当前位置:文档之家› 标准气体标准状态

标准气体标准状态

标准气体标准状态
标准气体标准状态

标准气体标准状态

标准气体是物质的一个态。气体与液体一样是流体:它可以流动,可变形。与液体不同的是气体可以被压缩。假如没有限制(容器或力场)的话,气体可以扩散,其体积不受限制。标准气体气态物质的原子或分子相互之间可以自由运动。气态物质的原子或分子的动能比较高。

标准气体有实际气体和理想气体之分。标准气体理想气体被假设为气体分子之间没有相互作用力,气体分子自身没有体积,当实际气体压力不大,分子之间的平均距离很大,气体分子本身的体积可以忽略不计,温度又不低,导致分子的平均动能较大,分子之间的吸引力相比之下可以忽略不计,实际气体的行为就十分接近理想气体的行为,可当作理想气体来处理。以下内容中讨论的全部为理想气体,但不应忘记,实际气体与之有差别,用理想气体讨论得到的结论只适用于压力不高,温度不低的实际气体。

①标准气体理想气体方程

pV=nRT

标准气体遵从理想气体状态方程是理想气体的基本特征。理想气体状态方程里有四个变量——气体的压力p、气体的体积V、气体的物质的量n以及温度T和一个常量(气体常为R),只要其中三个变量确定,理想气体就处于一个状态,因而该方程叫做理想气体状态方程。标准气体温度T和物质的量n的单位是固定不变的,分别为K和mol,而气体的压力p和体积V的单位却有多种取法,这时,状态方程中的常量R的取值(包括单位)也就跟着改变,在进行运算时,千万要注意正确取用R值:

p的单位V的单位R的取值(包括单位)

atm

atm

Pa

kPa

Pa L

cm3

L

L

m3 0.08206L?atm/mol?K

82.06cm3?atm/mol?K

0.008134L?Pa/mol?K

8.314L?kPa/mol?K

8.314m3?Pa/mol?K

☆1 atm=101.325kN/m2;1Pa=1N/ m2;1N?m=1J;当各种物理量均采用SI制单位时,R=8.314J/mol?K

例:

由此我们可以计算标准气体在标准状况下的体积

解:

由pV=nRT得:

V=n?R?t/p

=1mol?8.314L?Pa/mol?K?273.16K/101325Pa

=22.4127224278L

②标准气体分压定律

1810年道尔顿发现,混合气体的总压等于把各组分气体对浓度置于同一容器里所产生的压力之和。这个规律称为道尔顿分压定律。其实,道尔顿分压定律只对理想气体才成立,对于实际气体,由于分子间作用力的存在,道尔顿定律将出现偏差。因此,能满足道尔顿分压定律的气体混合物称为理想气体的理想混合物。国家测量局颁布的GB102.8—82采纳IUPAC的推荐,规定混合气体中的气体B 的分压pB的定义为

pB=xBp

式中xB为气体B的摩尔分数,p为混合气体在同温度下的总压。于是我们又可以得到:

p=p1 +p2 +p3 +p4 +……+pj +pB =∑pj =∑xjp

上式表明,混合气体的总压等于同温度下其组分气体的分压之和,此式可用于任何混合气体。

对于理想气体,将p总V=n总RT/V

可见分压pB是理想气体B单独占有混合气体的体积V时显示的压力。

例:

混合气体中有4.4gCO2,14gN2,和12.8gO2,总压为2.026×105Pa,求各组分气体的分压。

解:

先求出各组分气体的物质的量分数(摩尔分数),代入上式即可得各组分气体的分压

n(CO2)=4.4g/44g/mol=0.10mol

n(N2)=14g/28g/mol=0.50mol

n(O2)=12.8g/32g/mol=0.40mol

x(CO2)=n(CO2)/[n(CO2)+ n(N2)+ n(O2)]=0.10

x(N2)=n(N2)/[n(CO2)+ n(N2)+ n(O2)]=0.50

x(O2)=n(O2)/[n(CO2)+ n(N2)+ n(O2)]=0.40

p(CO2)=0.10×2.026×105Pa=2.0×104Pa

p(N2)=0.50×2.026×105Pa=1.0×105Pa

p(O2)=0.40×2.026×105Pa=8.1×104Pa

标准气体标准状态。理想气体状态方程。气体密度。分压定律。气体相对分子质量测定。气体溶解度(亨利定律)。标准气体常量R的取值0.08206 L?atm?mol-1?k-1 或8.314 m3?Pa?mol-1?k-1

克拉珀龙方程

克拉珀龙方程式通常用下式表示:PV=nRT……①

注:所有气体R值均相同。

如果压强、温度和体积都采用国际单位(SI),则P表示压强,单位Pa;V表示气体体积,单位立方米;n表示物质的量,单位mol;T表示热力学温度,单位K(开尔文);R表示气体常数,单位J·mol^-1·K^-1或kPa·L·K^-1·mol^-1。R=8.314帕米3/摩尔·K。

因为n=m/M、ρ=m/v(n—物质的量,m—物质的质量,M—物质的摩尔质量,数值上等于物质的分子量,ρ—气态物质的密度),所以克拉伯龙方程式也可写成以下两种形式:

Pv=m/MRT……②

PM=ρRT……③

以A、B两种气体来进行讨论。

(1)在相同T、P、V时:

根据①式:nA=nB(即阿伏加德罗定律)

摩尔质量之比=分子量之比=密度之比=相对密度)。若mA=mB则MA=MB。

(2)在相同T·P时:

体积之比=摩尔质量的反比;两气体的物质的量之比=摩尔质量的反比)

物质的量之比=气体密度的反比;两气体的体积之比=气体密度的反比)。

(3)在相同T·V时:

摩尔质量的反比;两气体的压强之比=气体分子量的反比)。

[编辑本段]

阿伏加德罗定律推论

我们可以利用阿伏加德罗定律以及物质的量与分子数目、摩尔质量之间的关系得到以下有用的推论:

