当前位置:文档之家› 第六讲 余数问题

第六讲 余数问题

第六讲 余数问题
第六讲 余数问题

第六讲

余数问题

例题巩固

1、填空

⑴某数除以6 商19 余3,求这个数是;

⑵某数被17 除,商是5,余数是11,则某数是;

⑶79 除以一个数商4余11,求这个数是;

⑷66 除以一个数商7,求余数是.

2、两数相除,商8 余7,且这两个数和为250,求这两个数.

3、填空

⑴两数相除,商7余5,若被除数、除数同时扩大5倍,则商为,余;

⑵两数相除,商10 余5,若被除数、除数同时除以5,则商为,余;

⑶两数相除,商8 余2,若被除数、除数同时扩大5 倍,再同时除以2,则商为,余.

⑴非零自然数 a 除以10 商9,则a的最大值是,最小值是.

⑵非零自然数 a 除以 b 商10 余9,则 a 的最小值是.

⑶非零自然数 a 除以10 商与余数相同,则 a 有种可能值.

⑷非零自然数65 除以a余10,则 a 有种可能值.

5、观察下面的算式:

⑴432 ÷□=△ ,为了使商△是一个两位数,□的最大值是.

⑵367 ÷□=△ ,为了使商△是一个一位数,□的最小值是.

注意:第6 题和第7 题有些班级可能还没讲到,可以等老师讲完之后再做.

6、(11 分

武汉明心奥数挑战赛)a>b >c 是自然数,a、b、c 除以

[(a +b +c) ? (b -a) ? (c -b)] ÷11 余.

(西工大附中入学测试题)一列数,前3 个是1 ,9 ,9 ,以后每个都是它前面相邻3 个数字之和除以 3 所得的余数,则这列数中第2012 个数是.

⑴一个数被 5 除余2,被7 除余2,这个数的最小值是.最大的两位数是.

⑵一个数被 4 除余1 ,被 6 除余1 ,这个数的最小值是.最大的两位数是.

⑶一个数被 3 除余1 ,被 5 除余 3 ,这个数的最小值是.最大的两位数是.

⑷一个数被 4 除余 3 ,被 5 除余4,这个数的最小值是.最大的两位数是.

9、文字题

⑴一个数除以7 余4 ,除以11余2 ,这个数最小是多少?这些数除以77 的余数是几?

⑵(首师大附中分班考试)有一个数,除以3 余2 ,除以4 余1 ,问这个数除以12 余几?

10、五班同学上体育课,排成3 行少1 人,排成4 行多3 人,排成5 行少1 人,排成6 行

多 5 人.问上体育课的同学最少有多少名?

计算达人:分数运算 1、计算? 1 + 1 + 1 + + ? ? 28 = 1 1 2 4 7 14 28 ?

? ? 2、计算: 4 ? 5 3 + 5 ? 6 4 + 6 ? 7 5 + 7 ? 8 6 + 8 ? 9 7 = 4 5 6 7 8 3、计算: 4 ? 2312 + 16 ? 1 + 1 ? = 4 7 13 7 7 13

4、计算 39 ? 148 + 148 ? + 48 74 = 86 149 149 149

5、计算:139 ? 137 + 137 ?1 = 1 138 138

6、计算51 2 ÷ 5 + 713 ÷ 7 + 914 ÷ 9 = 3 3 4 4 5 5

7、计算31 1 ÷ 3 + 411 ÷ 4 + 511 ÷ 5 = 2 2 3 3 4 4

8、计算72 1 ÷ 7 + 813 ÷ 8 + 912 ÷ 9 = 3 3 5 5 7 7

尾数和余数问题

尾数和余数 一、知识要点 自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。 二、精讲精练 【例题1】写出除213后余3的全部两位数。 练习1: 1.写出除109后余4的全部两位数。 2.178除以一个两位数后余数是 3.适合条件的两位数有哪些? 3.写出除1290后余3的全部三位数。 【例题2】(1)125×125×125×……×125[100个25]积的尾数是几? (2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几? 练习2: 1.21×21×21×……×21[50个21]积的尾数是几? 2.(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几? 【例题3】(1)4×4×4×…×4[50个4]积的个位数是几? (2)9×9×9×…×9[51个9]积的个位数是几? 练习3: 1.24×24×24×…×24[2001个24],积的尾数是多少? 2.1×2×3×…×98×99,积的尾数是多少? 3.94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位

