取不同值的概率为 以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)1 33{},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】X 的可能取值为0,1,2,其取不同值的概率为 (2) 当0x <时,{}()0F x P X x =≤= 当01x ≤<时,{}{}22()035 F x P X x P X =≤=== 当12x ≤<时,{}{}{}34()0135 F x P X x P X P X =≤==+== 当2x ≥时,{}{}{}{}()0121F x P X x P X P X P X =≤==+=+== 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示3次射击中击中目标的次数.则X 的可能取值为0,1,2,3,显然~(3,0.8)X b 其取不同值的概率为 分布函数 3次射击中至少击中2次的概率为 4.(1) 设随机变量X 的分布律为 {}! k P x k a k λ==, 其中k =0,1,2,…,λ>0为常数,试确定常数a .

(2) 设随机变量X 的分布律为 {}a P x k N == , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;(2) 甲比乙投中次数多的概率. 【解】设X 、Y 分别表示甲、乙投中次数,则~(3,0.6)X b ,~(3,0.7)Y b (1) {}{}{}{}{}0,01,12,23,3P X Y P X Y P X Y P X Y P X Y ====+==+==+== 33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++222233 33C (0.6)0.4C (0.7)0.3(0.6)(0.7)+ (2) {}{}{}{}1,02,03,0P X Y P X Y P X Y P X Y >===+==+== 312322 33(0.6)C 0.7(0.3)(0.6)C (0.7)0.3++=0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则~(200,0.02)X b ,设机场需配备N 条跑 道,根据题意有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松定理近似计算 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 13 p = 所以 4 451210 (4)C () 33243 P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率;

高等数学(复旦大学版)第十章_多元函数积分学(一)

第十章 多元函数积分学(Ⅰ) 一元函数积分学中,曾经用和式的极限来定义一元函数()f x 在区间[a,b]上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学容: 一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy 面上的闭区域D , 它的侧面是以D 的边界曲线为准线而母线平行于z 轴的柱面, 它的顶是曲面z =f (x , y ), 这里f (x , y )≥0且在D 上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D 分成n 个小区域?σ 1, ?σ 2, ? ? ? , ?σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体. 在每个?σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为?σ i 的平顶柱体的体积为 f (ξ i , η i ) ?σi (i =1, 2, ? ? ? , n ). 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 . 可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即 i i i n i f V σηξλ?==→∑),(lim 1 0. 其中λ是个小区域的直径中的最大值.

概率论与数理统计复旦大学出版社第四章课后答案

概率论 习题四 答案 1.设随机变量X 的分布律为 X -1 0 1 2 P 1/8 1/2 1/8 1/4 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;8 2842 E X =-?+? +?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. X 0 1 2 3 4 5 P 5905100 C 0.583C = 14 1090 5 100 C C 0.340C = 231090 5 100 C C 0.070C = 321090 5 100 C C 0.007C = 4110905100 C C 0C = 510 5 100 C 0C = 故 ()0.58300.34010.07020.00730405E X =?+?+?+?+?+? 0.501,= 5 2 ()[()]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?=L 3.设随机变量X -1 0 1 P p 1 p 2 p 3 且已知E (X )=0.1,E (X 2)=0.9,求123,,p p p . 【解】因1231p p p ++=……①, 又12331()(1)010.1E X p p p p p =-++=-=g g ……②, 222212313()(1)010.9E X p p p p p =-++=+=g g g ……③ 由①②③联立解得1230.4,0.1,0.5.p p p ===

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

概率论与数理统计习题答案(廖茂新复旦版)

习 题 一 1.设A ,B ,C 为三个事件,用A ,B ,C 的运算式表示下列事件: (1) A 发生而B 与C 都不发生; (2) A ,B ,C 至少有一个事件发生; (3) A ,B ,C 至少有两个事件发生; (4) A ,B ,C 恰好有两个事件发生; (5) A ,B 至少有一个发生而C 不发生; (6) A ,B ,C 都不发生. 解:(1)A C B 或A -B -C 或A -(B ∪C ). (2)A ∪B ∪C . (3)(AB )∪(AC )∪(BC ). (4)(AB C )∪(AC B )∪(BC A ). (5)(A ∪B )C . (6)C B A 或C B A . 2.对于任意事件A ,B ,C ,证明下列关系式: (1)(A +B ) (A +B )(A + B )(A +B )= ?; (2)AB +A B +A B +A B AB -= AB ; (3)A -(B +C )= (A-B )-C . 证明:略. 3.设A ,B 为两事件,P (A )=0.5,P (B )=0.3,P (AB )=0.1,求: (1) A 发生但B 不发生的概率; (2) A ,B 都不发生的概率; (3) 至少有一个事件不发生的概率. 解(1) P (A B )=P (A -B )=P (A -AB )=P (A )-P (AB )=0.4; (2) P (B A )=P (B A )=1-P (A ∪B )=1-0.7=0.3; (3) P (A ∪B )=P (AB )=1-P (AB )=1-0.1=0.9. 4.调查某单位得知。购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD 占5%,三种电器都购买占2%。求下列事件的概率。 (1)至少购买一种电器的; (2)至多购买一种电器的; (3)三种电器都没购买的.