(1)同温同压时:①V1:V2=n1:n2=N1:N2

②ρ1:ρ2=M1:M2

③同质量时:V1:V2=M2:M1

(2)同温同体积时:④p1:p2=n1:n2=N1:N2

⑤同质量时:p1:p2=M2:M1

(3)同温同压同体积时: ⑥ρ1:ρ2=M1:M2=m1:m2

具体的推导过程请大家自己推导一下,以帮助记忆。推理过程简述如下:

(1)、同温同压下,体积相同的气体就含有相同数目的分子,因此可知:在同温同压下,气体体积与分子数目成正比,也就是与它们的物质的量成正比,即对任意气体都有V=kn;因此有V1:V2=n1:n2=N1:N2,再根据n=m/M就有式②;若这时气体质

量再相同就有式③了。

(2)、从阿伏加德罗定律可知:温度、体积、气体分子数目都相同时,压强也相同,亦即同温同体积下气体压强与分子数目成正比。其余推导同(1)。

(3)、同温同压同体积下,气体的物质的量必同,根据n=m/M和ρ=m/V就有式⑥。当然这些结论不仅仅只适用于两种气体,还适用于多种气体。

[编辑本段]

相对密度

在同温同压下,像在上面结论式②和式⑥中出现的密度比值称为气体的相对密度D=ρ1:ρ2=M1:M2。

注意:

①D称为气体1相对于气体2的相对密度,没有单位。如氧气对氢气的密度为16。

②.若同时体积也相同,则还等于质量之比,即D=m1:m2。

孔板流量计选型

孔板流量计是将标准孔板与多参数差压变送器(或差压变送器、温度变送器及压力变送器)是测量流量的差压发生装置,配合各种差压计或差压变送器可测量管道中各种流体的流量装置,可测量气体、蒸汽、液体及天然气的流量,广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。 孔板流量计相关参数下面安徽康泰来为您分享! 孔板流量计节流装置结构简单,且牢固、性能稳定可靠,是工业中常用到的流量测量仪表,孔板流量计节流装置通常分为:标准孔板、圆缺孔板、偏心孔板、内藏孔板、限流孔板、环形孔板、喷嘴孔板、环室孔板等,孔板流量计节流装置与差压变送器配套使用,充满管道的流体,当它们流经管道内的节流装置时,流体将在节流装置的节流件处形成局部收缩,节流装置使流速增加,静压力低,于是在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节流件前后

产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小,孔板流量计前后产生一个静压力差,该压力差与流量存在着一定的函数关系,流量越大,压力差就越大.差压信号传送给差压变送器,转换成4~20ma信号输出,远转给流量积算仪,实现流体流量的计量.质量型流量计,利用智能型差压变送器,对工况温/压进行自动补偿后,实现对流体质量流量的测量。 标准孔板是一类规格最多的标准节流装置,广泛应用于各种流体特别是气体流量测量中,孔板的结构因压力、通径、取压方式的不同而不同。 智能节流装置(孔板流量计)是集流量、温度、压力检测功能于一体,并能进行温度、压力自动补偿的流量计,该孔板流量计采用先进的微机技术与微功耗新技术,功能强,结构紧凑,操作简单,使用方便,牢固,性能稳定可靠. 一体化孔板流量计是测量流量的差压发生装置,配合各种差压计或差压变送器可测量管道中各种流体的流量,孔板流量计节流装置包括环室孔板,喷嘴等。 环形孔板是冷凝水可以从环形孔板的边沿流走,最小流通面是紧贴管内壁的圆环,而标准孔板最小流通面是处于管中心的同心圆。流体中的杂质流速较低,一般是紧贴着管壁边流动。 孔板流量计结构:节流件:标准孔板、标准喷嘴、长径喷嘴、1/4圆孔板、双重孔板、偏心孔板、圆缺孔板、锥形入口孔板等取压装置:环室、取压法兰、夹持环、导压管等、连接法兰、紧固件、测量管,标准孔板按常用取压方式可分为角接取压、法兰取压、径距取压三种类型。 安徽康泰电气有限公司生产的仪器仪表包括:热电阻、热电偶、双金属温度计、温度变送器、压力表、压力变送器、液位计、液位变送器、流量计、智能数显仪、仪表管阀件等,电线电缆包括:电力电缆、

气体超声波流量计故障原因及注意事项

气体超声波流量计故障原因及注意事项 本文由https://www.doczj.com/doc/9b17545850.html,提供 在使用中能造成气体超声波流量计计量故障的主要因素是管内粘污物如泥污、油污、锈尘、水等,尤其是积水。为了消除管内粘污物对气体超声波流量计的影响,在站场工艺设计、施工和日常使用时应注意以下几个方面。 (1)努力创造条件完成管道干燥。GB5025I-2003《输气管道工程设计规范》中规定的“输气管道试压、清管结束后宜进行干燥”这一条款是参考了皇家荷兰壳牌集团企业标准和国内施工经验制定的。气体超声波流量计在西欧等发达国家使用的较早,这也是他们通过实践探索而总结出的经验。目前国内对天然气长输管道进行整体干燥的不是很多,且规范中也使用“宜”字,对是否进行干燥并没有做硬性规定。以前使用孔板等类型的流量计,管道内的积水对计量影响不大,但改用气体超声波流量计后,超声波流量计对水分是相当敏感的,因此进行管道干燥是非常必要的。 (2)分离系统的选择应考虑液态水的处理。以前站场工艺设计上多采用旋风式分离器,要求不高的场合也可使用重力式分离器,近年来也有选用过滤分离器的。在输气管道首、末站设置分离器的主要作用是除去天然气中的各种固体颗粒,现在推广使用的过滤分离器(以滤芯叶片组合式为例)即能除去各种尺寸的固体颗粒,也能100%的分离掉大于8~1Oμm的水汽。但液态水的带人会严重降低分离器的分离效果,在站场内设置分离器时,不管是旋风式,还是过滤分离式,都应考虑在分离器前加一级液态水处理装置,将从管道内带来的液态水分离掉。其分离精度不必要求太高,选择一般的重力式分离器即可。在国内选用气体超声波流量计的站场中,有的已选用两级分离这种工艺模式,效果良好。气体超声波流量计要注意的问题 (3)加强操作管理,及时排出分离器的污水。分离器均设有排污管,通过人工将分离出的污水排除。但由于种种原因,很可能造成排污不及时,积液器中的污水已满,造成分离器失效,使液态水随天然气进入气体超声波流量计而导致计量故障。若要从根本上解决这个问题,消除人为因素的影响,应在分离器的污管上加装自动排污阀,以保证及时排水。此外,在投产运行初期,过滤分离器滤芯的更换频率也要适当加大。