是多少? 【例题5】 555…55[2001个5]÷13.当商是整数时,余数是几? 练习5: 1.444…4÷6[100个4],当商是整数时,余数是几? 2.当商是整数时,余数各是几? (1)666…6÷4[100个6] (2)444…4÷74[200个4] (3)888…8÷7[200个8] (4)111…1÷7[50个1]

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

数论问题之余数问题-余数问题练习题含答案

数论问题之余数问题:余数问题练习题含答 案 1.数11 1(2007个1),被13除余多少 分析:根据整除性质知:13能整除111111,而2007 6后余3,所以答案为7. 2.求下列各式的余数: (1)2461 135 6047 11 (2)2123 6 分析:(1)5;(2)6443 19=339 2,212=4096 ,4096 19余11 ,所以余数是11 . 3.1013除以一个两位数,余数是12.求出符合条件的所有的两位

数. 分析:1013-12=1001,1001=7 11 13,那么符合条件的所有的两位数有13,77,91 有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真. 4.学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班 分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17. 5.有一个大于1的整数,除45,59,101所得的余数相同,求这个数. 分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定

能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数. 101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14. 6.求下列各式的余数: (1)2461 135 6047 11 (2)2123 6 分析:(1)5;(2)找规律,2的n次方被6除的余数依次是(n=1,2,3,4 ):2 ,4 ,2 ,4 ,2 ,4 因为要求的是2的123次方是奇数,所以被6除的余数是2.

尾数和余数

第6讲尾数和余数 一、知识要点 自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。 二、精讲精练 【例题1】写出除213后余3的全部两位数。 【思路导航】因为213=210+3.把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21.5×7=35,2×3×5=30,2×3×7=42.一共有7个两位数。 练习1: 1.写出除109后余4的全部两位数。 2.178除以一个两位数后余数是 3.适合条件的两位数有哪些? 3.写出除1290后余3的全部三位数。 【例题2】(1)125×125×125×……×125[100个25]积的尾数是几? (2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几? 【思路导航】(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5; (2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。 练习2: 1.21×21×21×……×21[50个21]积的尾数是几? 2.1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几? 3.(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几? 【例题3】(1)4×4×4×…×4[50个4]积的个位数是几? (2)9×9×9×…×9[51个9]积的个位数是几? 【思路导航】(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。50÷2=25没有余数,说明50个4相乘,积的个位是6。 (2)用上面的方法可以发现,51个9相乘时,积的个位是以“9,1”两个数字不断重复,51÷2=25……1.余数是1.说明51个9本乘积的个位是9。 练习3: 1.24×24×24×…×24[2001个24],积的尾数是多少? 2.1×2×3×…×98×99,积的尾数是多少?

六年级奥数-第十讲.数论之余数问题.教师版

第十讲:数论之余数问题 余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。 许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!” 余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。 知识点拨: 一、带余除法的定义及性质: 一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。这里: r=时:我们称a可以被b整除,q称为a除以b的商或完全商 (1)当0 r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商 (2)当0 一个完美的带余除法讲解模型: 如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在 要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了 c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且 可以看出余数一定要比除数小。 二、三大余数定理: 1.余数的加法定理 a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等 于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。 例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2. 2.余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。 当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 3.同余定理

第六讲 尾数和余数

第六讲尾数和余数 一,准备题 1,被除数= ()×()+()被除数-余数= 2,把210分解质因数 3,把1/7化成小数 4,2×2×3×5×7能被那些两位数整除? 5,计算2010÷6 6,123456789这9和数字分别除以5的余数各是多少?二,例题1 写出除213余3的全部两位数。 提示:把213写成商×除数+余数怎么写? 再想商和除数有哪些两位数。试一试吧 练习题1,写出除109后余4的全部两位数。 2,178除以一个两位数后余3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。 三,例题2 (1)125×125×125×。。。。。。×125积的尾数是几? 100个125 (2)9 ×9 ×9 ×。。。。。。×9 积的个位是几? 51个9 (3)23×23×23×。。。。。。×23×18×18×。。。。。。18积的个位是几? 2000个23 2001个18

