当前位置:文档之家› 表面形貌建模与仿真自学报告

表面形貌建模与仿真自学报告

表面形貌建模与仿真自学报告
表面形貌建模与仿真自学报告

表面形貌建模与仿真自学报告表面形貌建模与仿真自学报告

通过表面形貌建模与仿真这门课的学习和自学相关文献,对表面形貌表征的方法研究进展和表面形貌摩擦学研究方法与技术有了进一步的了解。

表面形貌是指零件表面的粗糙度、波度、形状误差及纹理等不规则的微观几何形状,是由加工过程中,切削、磨削引起的塑性变形以及加工设备的振动等原因造成的。根据波长的大小分为粗糙度、波度和形状偏差,一般而言,波距大于10mm属于形状偏差;波距在1-10mm间属于波纹度范围;波距小于1mm属于表面粗糙度范围,表面粗糙度又称为表面微观几何形状误差。

大量研究表明,表面形貌对零件的功能有很大的影响, 尤其是对摩擦表面的磨损、润滑状态、摩擦、振动、噪声、疲劳、密封、配合性质、涂层质量、抗腐蚀性、导电性、导热性和反射性能的影响更为显著,因此对表面形貌特征识别和评定的研究越来越为工程技术界所重视, 也一直是摩擦学、表面学等领域研究的重要课题之一。正确地规定和控制表面形貌, 其作用往往不亚于采用一种新材料和新结构, 有着重大的经济价值。国内外对此已有较深入的研究, 并取得了一定成果。

一、表面形貌的数学描述及数学模型

1.最小二乘多项式拟合法

最小二乘平面是由在现行标准中所采用的最小二乘直线导出的。它被定义为这样一个平面,实际表面离开该平面的偏差的平方和为最小值,并且有明确的数学算法。当被测表面是曲面时,需要用最小二乘法来准确地定义其几何形状。此时,可采用拟合球面或圆柱的公式:但是,一般需要知道中心和半径。

最具一般性的方法是拟合具有适当阶数n的多项式表面原则上,所选择的阶数应除去几何形状,而不致影响粗糙度。实验表明,一般n取2~4即可满足要求。

在3D分析中,大多数测量系统给出了数字数据,而且是没有经过任何处理的,因而有可能用数学算法确定基准表面。

一个等间距的数字3-D表面可以被表示为f(x i,y j) ( x i=i△x,y j=j△y;i=l,2,…. ,M;j= l,2,…. ,N),其中△x 和△y是采样问隔,而M和N分别

表示在x 和y 方向的采样点数。在采样时,注意应用Nyquist 准则来限制短波,以便得到合适的△x 和△y ,避免混淆误差。

最小二乘平均平面是3D 表面形貌评定最合适的参考基准。在本文后面讨论的表征参数均是基于以下假设:用f( x ,y)表示3D 表面的原始数据; ξ( x ,y)表示最小二乘基准平面;z( x ,y)代表残差表面,它是原始表面和参考基准之间的差异,即有

z( x i ,y i )=f( x i ,y i )一ξ(x i ,y i )

式中:x i = i △x ,y j =j △y (i=l ,2,…. ,M ; j= l ,2,…. ,N)

因为ξ( x ,y)是最小二乘均值平面,所以满足最小二乘条件

Z 2 x i ,y j =min M

i=1

N j=1

残差表面具有零均值的基本特征,所以

1 Z x i ,y j =0M

i=1N j=1 2.滤波

数字滤波可以分离被测表面内的不同频率成分,因而一个低通滤波器可用于产生基准表面。为了不改变表面的形状,滤波器必须是线性的或零相位的,同时要求光滑的截止转换以避免振荡效应。

a)模拟与数字滤波0

最初的低通模拟滤波器采用卷积运算或傅立叶变换削减高频信号分离表面元素,结构和算法都很简单,但非线性相移造成了轮廓形状的严重畸变。数字滤波器传输特性准确稳定,可实现相位不失真,且易于编程处理。

b)高斯滤波

随机理论引入表面评定后,表面被假设为一种正态随机过程,所以用高斯函数作为权函数的高斯滤波器得到广泛有效的应用,并于1996年被确认为国际标准(ISO11562)。高斯滤波为零相移滤波,时频窗面积最小,是一种理想的通用滤波方法。高斯滤波器有效分离表面元素,没有发生相变,但效率较低。