概率论和数理统计_复旦大学_课后题答案6.

6习题六 1.设总体X ~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之 差的绝对值大于3的概率. 【解】μ=60,σ2=152,n =100 ~(0,1) X Z N = 即 60 ~(0,1)15/10 X Z N -= (|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-< 2[1(2)]2(10.9772)0.0456.=-Φ=-= 2.从正态总体N (4.2,52)中抽取容量为n 的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n 至少取多大? 【解】 ~(0,1) X Z N = (2.2 6.2)P X P Z <<=<< 210.95,=Φ-= 则Φ,故>1.96, 即n >24.01,所以n 至少应取25  3.设某厂生产的灯泡的使用寿命X ~N (1000,σ2) (单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果, 只记得样本方差为S 2=1002,试求P (X >1062). 【解】μ=1000,n =9,S 2=1002 1000 ~(8) 100/3X X t t -= = 10621000 (1062)()( 1.86)0.05100/3 P X P t P t ->=> =>= 4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差. 【解】~(0,1) X Z N =,由P (|X -μ|>4)=0.02得

P |Z |>4(σ/n )=0.02, 故210.02σ?? ??-Φ=?? ? ??????? , 即0.99.σ??Φ= ? ??? 查表得 2.33,σ = 所以 5.43.2.33 σ= = 5.设总体X ~N (μ,16),X 1,X 2,…,X 10是来自总体X 的一个容量为10的简单随机样本, S 2为其样本方差,且P (S 2>a )=0.1,求a 之值. 【解】22 22299~(9),()0.11616S a P S a P χχχ? ?=>=> ?? ?.= 查表得 914.684,16 a = 所以 14.68416 26.105.9 a ?== 6.设总体X 服从标准正态分布,X 1,X 2,…,X n 是来自总体X 的一个简单随机样本,试问统计量 Y = ∑∑==-n i i i i X X n 6 25 1 2)15(,n >5 服从何种分布? 【解】 25 2 2 2 2 221 1 ~(5),~(5i n i i i i X X X χχχ=== =∑∑)n -且12 χ与22 χ相互独立. 所以 2122/5~(5,5)/5 X Y F X n n =-- 7.求总体X ~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于 0.3的概率. 【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N (20,310), Y ~N (20, 3 15 ),且X 与Y 相互独立. 则33~0, (0,0.5),1015X Y N N ?? -+= ???

《概率论与数理统计》习题答案(复旦大学出版社)4

1 习题四 1.设随机变量X 的分布律为 求E (X ),E (X 2),E (2X +3). 【解】(1) 11111()(1)012;8 2 8 4 2 E X =-? +?+?+?= (2) 2 2 2 2 2 11115()(1)012;8 2 8 4 4E X =-?+?+?+? = (3) 1(23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为 故 ()0.58300.34010.07020.0073E X =?+?+?+?+?+? 0.501, = 5 2 ()[( )]i i i D X x E X P == -∑

2 2 2 2 (00.501)0.583(1 0.501)0.340(50.501) 0.432. =-?+-?++- ?= 3.设随机变量X 的分布律为 且已知E (X )=0.1,E (X 2)=0.9,求P 1,P 23【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-= ……②, 2 2 2 2 12313()(1)010.9E X P P P P P =-++=+= ……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少? 【解】记A ={从袋中任取1球为白球},则 (){|}{}N k P A P A X k P X k ===∑ 全概率公式 1{}{} 1(). N N k k k P X k k P X k N N n E X N N === == == = ∑ ∑