(4)练习题 (1)(21×26)×(21×26)×。。。。。。×(21×26)积的尾数是几? 100个(21×26) (2)0.7×0.7×0.7×。。。。。。×0.7×0.6×0.6×0.6×。。。。。。×0.6 2002个0.7 2002个0.6 积的尾数是几? (3)4×4×4×。。。。。。×4积的个位是几? 50个4 四.444.。。。。。4÷6当商是整数时余数是几? 100个4 想:每个4除以6的余数有什么规律?(4,2,0)不断重复出现,再想把3个4分为一组100个4里面有多少组?余几?一个4除以6余几?这就是要求的余数。 练习题1, 555。。。。。。55÷13当商是整数时余数是几? 2001个5 2 ,当商是整数时余数是几 (1)666。。。。。。6÷4 (2)888。。。。。。。8÷7 50个6 80个8 (3)444.。。。。。4÷74 1000个4 (4)111。。。。。。1÷5 1000个1 3,把1/7化成小数,小数点后面100位上的数字是多少?

七年级数学竞赛讲座数论的方法与技巧(含答案详解)

数学竞赛讲座 数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得abq+r(0≤r

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)(a1+1)(a2+1)…(ak+1)。 5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x

六年级下册数学专题练习:数论(五) 余数问题-全国通用 无答案

【知识点概述】 一、带余除法的定义及性质: 1.带余除法的定义: 一般地,如果a是整数,b是整数(b≠0),若有 a÷b=q……r,也就是a=b×q+r, 0≤r<b; (1)当0 r=时:我们称a可以被b整除,q称为a除以b的商或完全商 (2)当0 r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商 2.和余数相关的一些重要性质:(以下a,b,c均为自然数) 性质1:余数小于除数 性质2:=?+ 被除数除数商余数 除数(被除数-余数)商 =÷ =÷ 商(被除数-余数)除数 性质3:a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即前两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2. 性质4:a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以(2316) ?除以5的余数等于?=。 313 当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以(2319) ?除以5的余数等于?=除以5的余数,即2. 3412 【注】对于上述性质3,4,我们都可以推广到多个自然数的情形,尤其是性质4,对于我们求一个数的n次方除以一个数的余数时非常的有用。 二、数的同余 1.同余定义

若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用 式子表示为:a≡b ( mod m ) 同余式读作:a同余于b,模m 由同余的性质,我们可以得到一个非常重要的推论: 若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除 用式子表示为:如果有a≡b ( mod m ), 那么一定有a-b=mk,k是整数,即m|(a-b) 这个性质非常重要,是将同余问题与前面学过的整除问题相联系的纽带,一定要熟练掌握。 例如:(1)15365(mod7) ≡,因为36515350750 -==? (2)5620(mod9) ≡,因为56203694 -==? (3)900(mod10) ≡,因为90090910 -==? 由上面的(3)式我们可以得到启发,a可被m整除,可用同余式表示为0(mod) ≡ a m 例如,我们表示a是一个偶数,可以写为2(mod2) a≡, 表示b为一个奇数,可以写为1(mod2) b≡ 我们在书写同余式的时候,总会想起我们最熟悉的等式,但是两者又不是完全相同,在某些性质上相似。 2.同余式的性质(其中a、b、c、d是整数,而m是自然数。) 性质1:a≡a(mod m)(反身性) 性质2:若a≡b ( mod m ),那么b≡a ( mod m ) (对称性) 性质3:若a≡b ( mod m ),b ≡c( mod m ),那么a≡c ( mod m ) (传递性) 性质4:a≡b ( mod m ),c≡d ( mod m ),那么a±c≡b±d ( mod m ) (可加减性) 性质5:若a≡b ( mod m ) ,c≡d ( mod m ),那么ac≡bd ( mod m ) (可乘性) 性质6:若a≡b ( mod m ) ,那么a n≡b n(mod m),(其中n为自然数) 性质7:若ac≡bc ( mod m ),(c,m)=1,那么a≡b ( mod m ) 三.弃九法 在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》, 他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失 而经常检验加法运算是否正确,他们的检验方式是这样进行的: 例如:检验算式1234189818922678967178902889923 ++++= 1234除以9的余数为1 1898除以9的余数为8

尾数和余数

尾数和余数 【专题导引】 自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。 【典型例题】 【C】写出除85后余1的数有哪些? 【试一试】 1、写出除98余2的数有哪些? 2、写出除105后余3的数有哪些? [C21 2X 2X 2X 2X 2X 2X 2X 2 积的尾数是几? 【试一试】 1、5X 5X 5X 5X 5X 5X 5积的尾数是几? 2、16X 16X 16X 16X 16X 16 积的尾数是几? 【B】写出除213后余3的全部两位数。 【试一试】 1、写出除109后余4的全部两位数。 2、178除以一个两位数后余数是3,适合条件的两位数有哪些? 【时112牢125型125车如4驾125积的尾数是几?