三维高斯滤波器的脉冲响应函数为:

]})()[(exp{1

),(22yc

xc yc xc y x y x h λλβπλαλ+= 式中:xc λ,yc λ——滤波器在x,y 方向的临界波长;4679.02ln ≈=π

α(取高斯滤波函数50%衰减处作为滤波归一化截止波长);2αβ=。

滤波器的传递函数为:

]})()[(exp{),(22yc

y xc x y x h ????πβ??+-= 式中:yc xc ??,——滤波器在x,y 方向50%衰减处的截止频率。

高斯滤波基于两个前提条件:一是不相关的形状和转换误差已被消除;二是表面微观形貌由谐波叠加而成,但实际上大多数工程表面按非正态分布。高斯滤波采用傅里叶变换引起边界效应,无法充分利用整个测量区域的信息,表面奇异值又会引起滤波基准的变形,使各种表面的滤波失真。

二、表面形貌的表征研究

1.基于随机过程理论的表面形貌表征

表面粗糙度的评定理论是随机过程理论, 认为表面形貌高度分布是平稳的随机过程, 并具有正态分布特征,表征参数大多是基于统计意义下的。这些参数可以归结为4类:

(1) 纵向参数, 如轮廓算术平均偏差Ra 、轮廓均方根偏差Rq 、微观不平度10点高度Rz 、轮廓最大高度Ry 、轮廓最大峰高Rp 等;

(2) 横向参数, 如轮廓微观不平度的平均间距Sm 、轮廓的单峰平均间距S 、轮廓算术平均波长λa 、轮廓均方根波长λq 等;

(3) 表面形状表征参数, 如幅度分布函数、轮廓支撑长度、轮廓均方根斜率;

(4) 表面综合表征参数, 如自相关函数R (τ)和相关长度a 、功率谱密度函数P (ω)等。

长期以来表面形貌的表征一直是二维的, 即以扫描获得的轮廓线作为表征的基础。但随着表面分析的深入和对表面性能的要求更高, 二维参数表征已不能满足工程界的要求, 只有三维的检测和定量化计算才能对表面形貌进行完整的

表征。目前, 国际上包括ISO在内的许多组织正积极探索三维表征参数。至今国际上达成一致的是, 所有三维表征参数的符号都标S, 以区别二维参数R, 不同参数根据其含义按下标形式在S后标出。目前已有14 个推荐参数, 其中4个幅度和高度分布参数(均方根偏差Sq、10点高度Sz、偏斜度Ssk、峭度Skh) 、4个空间参数(表面峰顶密度Sds、表面的结构形状比率Str、表面的纹理方向Std、最速衰减自相关长度Sal )、3个综合参数(均方根斜率Sqs、算术平均顶点曲率Ssc、展开界面面积比率Sdr ) 和3个全功能参数(表面支承指数Sbi、中心液体滞留指数Sdi、谷区液体滞留指数Svi )。虽然三维表征参数还没有最终确定, 但三维参数取代二维参数已是大势所趋。

2. 基于分形理论的表面形貌表征

工程表面的形成是挤压、撕裂、弹性与塑性变形、热力等综合作用的结果, 其微观形貌往往是不规则的, 尤其对于沉积或涂层表面材料、脆性断裂材料等, 其表面具有随机性、无序性和多尺度性, 即具有分形特征。分形维数适用于衡量表面的不规则性,可通过功率谱求出分形维数对工程表面进行评定。

B .Mandelbrot 提出用分形曲线的W-M 函数表征随机轮廓。Majumdar .A 等对W-M 函数进行了修正,建立了适用于工程表面的分形M-B 模型,在摩擦、磨损、表面接触等领域得到了广泛应用。J .Lopez 等推导了各向同性三维表面的分形模型。John .