气体气态、液态体积换算

理想气体状态方程(克拉伯龙方程): 标准状态是指0℃(273K),1atm=101.3 kPa的状态下。 V=nRT V:标准状态下的气体体积; n:气体的摩尔量; R:气体常量、比例系数;8.31441J/mol?K T:绝对温度;273K P:标准大气压;101.3kPa V=nRT=n?8.31441?273/101.3 或V=nRT=n?0.082?273/1 另可以简便计算:V=V0?ρ?22.4/M V:标准状态下的气体体积; V0:气体液态体积; ρ:液化气体的相对密度; M:分子量。 氮的标准沸点是-195.8℃,液体密度0.808(-195.8℃),1m3液氮可汽化成氮气 1*(808/28)*22.4=646.4 标立 二氧化碳液体密度1.56(-79℃), 1m3液态二氧化碳可汽化成二氧化碳 1*(1560/44.01)*22.4=794 标立

氯的标准沸点是-34℃,液体密度1.47, 1m 3液氯可汽化成氯气 1*(1470/70.9)*22.4=464.4 标立 液态氧气体体积膨胀计算 在标准状态下0℃,0.1MPa ,1摩尔气体占有22.4升体积,根据液态气体的相对密度,由下式可计算出它们气化后膨胀的体积: 4.221000???= M d v V o o V — 膨胀后的体积(升) v o — 液态气体的体积(升) d o — 液态气体的相对密度(水=1) M — 液态气体的分子量 将液氧的有关数据代入上式,由d o =1.14,M=32得 o o o o v v M d v V 7984.22100032 14 .14 .221000=???=???= 即液氧若发生泄漏则会迅速气化,其膨胀体积为原液态体积为798倍。 b. 液氧爆破能量模拟计算: 液氧处于过热状态时,液态介质迅速大量蒸发,使容器受到很高压力的冲击,产生暴沸或扩展为BLEVE 爆炸,其爆破能量是介质在爆破前后的熵、焓的函数。 1)计算过程 (1)容器爆破能量计算公式 E L =[(i 1-i 2)-(s 1-s 2)T b ]m 式中:E L ——过热状态下液体的爆破能量 KJ ;

电磁流量计的流速问题和使用时的注意事项

电磁流量计不工作的时候怎么保养 电磁流量计在停机即不使用的时候,我们要对电磁流量计采取科学合理的维护和保养方法。很多人发现在购买电磁流量计使用一段时间以后,再次使用发现测量数据的不准确。其实这不是电磁流量计本身存在的质量问题。是因为使用者没有按照说明书中的方法保养和维护。 一、电磁流量计维护之零点检查和调整 电磁流量计投入运行前,通电后必须在电磁流量传感器充满液体静止状态下调整零点。投入运行后亦要针对使用条件定期停流作零点检查;尤其对沉淀、易污染电极,含有固相的非清洁液,在运行初期应多作检查,以获得经验确定正常检查周期。交流激磁方式的电磁流量计与矩形波激比,更易产生零点漂移,因此更要注意检查和调整。 举两个沉积层产生故障的应用失误的例子。一个是石油钻探固井工程中,灌注水泥浆的流总量是重要工艺参数,经常用高压电磁流量计。仪表间歇使用,用毕后以清水冲洗传感器测量管,其余时间是空管。由于清洗不彻底,测量管内壁残留水泥浆固化成薄层,近二个月积聚形成绝缘层,包覆了整个电极表面,导致运行不正常到最终不能工作。 另一个是电解切削工艺验装置上,用电磁流量计控制饱和食盐水流量,间隙使用一段时期后发现流量信号渐渐减弱,2个月后信号为零。原因是电解切削过程中氧化铁沉积管壁,形成短路所致。清除层积即立即恢复正常。 二、电磁流量计维护之定期检查传感器电性能 首先,粗略地测量电极间电阻。断开传感器与转换器间信号连线,传感器内充满液体,用万用表测量两电极与接地端的电阻值,是否在制造厂规定值范围内,且所测得两值大体相同。记录下首次测量的电阻值,此值对以后判断传感器故障原因(如沉积层是导电的还是绝缘的)是有用的。 其次,将传感器放空液体,擦净内壁,待完全干燥后用兆欧计测量两电极和接地端子间的电阻。 最后,检查激磁线圈绝缘电阻,卸下传感器激磁线圈,将端子与转换器间接线,用兆欧计测量线圈的绝缘电阻。 电磁流量计的优点: 1、电磁流量计的变送器结构简单,没有可动部件,也没有任何阻碍流体流动的节流部件,所以当流体通过时不会引起任何附加的压力损失,同时它不会引起诸如磨损,堵塞等问