100个125

9咒车綽产47希9积的个位数字是几? 23筠23谄个备?"4??軒^3 X 18鋒18%18%??4举18积的个位数字是几? 2000个23 2001个18 【试一试】 1、(1(21存6)((2毕26)%?炊?4(21%26)的积的尾数是几? 100个(21>?6) 2、4空树于皿皿趙4的积的个位数字是几? 504 【B 】44呛今?/為6,当商是整数时,余数是几? 100 个 4 【试一试】 1、5553455十13,当商是整数时 涂数是几? 2001个 5 2、当商是整数是,余数是几? (1) @66琲卽Q 鬲4 ,小、 50个6 (3)4444吏 4 勺74 1000 个 4 【A 】有一列数,前两个数是 的和。这一列数中第2001个数除以4,余数是多少? 【试一试】 1、有一串数排成一行,其中第一个数是 3,第二个数是10,从第三个数起,每 个数 恰好是前两个数的和。在这一串数中,第 1991个数被3除,所得的余数是 几? (2) §88申3申鬲7 (4) 11魚 §0个 3与4,从第3个数开始,每一个数都是前两个数

费马小定理数论的证明方法

费马小定理数论的证明方法 2007年12月28日星期五 01:29 P.M. 费马小定理数论的证明方法 Mod的简单介绍 (Congruence) a=b(mod m) a和b除以m以后有相同的余数 不失一般性地另a>b 则a=km+b比如7=1 mod 2 9=4 mod 5 简单的Congruence 计算 如果a=b mod m c=d mod m 则a=km+b c=tm+d 直接可推出 a+b=c+d (mod m) a-b=c-d (mod m) ab=cd (mod m) 并且可得存在正整数c 使得ac=bc (mod mc) 当然ac=bc(mod m) 费马小定理如果a,p互质且q是质数则a^(p-1)=1 (mod p) 考虑数列An= a,2a,3a,4a…… (p-1)a 假设An中有2项ma, na 被p除以后的余数是相同的.那么必然有ma=na (mod p) 即a(m-n)=0(mod p) 由于a和p互质,所以m-n=0(mod p) 但是m,n属于集合{1,2,3..p-1} 且m不等于n,所以m-n不可能是p的倍数.和假设产生矛盾所以An中任意2项被p除 得到的余数都是不同的, 并且对于任一个整数被p除以后的余数最多有p-1个,分别是 1,2,3,….p-1 而数列An中恰好有p-1个数,所以数列中的数被p除以后的余数一定正好包含所有的1,2,3,4,5…. p-1 由此我们可以用Congruence的乘法性质, a*2a*3a*…(p-1)a=1*2*3*4..*(p-1) (mod p) 对两边进行化简,即可以得到a^(p-1)=1 (mod p) Euler’s Totient function 定义o(n)是所有比n小且和n互质的数的总数(包括1) 例如o(5)=4 o(10)=8 我们发现引入这个以后费马小定理可以改写为a^o(p)=1 (mod p) 事实上,这个结论对所有的正整数n都成立即a^o(n)=1 (mod n)

小学五年级奥数—数论之同余问题

小学五年级奥数—数论之同余问题 数论之同余问题 余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。 许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!” 余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。 知识点拨: 一、带余除法的定义及性质: 一般地,如果a是整数,b是整数(b≠0),若有a÷b q……r,也就是a=b×q+r, 0≤r<b;我们称上面的除法算式为一个带余除法算式。这里: 1 当时:我们称a可以被b整除,q称为a除以b的商或完全商 2 当时:我们称a不可以被b整除,q称为a除以b的商或不完全商 一个完美的带余除法讲解模型: 如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c 就是商,最后还剩余d本,这个d就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。 二、三大余数定理:

1.余数的加法定理 a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。 例如:23,16除以5的余数分别是3和1,所以23+16 39除以5的余数等于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。 例如:23,19除以5的余数分别是3和4,故23+19 42除以5的余数等于3+4 7除以5的余数,即2. 2.余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1 3。 当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 3.同余定理 若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b mod m ,左边的式子叫做同余式。 同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论: 若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m 整除 用式子表示为:如果有a≡b mod m ,那么一定有a-b=mk,k是整数,即m| a-b

数论班100题手册

数论短期班100题手册 知识框架体系 一、奇偶性质 1.奇数和偶数的表示方法: 因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数); 因为任何奇数除以2其余数总是1,所以通常用式子21 k+来表示奇数(这里k是整数).特别注意,因为0能被2整除,所以0是偶数.最小的奇数是1,最小的偶数是0. 2.奇数与偶数的运算性质: 性质一:偶数+偶数=偶数(偶数-偶数=偶数) 奇数+奇数=偶数(奇数-奇数=偶数) 偶数+奇数=奇数(偶数-奇数=奇数) 可以看出:一个数加上(或减去)偶数,不改变这个数的奇偶性; 一个数加上(或减去)奇数,它的奇偶性会发生变化. (也可以这样记:奇偶性相同的数加减得偶数,奇偶性不同的数加减得奇数.) 性质二:偶数?奇数=偶数(推广开来还可以得到:偶数个奇数相加得偶数) 偶数?偶数=偶数(推广开就是:偶数个偶数相加得偶数) 奇数?奇数=奇数(推广开就是:奇数个奇数相加得奇数) 可以看出:一个数乘以偶数时,乘积必为偶数;几个数的积为奇数时,每个乘数都是奇数.(也可以这样简记:对于乘法,见偶(数)就得偶(数)). 性质三:任何一个奇数一定不等于任何一个偶数. 二、整除 1.整除的定义 所谓“一个自然数a能被另一个自然数b整除”就是说“商a b 是一个整数”;或者换句话说: 存在着第三个自然数c,使得a b c =?.这是我们就说“b整除a”或者“a被b整除”,其中b 叫a的约数,a是b的倍数,记作:“|b a”. 2.整除性质: ⑴传递性若|c b,|b a,则|c a. ⑵可加性若|c a,|c b,则|c a b ± (). ⑶可乘性若|c a,|d b,则| cd ab. 3.整除的特征 ⑴4,25,8,125,16,625的整除特征 能否被4和25整除是看末两位;能否被8和125整除是看末三位;能否被16和625整除是看末四位(100425 =?,10008125 =?,1000016625 =?,100000323125 =?) ⑵3,9的整除特征 能否被9整除是看数字之和是否是9的倍数,并且这个数除以9的余数和这个数数字之和除以9的余数相同,因此判断一个数除以九余几就可以先把和是9的倍数的数划掉,剩下的数是几就代表

五年级奥数第讲尾数和余数

五年级奥数第讲尾数和 余数 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

第2讲尾数和余数 一、知识要点 自然数的末位数字称为自然数的尾数;除法中,被除数减去商与除数的差叫作余数。尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。 二、精讲精练 【例题1】(1)9×9×9×……×9(51个9相乘)积的个位数是几? (2)0.3×0.3×0.3×……0.3(204个0.3相乘)×25×25×25×……×25(1001个25)的个位数字是几? 练习1: (1)61×61×61×……×61(2001个61相乘)积的尾数是几? (2)(31×36)×(31×36)×……×(31×36)(共50个)积的尾数是几? (3)0.7×0.7×0.7×……×0.7(2002个0.7)×0.6×0.6×0.6×……×0.6(2002个0.6)积的尾数是多少? 【例题2】3×3×3×……3(2006个3相乘)+4×4×4×……4(2007个4相乘)的尾数是几? 练习2: (1)5×5×5×......5(2000个5相乘)+6×6×6×......6(2001个6相乘)+7×7×7× (7) (2002个7相乘)的尾数是几? (2)52×52×52×……52(33个52相乘)-32×32×32×……32(29个32相乘)的尾数是几? 【例题3】444……4(100个4)÷6,当商是整数时,余数是几? 练习3:当商是整数时,余数各是几? (1)666……6(50个6)÷4(2)888……8(80个8)÷7 (3)444……4(1000个4)÷74(4)111……1(1000个1)÷5 【例题4】有一列数,前两个数是3与4,从第3个数开始,每一个数都是前面两个数的和。这一列数中第2001个数除以4,余数是多少? 练习4: (1)有一串数排成一行,其中第一个数是3,第二个数是10.从第三个数七,每个数恰好是前面两个数的和。在这一串数种,第1991个数被3除,所得的余数是几? (2)一列数1、2、4、7、11、16、22、29、……这一列数的规律是第二个数比第一个数多1;第三个数比第二个数多2;第四个数比第三个数多3,依次类推。这列数左起第1996个数被5除余