高等数学复旦大学出版社习题答案七

习题七 1. 在空间直角坐标系中,定出下列各点的位置: A(1,2,3); B(-2,3,4); C(2,-3,-4); D(3,4,0); E(0,4,3); F(3,0,0). 解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限; 点D在xOy面上;点E在yOz面上;点F在x轴上. 2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢? 答: 在xOy面上的点,z=0; 在yOz面上的点,x=0; 在zOx面上的点,y=0. 3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢? 答:x轴上的点,y=z=0; y轴上的点,x=z=0; z轴上的点,x=y=0. 4. 求下列各对点之间的距离: (1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4); (3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3). 解:(1)s= (2) s== (3) s== (4) s== 5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 02 s= x s== y s== 5 z s==. 6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则 222222 (4)1(7)35(2) z z -++-=++-- 解得 14 9 z=

即所求点为M (0,0, 149 ). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图 7-1 图7-1 9. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解: 232(2)3(3) 2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c 10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=-- c a 222 5D A BA BD =-=--c a 333 5D A BA BD =-=--c a 444 .5 D A BA BD =-=--c a 11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M 的投影为M ',则 1 Pr j cos604 2.2 u OM OM =?=?= 12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标. 解:设此向量的起点A 的坐标A (x , y , z ),则 {4,4,7}{2,1,7}AB x y z =-=----

概率论与数理统计复旦大学出版社第一章课后参考答案

精心整理 第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1)A 发生,B ,C 都不发生; (2)A , B , C 都发生; (3)A ,B ,C (4)A , B , C 都不发生; (5)A ,B ,C (6)A ,【解】(1(B C (4)ABC B C (5)ABC ∪ABC ∪ABC ABC =AB BC AC 3. . 4.设A ,?B )=0.3,求P (. 【解】P 5.设A ,(A )=0.6,P (B )=0.7, (1AB (2AB 【解】(1)()0.6AB P A ==,()P AB 取到最大值为(2)当()()()0.3P A P B P A B =+-= 6.设A ,B ,P (C )=1/3P (AC )至少有一事件发生的概率. )=0, 由加法公式可得 =14+14+13?112=34 7.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”, 则样本空间Ω中样本点总数为13 52n C =,A 中所含样本点533213131313k C C C C =,所求概率为 8. (1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率; (3)求五个人的生日不都在星期日的概率. 【解】(1)设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故

P (A 1)= 5 17 =(17)5(亦可用独立性求解,下同) (2)设A 2={五个人生日都不在星期日},有利事件数为65,故 P (A 2)=5567=(67 )5 (3)设A 3={五个人的生日不都在星期日} P (A 3)=1?P (A 1)=1?(1 7 )5 9..见教材习题参考答案. 10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n

概率论(复旦三版)习题五答案

概率论与数理统计(复旦第三版) 习题五 答案 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

10.760.840.9.n i i X P n =??????≤ ≤≥???????? ∑ 根据独立同分布的中心极限定理得 0.8n i X n P ??-??≤≤???? ∑ 0.9,=Φ-Φ≥ 整理得 0.95,10?Φ≥ ?? 查表 1.64,≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各 机床开动与否互不影响,开动时每部机床消耗电能15个单位. 问至少供应多少单位电能才可以95%的概率保证不致因供电不 足而影响生产. 【解】设需要供应车间至少15m ?个单位的电能,这么多电能最多能 同时供给m 部车床工作,我们的问题是求m 。 把观察一部机床是否在工作看成一次试验,在200次试验中, 用X 表示正在工作的机床数目,则~(200,0.7)X B , ()2000.7140, ()(1)2000.70.342,E X np D X np p ==?==-=??= 根据题意,结合棣莫弗—拉普拉斯定理可得 0.95{}P X m P =≤=≤=Φ

高等数学(复旦大学版)第十章-多元函数积分学(一)

第十章多元函数积分学(Ⅰ) f x在区间[a,b]上的定积分,并且已经建立 一元函数积分学中,曾经用和式的极限来定义一元函数() 了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节二重积分 教学目的: 1、熟悉二重积分的概念; 2、了解二重积分的性质和几何意义,知道二重积分的中值定理; 3、掌握二重积分的(直角坐标、极坐标)计算方法; 4、能根据积分区域和被积函数正确选择积分顺序 教学重点: 1、二重积分的性质和几何意义; 2、二重积分在直角坐标系下的计算 教学难点: 1、二重积分的计算; 2、二重积分计算中的定限问题 教学内容: 一、二重积分的概念 1曲顶柱体的体积 设有一立体它的底是xOy面上的闭区域D它的侧面是以D的边界曲线为准线而母线平行于z轴的柱面它的顶是曲面z f(x y)这里f(x y)0且在D上连续这种立体叫做曲顶柱体现在我们来讨论如何计算曲顶柱体的体积 首先用一组曲线网把D分成n个小区域 1 2n分别以这些小闭区域的边界曲线为准线作母线平行于z轴的柱面这些柱面把原来的曲顶柱体分为n个细曲顶柱体在每个i中任取一点(i i)以f (i i)为高而底为i的平顶柱体的体积为