气体标准状态流量表

Maximal Flow Rate=15 M/sec P = kg/cm2G A = mm2 ID = mm Size ID (mm) A (mm2)0 kg/cm21 kg/cm22 kg/cm23 kg/cm24 kg/cm25 kg/cm26 kg/cm2 7 kg/cm28 kg/cm29 kg/cm210 kg/cm2 1/8" 1.78 2.49 2.2 4.5 6.7911.213.415.717.920.122.424.61/4" 4.3514.85132740536780941071201341473/8"7.5344.5140801201602002402803203614014411/2"10.2281.99741482212953694435175906647388123/4"16.57215.531943885827769701,1641,3581,5521,7461,9402,13415A 18.4265.772394787189571,1961,4351,6741,9142,1532,3922,63120A 23.89448.44048071,2111,6142,0182,4212,8253,2283,6324,0364,43925A 30.69739.856661,3321,9982,6633,3293,9954,6615,3275,9936,6597,32532A 39.391,218.601,0972,1933,2904,3875,4846,5807,6778,7749,87110,96712,06440A 45.291,610.891,4502,9004,3495,7997,2498,69910,14911,59813,04814,49815,94850A 57.192,568.392,3124,6236,9359,24611,55813,86916,18118,49220,80423,11625,42765A 74.084,310.293,8797,75911,63815,51719,39623,27627,15531,03434,91338,79342,67280A 84.885,658.295,09210,18515,27720,37025,46230,55535,64740,74045,83250,92556,017100A 110.079,515.788,56417,12825,69334,25742,82151,38559,94968,51477,07885,64294,206125A 134.214,144.7412,73025,46138,19150,92163,65176,38289,112101,842114,572127,303140,033150A 159.620,005.7918,00536,01054,01672,02190,026108,031126,036144,042162,047180,052198,057200A 210.734,867.3531,38162,76194,142125,522156,903188,284219,664251,045282,426313,806345,187250A 260.653,338.2448,00496,009144,013192,018240,022288,027336,031384,035432,040480,044528,049300A 310.575,720.4368,148136,297204,445272,594340,742408,890477,039 545,187613,336681,484749,632 350A 00000000 0000 Piping System Maximal Flow Rate Calculation Table Flow Rate = NLPM

孔板流量计

孔板流量计 孔板流量计是将标准孔板与多参数差压变送器(或差压变送器、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及引的流量,广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。节流装置又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成广泛应用于气体.蒸汽和液体的流量测量.具有结构简单,维修方便,性能稳定。 孔板流量计工作原理 充满管道的流体流经管道内的节流装置,在节流件附近造成局部收缩,流速增加,在其上、下游两侧产生静压力差。 在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其基本公式如下: c-流出系数无量纲 d-工作条件下节流件的节流孔或喉部直径 D-工作条件下上游管道内径 qm-质量流量Kg/s qv-体积流量m³/s ß-直径比d/D无量纲 流体的密度Kg/m³ 可膨胀性系数无量纲 孔板流量计结构 节流装置组成 节流件:标准孔板、标准喷嘴、长径喷嘴、1/4圆孔板、双重孔板、偏心孔板、圆缺孔板、锥形入口孔板等 取压装置:环室、取压法兰、夹持环、导压管等 测量管 孔板流量计的安装要求:对直管段的要求一般是是前10D后5D,因此在选购孔板流量计时一定要根据流量计的现场工矿情况来选择适合现场工矿的流量计。 孔板流量计特点 ▲节流装置结构易于复制,简单、牢固,性能稳定可靠,使用期限长,价格低廉。 ▲孔板计算采用国际标准与加工 ▲应用范围广,全部单相流皆可测量,部分混相流亦可应用。 ▲标准型节流装置无须实流校准,即可投用。 ▲一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。 选择孔板流量计所需要的参数 1、管道的口径(管径*壁厚) 2、孔板流量计测量的介质 3、被测介质的工作温度 4、被测介质的工作压力(最大压力、最小压力、正常压力)

如何将气体换算为一个标准大气压下的标准体积

由于交货单上,罐体内气体压强(fillin g pressure of gas)与罐体体积(specification of cylinder) 的乘积,与厂家填充气体体积(V olume of gas charged)基本相当,根据气体状态方程P1V1=P2V2,可以推测出厂家在向罐体内填充的气体体积,是按照一个标准大气压计算的。 1标准大气压=101325 N/㎡。(在计算中通常为1标准大气压=1.01×10^5 N/㎡)。100kPa=0.1MPa。IUPAC将“标准压力”重新定义为100 kPa。 在实际计算中,将理想气体的状态方程即P1V1/T1=P2V2/T2 作为计算依据。 举例: 通盈氘气2011-01-06 V olume of gas charged 5600L Specification of Cylinder 46.0 L Filling pressure of gas ,temp 11.6Mpa @ 5℃ 将一个标准大气压下,5600L的气体进入46L体积装钢瓶内,钢瓶测量压强为11.6Mpa ,测量时气体环境温度为5℃(转化为开尔文温度为278°)。 计算方法:需要首先将罐体压强换算为以kPa为单位,再带入气体方程进行比对 P1V1/T1 = 11.6*10 * 3/ 278 =5336 / 278 ≈19.19 倒推通盈填充气体时的气体温度T2= P1V1/19.19= 5600/19.19≈291.82(19℃) 为确保无误,另外抽测3组氘气交货单上的数据,进行同样计算,确认是否T2为恒定值 1.V 4500L CY 40L PRE 10.7 T1 8℃=281K T2=4500/(40*10.7*10*3/281)=295.44 (22.4℃) 2.V 5500L CY 45.0L PRE 12.0 TI 15℃=288K T2=5500/(45*12*10*3/288)=293.33 (20.3℃) 3. V4400L CY 40.0L PRE 11.2 T1 23℃=296K T2= 4400/(40*11.2*10*3/296)=290.71 (18℃) 通过计算可知, 1. 厂家在进行气体填充时的外部条件为20℃,1个大气压强(或换算出来的)。 2.当填充气体温度(temp)超过20℃时,换算一个标准大气压下,计算出的罐体内气体体积略大于厂家填充时的体积。 当填充气体温度(temp)低于20℃时,计算出的气体体积略小于厂家气体填充时的体积。 这是因为,按照理想气体状态方程P1V1/T1=P2V2/T2,钢瓶体积V1=V2,温度T1,T2的变化,导致了P1 P2的改变。 结果: 在进行气体压强,体积计算的时候,只需要知道目前使用的罐体内剩余气体压强和周围环境温度,即可以换算为20℃,一个标准大气压下的气体体积。