6.尾数与余数

尾数与余数 自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。 一、尾数乘方问题 1. 尾数规律 57+48的和的尾数,就是 的和的尾数 几个自然数的和的尾数等于这几个自然数的个位数的和的尾数。 87-45的差的尾数,就是 的差的尾数 几个自然数的差的尾数等于这几个自然数的个位数的差的尾数。 16×43的积的尾数,就是 的积的尾数 几个自然数的积的尾数等于这几个自然数的个位数的积的尾数。 规律1:几个自然数的和、差、积的尾数等于这几个自然数的个位数的和、差、积的尾数。 2. 乘方 求n 个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。 其中,a 叫做底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可读作“a 的n 次幂”。 3. 乘方尾数规律 尾数变化规律(n 为正整数): (1)2n 的尾数是以“4”为周期循环变化,分别为:2,4,8,6; (2)3n 的尾数是以“4”为周期循环变化,分别为:3,9,7,1; (3)4n 的尾数是以“2”为周期循环变化,分别为:4,6; (4)0 n 、1n 、5n 和6n 的尾数分别是常数0、1、5和6; (5)7n 的尾数是以“4”为周期循环变化,分别为:7,9,3,1; (6)8n 的尾数是以“4”为周期循环变化,分别为:8,4,2,6; (7)9n 的尾数是以“2”为周期循环变化,分别为:9,1。 规律2:一个自然数的平方的尾数只能是0、1、4、5、6、9这六个数。 计算尾数:底数留个位;指数除以周期留余数; 周期为4:指数末两位除以4留余数。 例1:求 1111332211???? 的尾数。 例2: 126+237+348+459的和是不是5的倍数?

数论之同余问题

数论之同余问题 数论之同余问题 余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。 余数问题主要包括了带余除法的定义,三大余数定理 (加法余数定理,乘法余数定理,和同余定理),知识点 拨: 三大余数定理: 1.余数的加法定理 a 与 b 的和除以 c 的余数,等于a,b 分别除以 c

的余数之和,或这个和除以c的余数。 例如:23 ,16除以5的余数分别是3和1,所以 23+16=39 除以5的余数等 于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。 例如:23 ,19除以5的余数分别是3和4,故 23+19=42 除以5的余数等于3+4=7 除以5的余数,即2. 2.余数的乘法定理 a 与 b 的乘积除以 c 的余数,等于a,b 分别除以 c 的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23 X16除以5的余数等于3 X仁3。 当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以 23 X19除以5的余数等于3 X4除以5的余数,即2. 3.同余定理 若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a耳)(mod m ),左 边的式子叫做同余式。 同余式读作:a同余于b,模m。由同余的性质, 我们可以得到一个非常重要的推论: 若两个数a, b除以同一个数m得到的余数相同, 则a,b的差一定能被m整除 用式子表示为:如果有a斗)(mod m ),那么一定 有 a — b = mk,k 是整数,即m|(a —b) 例如:20和8被自然数3除有相同的余数2。则 20-8 一定能被2整除

6尾数和余数

6尾数和余数 专题简析 自然数末位的数字称为自然数的尾数;被除数减去商与除数积的差叫作余数。尾数和余数在运算时是有规律可循的,利用这种规律能解决一些看起来无从下手的问题。 例题1、写出除333后余3的全部两位数。 举一反三1、 1、317除以一个两位数后余数是2,符合条件的两位数有哪些? 2、写出除349后余4的全部两位数。 3、写出除1095后余3的全部三位数。 例题2、(1) 9 5199999个?????积的个位数字是几? (2) 25 10013.0204252525253.03.03.03.0个个?????????积的尾数是几?

举一反三2: 1、 61 201161616161个????积的尾数是几? 2、()()()() 363150363136313631??????个积的尾数是几? 3、 9 9199999个?????积的个位数是几? 例题3、644444 100÷ 个当商是整数时,余数是几? 举一反三3: 1、13555555 2001÷ 个,当商是整数时,余数是几?