C .Russ 描述了分形在机械加工、接触机理、摩擦、磨损等方面的应用, 指出加工工艺和材料不同,分形维数也不同;加工表面越精细, 分形维数就越大。分形法提出只用一个尺度敏感参数——分形维数表征工程表面的可能性, 在多尺度性上对其它评定方法提出了挑战。一些著名的国际测量仪器生产厂家已将分形维数引入测量软件体系中, 作为评定表面三维形貌的参数之一。实际上并非所有表面均具有分形特征, 分形维数能否完全表征实际表面还有待进一步研究。

3.Motif表征法

Motif法就是从表面原始轮廓信息出发,预先设置的不同闽值,将波纹度和表面粗糙度分离,强调突出尺寸大的轮廓峰和谷对表面功能的影响,在评定中选择重要的轮廓特征,忽略次要的特征。我们定义2D-Motif是由两个峰之间的轮廓组成,即两个峰以及峰之间的主要谷用来表征单个的Motif。单个motif由平

行于轮廓总走向的长度ARj(或AWj),垂直于轮廓总走向的两个深度Hj和Hj+1(或Hwj和Hwj+1),特征量T=min(Hj,Hj+1 )来表征。可以看出,单个motif 是由三个特征点决定的—两端的局部峰顶点和这两个峰之间的局部谷底点,见图1。

图1 2D-Motif定义

表面本质上是三维的,这决定了二维参数无法全面、真实地反映实际三维表面的特性,因此,表面评定体系由二维转向三维是一种必然趋势,Motif评定方法也不例外。Motif 法尤其适合于以下情况:没有预行程或延迟行程的轮廓;在未知表面和过程上进行技术分析;与表面的包络面相关的性能研究;辨识粗糙度和波度具有相当接近波长的轮廓。与基准评定法相比,Motif 法以宽度阈值代替取样长度(区域),自动给定截止波长,真实匹配轮廓的局部特性,评定参数少,提供了一种基于包络的评价方法。但是,Motif的四个合并准则来自于法国汽车业20多年来的实践工作经验,缺乏理论依据。迄今为止,三维Motif 仍没有统一的定义,Motif的三维合并准则和功能参数也没有一个合理的标准。

4.小波分析表征法

“小波”就是长度有限、小区域、均值为0的波形。小波变换与傅立叶变换相比就是对时间(空间)频率进行局部化分析,采用伸缩平移运算多尺度细化信号(函数),达到低频处频率细分、高频处时间细分,自动适应时频信号分析的要求,从而可聚焦到所分析信号的任意细节,解决了傅里叶变换的难题,成为继傅立叶变换以来又一次科学方法上的重大突破。

近年来,小波分析技术已被用于分析评定工程表面形貌,并取得了良好效果。分析和评定工程表面形貌,首先要在不同分辨率下对原始特征进行多尺度近似。

然后据多尺度近似提供的信息,并基于诸如粗糙度、波纹度和形状偏差等特征的波长,分离多尺度表面特征。还可在合理的分辨率下表征和分析特殊表面的特征。小波分析用于机加工表面评定分析主要是用小波分解产生基准线(面),小波基准与传统方法比较具有以下优点:不需假定其具有某种特定函数表达式,因而没有拟合误差,克服了函数拟合等回归方法的不足;二维评定基准线和三维评定基准面自然、光滑、形态完美,精度高于传统方法。小波滤波克服了传统滤波方法的缺陷,但小波分析也有以下缺点:小波的分解次数由采样间距和分解波长决定,采样间距和分解波距是根据摩擦副表面的粗糙度不同而不同的,因此其分解次数也不相同。

三、表面形貌的接触

支撑面曲线是根据表面粗糙度图谱绘制的。假设粗糙表面磨损到深度z1时,在图中形成了宽度位a1和b1的两个平面,将a1和b1求和,并除以L就可以算出在测量长度内支撑面积占的百分比,将百分比绘制在图中对应高度的z处,就可以得到支撑面位随深度z变化的曲线即支撑面曲线。Z高于最高粗糙峰的支撑面积比位0%,低于最低粗糙谷的比位100%。支撑面曲线主要用于计算实际接触面积。