如何将气体换算为一个标准大气压下的标准体积

. '. 由于交货单上,罐体内气体压强(fillin g pressure of gas)与罐体体积(specification of cylinder) 的乘积,与厂家填充气体体积(V olume of gas charged)基本相当,根据气体状态方程P1V1=P2V2,可以推测出厂家在向罐体内填充的气体体积,是按照一个标准大气压计算的。 1标准大气压=101325 N/㎡。(在计算中通常为1标准大气压=1.01×10^5 N/㎡)。100kPa=0.1MPa。IUPAC将“标准压力”重新定义为100 kPa。 在实际计算中,将理想气体的状态方程即P1V1/T1=P2V2/T2 作为计算依据。 举例: 通盈氘气2011-01-06 V olume of gas charged 5600L Specification of Cylinder 46.0 L Filling pressure of gas ,temp 11.6Mpa @ 5℃ 将一个标准大气压下,5600L的气体进入46L体积装钢瓶内,钢瓶测量压强为11.6Mpa ,测量时气体环境温度为5℃(转化为开尔文温度为278°)。 计算方法:需要首先将罐体压强换算为以kPa为单位,再带入气体方程进行比对 P1V1/T1 = 11.6*10 * 3/ 278 =5336 / 278 ≈19.19 倒推通盈填充气体时的气体温度T2= P1V1/19.19= 5600/19.19≈291.82(19℃) 为确保无误,另外抽测3组氘气交货单上的数据,进行同样计算,确认是否T2为恒定值 1.V 4500L CY 40L PRE 10.7 T1 8℃=281K T2=4500/(40*10.7*10*3/281)=295.44 (22.4℃) 2.V 5500L CY 45.0L PRE 12.0 TI 15℃=288K T2=5500/(45*12*10*3/288)=293.33 (20.3℃) 3. V4400L CY 40.0L PRE 11.2 T1 23℃=296K T2= 4400/(40*11.2*10*3/296)=290.71 (18℃) 通过计算可知, 1. 厂家在进行气体填充时的外部条件为20℃,1个大气压强(或换算出来的)。 2.当填充气体温度(temp)超过20℃时,换算一个标准大气压下,计算出的罐体内气体体积略大于厂家填充时的体积。 当填充气体温度(temp)低于20℃时,计算出的气体体积略小于厂家气体填充时的体积。 这是因为,按照理想气体状态方程P1V1/T1=P2V2/T2,钢瓶体积V1=V2,温度T1,T2的变化,导致了P1 P2的改变。 结果: 在进行气体压强,体积计算的时候,只需要知道目前使用的罐体内剩余气体压强和周围环境温度,即可以换算为20℃,一个标准大气压下的气体体积。

详解孔板流量计

详解孔板流量计 差压式流量计作为经典与最古老的流量计,应用范围最为广泛。不过随着电子式流量计如(电磁、涡街等)流量计的兴起,我们有些新的行业朋友,还真不一定熟悉这种流量计,今天这一期,给大家好好讲解这个差压式流量计。 差压式流量计在化工生产中得到最广泛的应用,也是操作人员最为熟悉的一种流量计,它的节流装置(1)安装在生产工艺管道(2)上,并由引压管(3)和差压变送器(4)三个部分组成流量测量系统(如图3—1所示)。下面对差压式流量计,差压变送器及差压式流量计的安装分别予以介绍。 图3-1 差压式流量计的组成 差压式(也称节流式)流量计是基于流体流动的节流原理,利用流体经节流装置时产生的压力差而实现流量测量的。差压式流量计一般是由能将流体的流量变换成差压信号的节流量(孔扳、喷嘴)和用来测量压差值的差压计或差压变送器及显示仪表组成。 这种流量计,目前在化工、炼油及其它工业中应用很广,应用的历史也较长久,因此已经积累了丰富的实践经验和完整的实验资料。对于常用的孔板、喷嘴等节流装置,国内外已把它们标准化了,并称为“标准节流装置”。因此,这种流量计所用的标准节流装置可以根据计算结果直接投入制造和使用,不必用实验方法进行单独标定。但对于非标准化的特殊节流装置, 在使用时,均应进行个别标定。 一.节流装置的流量测量原理 节流现象及其原理: 流体在有节流装置的管道中流动时,在节流装置前后的管璧处,流体的静压产生差异的现象称为节流现象,如图3—2所示 图3—2 流体流经节流装置时的节流现象

现在,我们对流体流经节流装置前后的变化情况作进一步分析。 连续流动着的流体,在遇到安插在管道内的节流装置时,由于节流装置的截面积比管道的截面积小,形成流体流通面积的突然缩小,在压力作用下,流体的流速增大,挤过节流孔,形成流速的扩大而降低。与此同时,在节流装置前后的管壁处的流体静压力就产生了差异,形成静压力差△p(△p=P1- P2),如图3-3所示。并且p1>p2, 图3—3 孔扳附近流束及压力分布情况 此即为节流现象,从图中可以看出,节流装置的作用在于造成流束的局部收缩从而产生的压差.并且,流过的流量愈大在节流装置前后所产生的压差也愈大,因此可以通过测量压差来衡量流体流量的大小。由于节流装置造成流束的收缩,同时流体又是保持连续流动的状态,因此在流束截面积最小处的流速达到最大,在流速截面积最小处,流体的静压力最低。 同理,在孔板出口端面处,由于流速已比原来增大,因此静压力仍旧比原来的为低(即图中P2