f ( i i ) i (i 1 2 n ) 这个平顶柱体体积之和 i i i n i f V σηξ?≈=∑),(1 可以认为是整个曲顶柱体体积的近似值 为求得曲顶柱体体积的精确值 将分割加密 只需取极限 即 i i i n i f V σηξλ?==→∑),(lim 1 其中是个小区域的直径中的最大值 2 平面薄片的质量 设有一平面薄片占有xOy 面上的闭区域D 它在点(x y )处的面密度为(x y ) 这里 (x y )0且在D 上连续 现在要计算该薄片的质量M 用一组曲线网把D 分成n 个小区域 1 2 n 把各小块的质量近似地 看作均匀薄片的质量 ( i i ) i 各小块质量的和作为平面薄片的质量的近似值 i i i n i M σηξρ?≈=∑),(1 将分割加细 取极限 得到平面薄片的质量 i i i n i M σηξρλ?==→∑),(lim 1 其中是个小区域的直径中的最大值 定义 设f (x y )是有界闭区域D 上的有界函数 将闭区域D 任意分成n 个小闭区域 1 2 n 其中 i 表示第i 个小区域 也表示它的面积 在每个 i 上任取一点( i i ) 作和 i i i n i f σηξ?=∑),(1 如果当各小闭区域的直径中的最大值趋于零时 这和的极限总存在 则称此极限为函数f (x y )在 闭区域D 上的二重积分 记作 σ d y x f D ??),( 即

《概率论与数理统计》习题答案(复旦大学出版社)第三章

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=???? ? ≤ ≤≤ ≤. , 020,20, sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ?? ≤<≤ <36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππsin sin sin sin sin 0sin sin 0sin 4 3 4 6 3 6 1). 4 =--+= 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X ,Y )的分布密度 f (x ,y )=?? ?>>+-. , 0, 0,0, )43(其他y x A y x e 求:(1) 常数A ; (2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34) (,)d d e d d 112 x y A f x y x y A x y +∞+∞+∞+∞+-∞ -∞ == =? ??? 得 A =12 (2) 由定义,有 (,)(,)d d y x F x y f u v u v -∞ -∞ = ?? ( 34 ) 3400 12e d d (1e )(1e ) 0,0, 0,0, y y u v x y u v y x -+--??-->>? ==?? ? ????其他 (3) {01,02}P X Y ≤<≤< 12(34) 38 {01,02} 12e d d (1 e )(1e )0.9499. x y P X Y x y -+--=<≤<≤= =--≈?? 5.设随机变量(X ,Y )的概率密度为 f (x ,y )=?? ?<<<<--. , 0, 42,20),6(其他y x y x k (1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有

高等数学复旦大学出版社习题答案十三

习题十三 1. 求下列函数在所示点的导数: (1)()sin cos t f t t ??= ???,在点π4t =; 解:( )π4f ?? ?'= - ? (2)()22,x y g x y x y +??= ? ?+?? ,在点()(),1,2x y =; 解:()111,224g ??= ??? (3)sin cos u v u T u v v v ???? ?= ? ??? ??? ,在点π1u v ????= ? ?????; 解:1010101T -???? ?'=- ? ?π?? ??? (4)2222232u x y v x x y w x y y ?=-?=-??=-? 在点()3,2-. 解:6 26 6362-?? ?- ? ?--?? 2. 设()()(),,,,,,w f x y z u g x z v h x y ===,求,,w w w x y z ??????. 解:,w w w v w w u w v w w u x x v x y u y v x z u z ????????????=+=+=????????????, 3. 若r =()()21,,,,3n r r f r r n r ?????≥. 解: ()()()()()()()2231111,,,2,,,,,,,,,,,n n r x y z r x y z x y z f r f r x y z r nr x y z r r r r -'?=?=?=?=?=