图2 Abbott-Firestone曲线

通过将表面材料占有率曲线划分成峰区、核心区、谷区来分析表面的材料体积和空体体积,反映区域表面的功能特征。

在机械流变模型中,作用于工件与模具之间的法向应力由固体接触区、静态

和动态储油区域三部分共同承担。固体接触对应于实体材料接触部分,动态储油区是指润滑介质能被挤出承载区域的部分,在此区域,载荷是通过流体动压传递的。相对于动力储油区,静态储油区与载荷区域不相通,在这个区域,润滑介质被包围在内,流体静压因此产生。学者用实体材料接触面积占有率α

、封闭空

г

体面积占有率αcl和开放的空体面积占有率来反映混合润滑的的表面接触机制。

四、表面形貌摩擦学行为的研究方法与技术

金属塑性变形界面的摩擦系统会受到原始表面形貌的影响,另外表面形貌的不同也会使得界面的摩擦润滑状态不同,润滑机理发生变化。于是适当地改变工件或者模具的表面形貌,即通过某种特定的技术人为地在表面上加工出不同的表面纹理或者图案,可以有效改善塑性变形界面润滑状态和摩擦行为。

随着科技的发展,社会上已经出现了大量的可以用来进行表面微造型的方法和技术,如电子束刻蚀、激光微造型、UV光刻技术等。然而与其它多种表面微造型技术相比,激光表面微造型技术可以说是一种先进的制造技术,加工精度高,生产效率高,设备成本低,环保无污染,为改善表面形貌的摩擦学性能提供了可靠的设计手段。对于激光微造型表面的摩擦特性,国内外学者进行了大量的理论和试验的相关问题的研究工作,并且在实际的工程生产中也逐步采用了这些研究成果,取得了良好的效果。

Etsion和Ronen等为了验证激光微造型表面对缸套和活塞环往复运动摩擦副是否具有一定的减摩效果,建立了相关的数学模型,结果表明,活塞环表面和缸套表面通过激光加工之后再形成摩擦副,可以起到良好的减摩效果。

Costa等对工件表面进行微造型加工,设计了两种表面纹理,单向沟槽表面、规则圆形凹坑表面来研究表面纹理型式对往复滑动接触界面摩擦润滑的影响,通过进行多次板材拉延试验。试验结果表明,微造型表面有利于润滑油膜的形成,当表面沟槽的方向垂直于拉延方向时,界面间摩擦力明显减小。

合肥工业大学摩擦学研究所的董慧芳、刘仕冬、李兵、李见、李杨、李媛等利用激光打标机在不同的材料试样表面上设计加工出不同的表面纹理或图案,并在面接触、线接触、曲面接触下进行一系列摩擦磨损试验,揭示激光微造型表面所具有的尚未人知的摩擦学特性,并对三维表面形貌表征参数与摩擦系统的相关

性进行了研究,取得了卓越的科研成果,并分析了微造型纹理或图案的激光加工参数,在实验范围内给出了各种表面纹理或者图案的激光表面微造型加工工艺参数最佳值。结果表明,激光微造型表面可以改善系统的摩擦润滑状态,减少摩擦磨损。

信号与系统仿真实验报告

信号与系统仿真实验报告1.实验目的 了解MATLAB的基本使用方法和编程技术,以及Simulink平台的建模与动态仿真方法,进一步加深对课程内容的理解。 2.实验项目 信号的分解与合成,观察Gibbs现象。 信号与系统的时域分析,即卷积分、卷积和的运算与仿真。 信号的频谱分析,观察信号的频谱波形。 系统函数的形式转换。 用Simulink平台对系统进行建模和动态仿真。 3.实验内容及结果 3.1以周期为T,脉冲宽度为2T1的周期性矩形脉冲为例研究Gibbs现象。 已知周期方波信号的相关参数为:x(t)=∑ak*exp(jkω),ω=2*π/T,a0=2*T1/T,ak=sin(kωT1)/kπ。画出x(t)的波形图(分别取m=1,3,7,19,79,T=4T1),观察Gibbs现象。 m=1; T1=4; T=4*T1;k=-m:m; w0=2*pi/T; a0=2*T1/T; ak=sin(k*w0*T1)./(k*pi); ak(m+1)=a0; t=0:0.1:40; x=ak*exp(j*k'*w0*t); plot(t,real(x)); 3.2求卷积并画图 (1)已知:x1(t)=u(t-1)-u(t-2), x2(t)=u(t-2)-u(t-3)求:y(t)=x1(t)*x2(t)并画出其波形。 t1=1:0.01:2; f1=ones(size(t1)); f1(1)=0; f1(101)=0; t2=2:0.01:3; f2=ones(size(t2)); f2(1)=0; f2(101)=0; c=conv(f1,f2)/100;