空气流量计安装注意事项介绍

空气流量计安装注意事项介绍 空气流量计管道安装注意事项: 空气流量计最好安装在室内,若须安装在室外时,应有避免直射阳光和防止雨淋的措施。空气流量计应避免安装在有强磁场干扰,空间小和维修不方便的场合。空气流量计应避免安装在温度较高、受设备热辐射或含有腐蚀性气体的场合,若须安装时,须有隔热通风措施。空气流量计避免安装位置 空气流量计应避免安装在有机械振动的管道上,若须安装时,必须采取减震措施,可加装软管过渡,或在空气流量计上下游2DN处加装管道固定支撑点并加防震垫。法兰与管道点焊定位后应卸下空气流量计,不能带着空气流量计焊接。空气流量计可以测量液体、气体和蒸汽,但不同介质之间不通用;同种介质又分为低温、高温和特高温三种规格,不同温度之间也不通用。当测量液体时必须保证管道内充满液体,因此介质流向应是自下而上的。空气流量计可以在沿管道轴线垂直方向上360度任意安装。最佳安装方式:低温介质表杆垂直地面安装;高温介质表杆平行地面安装。空气流量计应尽量避免安装在架空较长的管道上,由于管道的下垂容易造成空气流量计与法兰间的密封泄漏。若必须安装时,须在空气流量计的上下游2D处分别设置管道支撑点。在测量蒸汽的管道中,为了防止转换器温度过高,仪表连接杆至少一半不要保温为了方便观察和接线。 空气流量计应远离有强电磁场 空气流量计的表头在原有的位置上可进行360度旋转,在调整好位置后,把锁紧螺母拧紧即可。为了防止水汽从锁紧螺母处进入壳体,必要时须用防水胶带把锁紧螺母缠绕密封好。连接空气流量计的屏蔽电缆走向,应远离有强电磁场干扰的场合,绝对不允许与高压电缆一起敷设。屏蔽线应尽量缩短,且不得盘卷,以减少分布电感,最大长度不超过500米。接线时先拧开表壳后盖,将信号线从防水接头送入。按照接线图示正确接线。将防水接头拧紧,并保证线缆在进入防水接头之前必须向下压弯,以确保水不会顺着线。 相信伴随着新材料、新工艺和新技术的应用,智能空气流量计的性能更趋完善也能够满足人们小型化、多功能性的综合要求。相信随着纳米技术、薄膜技术等新材料研制成功,微机械与微电子技术、计算机技术等的综合应用,具备多种气体监测功能的高性能智能化智能空气流量计将会在不远的将来出现在我们身边.

标准状态下的气体密度表

标准状态下的气体密度表 标准状态下的气体密度表 注:标准状态为温度0℃,压力0.1013MPa。 液化气的性质 中国石油新闻中心[ 2007-05-14 15:09 ] 由于LPG有这种性质,故能用低温、大容量、常压储存,丙烷和丁烷可分别储存。运输时可以用低温海上运输,也可以常温处理后带压运输。 密度 LPG的气态密度是空气的1.5~2倍,易在大气中自然扩散,并向低洼区流动,聚积在不通风的低洼地点。LPG液态的密度约为水的密度的一半。在15℃时,液态丙烷的密度为0.507kg/L,气态丙烷在标准状态下的密度为1.90kg/m3;液态丁烷的密度为0.583kg/L,气态丁烷在标准状态下的密度为2.45kg/m3。LPG在G3:G4=5:5时,液态LPG的密度为0.545kg/L;,气态LPG 在标准状态下的密度为2.175kg/m3。 饱和蒸气压 LPG在平衡状态时的饱和蒸气压随温度的升高而增大。丙烷和丁烷的饱和蒸气压与温度的关系见表4-1。 表4-1 丙烷和丁烷的饱和蒸气压与温度的关系表

膨胀性 LPG液态时膨胀性较强,体积膨胀系数比汽油、煤油和水的大,约为水的16倍。所以,国家规定LPG储罐、火车槽车、汽车槽车、气瓶的充装量必须小于85%,严禁超装。 值和导热系数 LPG的热值一般用低热值计算,在25℃,101 325Pa (1大气压)下表4-2 LPG热值表 表4-2 LPG热值表 LPG的导热系数与温度有关。气态的导热系数随温度的升高而增大,而液态的志热系数随温度的升高而减少,见表4-3。 表4-3 丙烷、丁烷的导热系数表 5.比热容 LPG的比热容随温度的上升而增加。比热容有比定压(恒压)热容和比定容(恒容)热容2种。LPG的蒸发潜热随温度上升而减少,见表4-4 表4-4 丙烷、丁烷在不同温度下的比定压热容和蒸发潜热

孔板流量计安装注意事项与措施

孔板流量计安装注意事项与措施 孔板流量计安装前的十条注意事项 1.仪表安装前,工艺管道应进行吹扫,防止管道中滞留的铁磁性物质附着在仪表里,影响仪表的性能,甚至会损坏仪表。如果不可避免,应在仪表的入口安装磁过滤器。仪表本身不参加投产前的气扫,以免损坏仪表。 2.仪表在安装到工艺管道之前,应检查其有无损坏。

3.仪表的安装形式分为垂直安装和水平安装,如果是垂直安装形式,应保证仪表的中心垂线与铅垂线夹角小于2°;如果是水平安装,应保证仪表的水平中心线与水平线夹角小于2°。 4.仪表的上下游管道应与仪表的口径相同,连接法兰或螺纹应与仪表的法兰和螺纹匹配,仪表上游直管段长度应保证至少是仪表公称口径的5倍,下游直管段长度大于等于250mm。 5.由于仪表是通过磁耦合传递信号的,所以为了保证仪表的性能,安装周围至少250px处,不允许有铁磁性物质存在。 6.测量气体的仪表,是在特定压力下校准的,如果气体在仪表的出口直接排放到大气,将会在?浮子处产生气压降,并引起数据失真。如果是这样的工况条件,应在仪表的出口安装一个阀门。 7.安装在管道中的仪表不应受到应力的作用,仪表的出入口应有合适的管道支撑,可以使仪表处于最小应力状态。 8.安装PTFE(聚四氟乙烯)衬里的仪表时,要特别小心。由于在压力的作用下,PTFE会变形,所以法兰螺母不要随意拧得过紧。 9.带有液晶显示的仪表,安装时要尽量避免阳光直射显示器,降低液晶使用寿命。 10.低温介质测量时,需选夹套型。 孔板流量计安装过程中的二十八条注意事项

1.仪表开孔应避免在成型管道上开孔。 2.注意流量计前后直管段长度。 3.如有接地要求的电磁、质量等流量计,应按说明进行接地。 4.工艺管道焊接时,接地线应避开仪表本体,防止接地电流流经仪表本体入地,损坏仪表。 5.工艺焊接时,避免接地电流流经单、双法兰仪表的毛细导压管。