4. 求22224428u x y z x y x y z =+++-+-在点,,,1,1,1,1,1,1(000)()()O A B ---的梯度,并求梯度为零的点. 解:()()()() 54,2,8,2,10,6,10,6,10,3,,42------- 5. 证明本章关于梯度的基本性质(1)~(5). 证明:略 6. 计算下列向量场A 的散度与旋度: (1)()222222,,y z z x x y =+++A ; 解:()0,2,,y z z x x y --- (2)()222,,x y z x y z x y z =A ; 解:()()()()2222226,,,xy x z y y x z z y x --- (3),,y x z y z z x x y ?? = ???A . 解:111yz zx xy ++,2222221,,y y z z x x xyz z y x z y x ??--- ??? 7. 证明: 本章关于散度的基本性质(1)~(3). 解:略。 8. 证明: 本章关于旋度的基本性质(1)~(3)(可应用算符?推导) 解:略。 9. 证明:场()()()()2,2,2y z x y z x z x y z x y x y z =++++++A 是有势场,并求其势函数. 解:略。 10. 若流体流速()222,,x y z =A ,求单位时间内穿过18球面,22210,0,0x y z x y z ++=>>>的流量. 解:38 π 11. 设流速(),,y x c =-A (c 为常数),求环流量: (1)沿圆周221,0x y z +==; 解:2π (2)沿圆周()2251,0x y z -+==. 解:2π

高等数学下 复旦大学出版 习题九

194 习题九 1. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为πππ ,,343 αβγ===的方向导数。 解: (1,1,2)(1,1,2) (1,1,2)cos cos cos u u u u y l x z αβγ????=++???? 22(1,1,2)(1,1,2)(1,1,2)πππ cos cos cos 5.(2)()(3)343 xy xz y yz z xy =++=--- 2. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。 解:{4,3,12},13.AB AB == AB 的方向余弦为 4312cos ,cos ,cos 131313 αβγ= == (5,1,2) (5,1,2) (5,1,2)(5,1,2) (5,1,2)(5,1,2) 2105 u yz x u xz y u xy z ?==??==??==? 故 4312982105.13131313 u l ?=?+?+?=? 3. 求函数222 21x y z a b ?? =-+ ??? 在点处沿曲线22221x y a b +=在这点的内法线方向的方向导数。 解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为 2222220,x y b x y y a b a y ''+==- 所以在点处切线斜率为 2.b y a a ' ==-

195 法线斜率为cos a b ?=. 于是tan sin ??== ∵ 2222,,z z x y x a y b ??=-=-?? ∴ 2222z l a b ??=- -= ?? 4.研究下列函数的极值: (1)z =x 3+y 3-3(x 2+y 2); (2)z =e 2x (x +y 2+2y ); (3)z =(6x -x 2)(4y -y 2); (4)z =(x 2+y 2)2 2() e x y -+; (5)z =xy (a -x -y ),a ≠0. 解:(1)解方程组2 2 360 360 x y z x x z y y ?=-=??=-=?? 得驻点为(0,0),(0,2),(2,0),(2,2). z xx =6x -6, z xy =0, z yy =6y -6 在点(0,0)处,A =-6,B =0,C =-6,B 2-AC =-36<0,且A <0,所以函数有极大值z (0,0)=0. 在点(0,2)处,A =-6,B =0,C =6,B 2-AC =36>0,所以(0,2)点不是极值点. 在点(2,0)处,A =6,B =0,C =-6,B 2-AC =36>0,所以(2,0)点不是极值点. 在点(2,2)处,A =6,B =0,C =6,B 2-AC =-36<0,且A >0,所以函数有极小值z (2,2)=-8. (2)解方程组22 2e (2241)0 2e (1)0x x x y z x y y z y ?=+++=??=+=?? 得驻点为1,12??- ??? . 22224e (21)4e (1)2e x xx x xy x yy z x y y z y z =+++=+= 在点1 ,12??- ??? 处,A =2e,B =0,C =2e,B 2-AC =-4e 2<0,又A >0,所以函数有极小值e 1,122z ?? =-- ??? . (3) 解方程组2 2 (62)(4)0 (6)(42)0x y z x y y z x x y ?=--=??=--=?? 得驻点为(3,2),(0,0),(0,4),(6,0),(6,4). Z xx =-2(4y -y 2), Z xy =4(3-x )(2-y )

相关主题
文本预览
相关文档 最新文档