t3=3:0.01:5; subplot(311); plot(t1,f1);axis([0 6 0 2]); subplot(312); plot(t2,f2);axis([0 6 0 2]); subplot(313); plot(t3,c);axis([0 6 0 2]); (2)已知某离散系统的输入和冲击响应分别为:x[n]=[1,4,3,5,1,2,3,5], h[n]=[4,2,4,0,4,2].求系 统的零状态响应,并绘制系统的响应图。 x=[1 4 3 5 1 2 3 5]; nx=-4:3; h=[4 2 4 0 4 2]; nh=-3:2; y=conv(x,h); ny1=nx(1)+nh(1); ny2=nx(length(nx))+nh(length(nh)); ny=[ny1:ny2]; subplot(311); stem(nx,x); axis([-5 4 0 6]); ylabel('输入') subplot(312); stem(nh,h); axis([-4 3 0 5]); ylabel('冲击效应') subplot(313); stem(ny,y); axis([-9 7 0 70]); ylabel('输出'); xlabel('n'); 3.3 求频谱并画图 (1) 门函数脉冲信号x1(t)=u(t+0.5)-u(t-0.5) N=128;T=1; t=linspace(-T,T,N); x=(t>=-0.5)-(t>=0.5); dt=t(2)-t(1); f=1/dt; X=fft(x); F=X(1:N/2+1); f=f*(0:N/2)/N; plot(f,F)

数学建模实验报告

在下面的题目中选做100分的题目,给出详略得当的答案。 一.通过举例简要说明数学建模的一般过程或步骤。(15分) 答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型 为例): 1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息 2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。(查资料得出数学式子或算法)。 3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。注意要尽量采用简单的数学公具。例如:马尔萨斯模型,洛杰斯蒂克模型 4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验 5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。 二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而 只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分) 答: 模型假设: 1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。 2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。 3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。 5.挪动仅只是旋转。 我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。将AC和BD这两条腿逆时针旋转角度θ。记AC到地面的距离之和为f(θ)。记BD到 地面的距离之和为g(θ)。易得f(θ),g(θ)至少有一个为零。

计算机仿真与建模实验报告

中南大学 计算机仿真与建模 实验报告 题目:理发店的服务过程仿真 姓名:XXXX 班级:计科XXXX班 学号:0909XXXX 日期:2013XXXX

理发店的服务过程仿真 1 实验案例 (2) 1.1 案例:理发店系统研究 (2) 1.1.1 问题分析 (3) 1.1.2 模型假设 (3) 1.1.3 变量说明 (3) 1.1.4 模型建立 (3) 1.1.5 系统模拟 (4) 1.1.6 计算机模拟算法设计 (5) 1.1.7 计算机模拟程序 (6) 1实验案例 1.1 案例:理发店模拟 一个理发店有两位服务员A和B顾客随机地到达该理发店,每分钟有一个顾客到达和没有顾客到达的概率均是1/2 , 其中60%的顾客理发仅用5分钟,另外40%的顾客用8分钟. 试对前10分钟的情况进行仿真。 (“排队论”,“系统模拟”,“离散系统模拟”,“事件调度法”)