孔板流量计理论流量计算公式

孔板流量计理论流量计 算公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

如果你没有计算书,你只需要向制造厂提供下列数据:管道(法兰)尺寸,管道(法兰)材质,介质,流体的最大和常用流量,温度,压力和你现有的孔板外圆尺寸,生产厂会根据你的数据重新计算,然后你根据计算书重新调整你的差压变送器和流量积算仪引用孔板流量计理论流量计算公式 2009-05-10 17:11:29|分类: |标签: |字号大中小订阅 引用 的 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是许多人不知道孔板流量计是怎么计算出来,今天我就和大家探讨一下孔板流量计的计算公式 简单来说差压值要开方输出才能对应流量 实际应用中计算比较复杂一般很少自己计算的这个都是用软件来计算的下面给你一个实际的例子看看吧 一.流量补偿概述 差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1)

罗茨流量计注意事项及性能

罗茨流量计性能及注意事项 在使用腰轮流量计之前,我们首先要了解一下要论流量计的主要技术性能。 首先要严格执行中华人民共和国专业标准JB/T9242-1999《容积式流量计通用技术条件》, 1、工作压力(MPa):0.6、1.0、1.6、2.5、4.0 2、工作温度(℃):-10℃~60℃ 3、介质粘度(mPa.s):0.6~150 4、精确度等级:0.5 0.2 5、流量范围(m3/h) 使用粘度可达2000mPa.S或更高,超过150mPa.S时 ■外形及安装尺寸连接法兰标准:JB/T79-82-94 罗茨流量计又称气体腰轮流量计,主要用于对管道中液体流量进行连续或间歇测量的高精度计量仪表。它具有精度高、可靠性好、重量轻、寿命长、运行噪声低、安装使用方便等特点。而且我们要按照被测量的流体性质和流动情况来选择腰轮流量计的规格和型号,合理的安装。 在使用罗茨流量计之前,首先要考虑自己的环境是否适合选用罗茨流量计。然后我们来看一下罗茨流量计安装使用的注意事项。 流量计前应安装过滤器,两者表体上箭头指向与流动方向一致。 *当被测液体含有气体时,流量计前应安装气体分离器。 *不论管路是垂直还是水平安装,但流量计的腰轮轴安装成水平位置(即表度盘应与地面垂直)。 *流量计安装前,管道需冲洗,冲洗时采用直管段(替代流量计位置)防止焊渣、杂物等进入流量计。 *严禁用水校验铸铁、铸钢材质组成的流量计。 *流量计在使用时流量大小不得超过技术要求,流量计正常工作在最大流量70~80%为优。*被测液体如果具有化学腐蚀性,需选用不锈钢材质的流量计,如果腐蚀性强,需选用0Crl8Ni12MO2Ti材质的流量计。 *流量计在正确安装情况下,如果不易看清读数,可把计数器旋转180度或90度均可。 *节流阀应安装在流量计进口处,开闭阀装在出口处,使用开闭阀时要缓慢启动,不要突然开阀。 *严禁使用扫线蒸汽通过流量计。 *在连续使用部门,流量计需加旁通管道。 安装使用前一定要严格遵守以上几点,避免为您带来不必要的麻烦。罗茨流量计现在已经广泛运用在石化,电力,交通等大领域当中。

孔板流量计

孔板流量计可以测量气体、蒸汽、液体的流量,它是由标准孔板与多参数差压变送器组成的高量程比差压流量装置,在石油、化工、供水等领域的过程控制和测量得到广泛使用。孔板流量计哪家好?安徽康斐尔电气有限公司是一个不错的选择,接下来小编为您简单介绍,希望给您带来一定程度上的帮助。 孔板流量计是将标准孔板与多参量差压变送器(或差压变送、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及天然气的流量。 一体化孔板流量计广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。孔板流量计被广泛适用于煤炭、化工、交通、建筑、轻纺、食品、医药、农业、环境保护及人民日常生活等国民经济各个领域,是发展工农业生产,节约能源,改进产品质量,提高经济效益和管理水平的重要工具在国民经济中占有重要的地位。在过程自动化仪表与装置中,流量仪表有两大功用:作为过程自动化控制系统的检测仪表和测量物料数量的总量表。

该流量计应用领域比较广泛,所有的单相流速都可以测量,一部分混相流也可以使用该产品。因为两相流而不能准确计量,甚至有可能发生水锤现象,损坏管件。若使用环形孔板,冷凝水可以从环形孔板的边沿流走,最小流通面是紧贴管内壁的圆环,而标准孔板最小流通面是处于管中心的同心圆。流体中的杂质流速较低,一般是紧贴着管壁边流动,节流装置新品种的不断出现并获得推广应用,与节流装置相配套的差压变送器及显示仪表在性能和质量方面发展迅速。 孔板流量计本应是尖锐直角的入口边缘却变成了喇叭口,改变了流出系数,产生了较大误差,不得不更换。可见,测量高温流体的流量,本产品是最佳选择。 安徽康斐尔电气有限公司位于长江之滨的的文明城市天长市,是集科技攻关、新品研发、制造营销、出口为一体的生产型企业。主要产品:电力电缆、控制电缆、计算机电缆、核电站用1E级和非1E

质 量 流 量 计 的 安 装 注 意 事 项

质量流量计的安装注意事项 1.安装地点的选择:应避免电磁干扰。传感器及变送 器的安装地点应尽量远离强电磁场,如大功率马 达、变压设施、变频设备等。 2.正式安装流量计之前,请勿将流量计进、出口的保 护套除去,以防杂物进入流量计。 3.安装时应注意流量计外壳上的流向标志。虽然质 量流量可双向测量,但最好依流向标志安装,以防组态时出错。 4.质量流量计上、下游一般无直管段要求。 5.工艺管道的中心应对齐(用眼观察无明显偏离)。 不能在安装时用流量计硬行拉直上、下游工艺管 道,以避免损坏流量计。流量计上、下游工艺管道近法兰处应有牢固支撑及夹持以防止震动影响测量精度。焊接时注意勿让电流经过表体,即靶线与焊线在传感器同侧。 6.流量计上、下游应装有手动截止阀以方便调零、维 护及确护流量计不工作时可处于满管状态。 7.在测量易汽化介质时,流量计下游最好装有压力 表,以观察在线压力,用以控制适当的背压,防止汽化。若在流量计中发生汽化将影响测量精度,甚至影响流量计正常工作。 8.一般建议:测量液体流量时,流量计向下安装, 安装在工艺管道的相对低点位置。 如图:

质量流量计的安装注意事项 9.测量气体流量时流量计朝上安装。测量浆液状介 质时一般采用旗式(竖式)安装(但如流量计外形 为三角形的如CMF025,CMF050 等,一般采用向上安装)。 10.接线:电源线,流量计信号线及输出信号线应走各 自独立的管线以防止互相干扰。输出信号线最好选用带屏蔽的绞合线。传感器与变送器之间的最远距离为300 米,接线完成后应盖紧接线盒盖,并密封穿线孔以防止潮气进入影响测量。 11.如介质为常温易凝物,需采取保温措施.注意要将传感器接线盒置于保温层 外。

药品注册现场核查要点及判定标准发文

附件: 药品注册现场核查要点及判定标准 本核查要点依据《药品注册管理办法》及《药品注册现场核查及抽样程序与要求(试行)》等有关规定,针对药品研制过程的四个方面(处方工艺研究及试制,质量、稳定性研究及样品检验,药理毒理研究,临床试验),提示现场核查的重点部位和关键要素,对核查结果是否符合真实性要求给予判定。 一、处方工艺研究及试制 1. 研究及试制条件、设备 *1.1 处方工艺研究现场应有与研究项目相适应的场地、设备和仪器。 *1.2 样品试制现场应有试制该品的全部相应设备。 1.3 研制人员应从事过该项工作并与申报资料的记载一致。 2. 原料药 *2.1 应有来源凭证和检验记录原件。必要时结合原料药生产企业销售情况进行核查。 *2.2 购入时间或供货时间应与样品试制时间对应一致。 *2.3 购入量应满足样品试制的需求。 3.样品 3.1 样品试制量、剩余量与使用量之间的关系应对应一致。

3.2 尚在进行的长期稳定性研究应有留样并有与申报资料一致的直接接触药品的内包装。必要时要求在现场利用检测仪器设备进行鉴别检验。 4 研制记录 *4.1样品的试制应有制备记录或原始批生产记录。 ★4.2 申报批准文号所需样品的试制应在本企业生产车间内进行。 4.3 样品制备记录项目及其内容应齐全,如试制时间、试制过程及内容、中间体检验记录等。申报批准文号所需样品的原始批生产记录应当符合《药品生产质量管理规范》的要求。 4.4 申报批准文号所需样品的原始批生产记录应与申报工艺一致。 4.5 各项研究及临床试验所用样品的试制时间与批号间的关系应对应一致。 4.6 处方工艺研究记录应有筛选、摸索等试验过程的具体内容。 二、质量、稳定性研究及样品检验 1.研究条件、仪器设备 1.1 研究及检验必需的仪器设备应具备。 1.2 高效液相色谱仪、分析天平等仪器应有使用记录。 1.3 研制人员应从事过该项工作并与申报资料的记载一致。 2.对照药

气体标准状态

标准状态 状态函数中热力学能U及焓H和吉布斯自由能G等热力学函数的绝对值是无法确定的。为了便于比较不同状态时它们的相对值,需要规定一个状态作为比较的标准。所谓标准状态,是在指定温度T和标准压力p下该物质的状态,简称标准态。 对具体系统而言,纯理想气体的标准态是该气体处于标准压力p(100kPa)下的状态;[1]混合理想气体的标准态是指任一气体组分的分压力为p的状态;纯液体(或纯固体)物质的标准态是标准压力p下的纯液体(或纯固体)。溶液中溶质的标准态,是在指定温度T和标准压力p,质量摩尔浓度1 mol/kg的状态。因压力对液体和固体的体积影响恒很小,故可将溶质的标准态浓度改用c=1 mol/L代替。 应当注意的是,由于标准态只规定了压力p,而没有指定温度,所以与温度有关的状态函数的标准状态应注明温度。为了便于比较,国际理论和应用化学联合会(I UPAC)推荐选择273.15K(0℃)作为参考温度。需要注意的是,在1982年以前,IUPAC曾经采用101.325kPa作为标准状态的压力。从手册或专著查阅热力学数据时,应注意其规定的标准状态,以免造成数据误用。 1 《石油化工自动化仪表选型设计规范》P8以及1954年第十届国际计量大会(CGPM)定义标准状态为:0摄氏度,0.101MPa; 2 《自动检测技术与装置(张宏建主编)》P204以及《天然气流量的标准孔板计算方法》定义标准状态为:温度293.15K(20℃),压力101.325KPa; 3 国际标准化组织和美国国家标准规定以温度288.15K(15℃),压力101.325KPa作为计量气体体积流量的标态。 在温度压力不太高时,可以用理想气体状态方程粗算: V0=V1*P1*T0/P0/T1 其中,P1、T1、V1和P0、T0、V0分别是实际工况和标准状况下的压力温度和体积; 若要比较精确的结果,需要进一步校正。 再查一下气体的压缩系数,修正一下就可以了 什么是气体的压缩系数? 答:气体压缩系数Compressibilitycoefficient,也称压缩因子Compressibilityfactor。是实际气体性质与理想气体性质偏差的修正值。通常用Z表示,Z=Pv/RT=Pv m/R u T;Z也可以认为是实际气体比容v(v actual)对理想气体比容v ideal的比值;Z=v actual/v ideal;v ideal=RT/P。其中,P是气体的绝对压力;v m是摩尔体积;R u是通用气体常数;R=R u/M;R是气体的摩尔气体常数;T是热力

相关主题
文本预览
相关文档 最新文档