2、下列各小题中,当商是整数里,余数各是多少? (1) 46666650÷ 个 (2)788888 80÷ 个 (3)74444441000÷ 个 (4)511111 1000÷ 个 3、把7 1化成小数,那么小数点后面第100位上的数字是多少? 例题4、有一列数,前两个数是3与4从第三个数开始,每一个数都是前两个数的和。这一列数中第2001个数除以4,余数是多少? 举一反三4: 1、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。在这一串数中,第1991个数被3除,所得的余数是几? 2、一列数1,2,4,7,11,16,22,29,…。这一列数的规律是第二个数比第一个数多1,第三个数比第二个数多2,第四个数比第三个数多3。依次类推,这列数左起第1996个数被5除余数是几?

第8讲 数论(余数问题)

第8讲数论(余数问题) 1、带余除法的定义及性质: 一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r, 也就是a=b×q+r, 0?r<b;我们称上面的除法算式为一个带余除法算式。这里: (1)当0 r=时:我们称a可以被b整除,q称为a除以b的商或完全商; (2)当0 r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商。 余数一定要比除数小。 2、三大余数定理: (1)余数的加法定理 a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。 (2)余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 (3)同余定理 若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m 整除 用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)。 3、弃九法: 任何一个整数模9同余于它的各数位上数字之和。 以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。 (思考:有没有求一个整数被11除的余数的快速方法呢?) 4、同余同补问题:

例1:(1)用某自然数a去除1992,得到商是46,余数是r,求a和r。 (2)有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少? 练习:(1)甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数; (2)用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少? 例2:三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_______,_______,_______。 练习:一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________。

小学四年级奥数 尾数和余数

尾数和余数 知识点:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。 例1:178除以一个两位数后余数是3,适合条件的两位数有哪些? 变式训练:写出除213后余3的全部两位数。 例题2:(1)125×125×125×……×125[100个25]积的尾数是几? (2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几? 变式训练:①1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几? ②(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几? 例题3: 9×9×9×…×9[51个9]积的个位数是几? 变式训练:(1)24×24×24×…×24[2001个24],积的尾数是多少? (2)1×2×3×…×98×99,积的尾数是多少?

例题4:把1/7化成小数,那么小数点后面第100位上的数字是多少? 变式训练:把1/11化成小数,求小数点后面第2001位上的数字。 变式训练2 有一串数:5、8、13、21、34、55、89……,其中,从第三个数起,每个数恰好是前两个数的和。在这串数中,第1000个数被3除后所得的余数是多少? 例题5 555...55[2001个5]÷13.当商是整数时,余数是几? 变式训练 444...4÷6【100个4】,当商是整数时,余数是几? 2.当商是整数时,余数各是几? (2)444...4÷74【200个4】

观察下列各等式:55=3125,56=15625,57=78125,…,则52018的末四位数字为__. 课后练习 1写出除109后余4的全部两位数。 2.94×94×94×…×94[102个94]-49×49×…49[101个49],差的个位是多少? 3.5/7写成循环小数后,小数点后的第50个数字是几? 4.当商是整数时,余数各是几? (1)888...8÷7【200个8】 (2)666...6÷4 【100个6】 5.有一列数,前两个数是3与4,从第三个数开始,每一个数都是前两个数的和。这一列数中第2001个数除以4,余数是多少?

初一数学竞赛培训讲座 数论的方法技巧(上)

初一数学竞赛培训讲座数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力.数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”.因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了.任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作.”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的 比重. 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆.主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r 是唯一的.特别地,如果r=0,那么a=bq.这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数. 2.若a|c,b|c,且a,b互质,则ab|c. 3.唯一分解定理:每一个大于1的自然数N都可以写成质数的连乘积, 即 (1,其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的.(1)式称为N的质因数分解或标准分解. 4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)=(a1+1)(a2+1)…(a k+1). 5.整数集的离散性:n与n+1之间不再有其他整数.因此,不等式x<y与x≤y-1是等价的. 下面,我们将按解数论题的方法技巧来分类讲解. 一、利用整数的各种表示法 对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决.这些常用的形式有: 1.十进制表示形式:n=a n10n +a n-110 n-1 +…+a0;

相关主题
文本预览
相关文档 最新文档