1.1.1 问题分析 理发店系统包含诸多随机因素,为了对其进行评判就是要研究其运行效率, 从理发店自身利益来说,要看服务员工作负荷是否合理,是否需要增加员工等考 虑。从顾客角度讲,还要看顾客的等待时间,顾客的等待队长,如等待时间过长 或者等待的人过多,则顾客会离开。理发店系统是一个典型的排队系统,可以用 排队论有关知识来研究。 1.1.2 模型假设 1. 60%的顾客只需剪发,40%的顾客既要剪发,又要洗发; 2. 每个服务员剪发需要的时间均为5分钟,既剪发又洗发则花8分钟; 3. 顾客的到达间隔时间服从指数分布; 4. 服务中服务员不休息。 1.1.3 变量说明 u :剪发时间(单位:分钟),u=5m ; v: 既剪发又理发花的时间(单位:分钟),v=8m ; T : 顾客到达的间隔时间,是随机变量,服从参数为λ的指数分布,(单位: 分钟) T 0:顾客到达的平均间隔时间(单位:秒),T 0=λ 1; 1.1.4 模型建立 由于该系统包含诸多随机因素,很难给出解析的结果,因此可以借助计算机 模拟对该系统进行模拟。 考虑一般理发店的工作模式,一般是上午9:00开始营业,晚上10:00左 右结束,且一般是连续工作的,因此一般营业时间为13小时左右。 这里以每天运行12小时为例,进行模拟。 这里假定顾客到达的平均间隔时间T 0服从均值3分钟的指数分布, 则有 3小时到达人数约为603 603=?人, 6小时到达人数约为1203 606=?人, 10小时到达人数约为2003 6010=?人, 这里模拟顾客到达数为60人的情况。 (如何选择模拟的总人数或模拟总时间)

建模与仿真实验报告

重庆大学 学生实验报告 实验课程名称物流系统建模与仿真 开课实验室物流工程实验室 学院自动化年级12 专业班物流工程2班学生姓名段竞男学号20124912 开课时间2014 至2015 学年第二学期 自动化学院制

《物流系统建模与仿真》实验报告

(2)属性窗口(Properties Window) 右键单击对象,在弹出菜单中选择 Properties;用于编辑和查看所有对象都拥有的一般性信息。 (3)模型树视图(Model Tree View) 模型中的所有对象都在层级式树结构中列出;包含对象的底层数据结构;所有的信息都包含在此树结构中。 4)重置运行 (1)重置模型并运行 (2)控制仿真速度(不会影响仿真结果) (3)设置仿真结束时间 5)观察结果 (1)使用“Statistics”(统计)菜单中的Reports and Statistics(报告和统计)生成所需的 各项数据统计报告。 (2)其他报告功能包括:对象属性窗口的统计项;记录器对象;可视化工具对象;通过触发器 记录数据到全局表。

五、实验过程原始记录(数据、图表、计算等) 1、运行结果的平面视图: 2、运行结果的立体视图 3、运行结果的暂存区数据分析结果图:

第一个暂存区 第二个暂存区 由报表分析可知5次实验中,第一个暂存区的平均等待时间为11.46,而第二个暂存区的平均等待时间为13.02,略大于第一个暂存区,由此可见,第二个暂存区的工作效率基本上由第一个暂存区决定。 4、运行结果三个检测台的数据分析结果图,三个检测台的state饼图: (1)处理器一:

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

bim3d建模实验报告

bim3d建模实验报告 1、实验名称 Revit综合建模实验 二、实验目的综合使用各类Revit建模方法 三、实验内容使用Revit软件对一个完整的建筑物进行三维建模 4、实验设备计算机、Revit软件1套 5、实验步骤新建项目点击软件左上角图标,依次点击“新建门式钢架即完成。 图5-5 绘制墙体 0 1、切换至“室外标高”视图,单击“建筑”选项卡“构建”面板中的“墙”工具,在左侧实例属性栏墙体类型下拉栏选择相应的墙体类型,选择墙体的底部限制条件为“室外标高”,顶部约束为“直到标高:梁底标高”。如下图6-1所示。 02、在视图区域单击鼠标左键,作为起点,沿墙体所在位置的轴线进行绘制,再次单击鼠标右键作为终点,按下Esc键,结束墙体的绘制。依次绘制出油化库四周的墙体。 图6-1创建门窗门和窗的插入方法是很简单的操作,难点在于如何创建项目中特有的门窗。在此介绍如何插入门窗和调整门窗的位置,对于项目中如何创建各种门窗族的操作在后期将做出详细介绍。

1、在平面视图中,单击“建筑”选项卡中“构建”面板下的“门”工具,在左侧实例属性的下拉列表中选择对应的门类型。 02、移动鼠标光标至墙体上,出现门的平面轮廓时即可在此处单击插入门。如果门的开启方向不符合要求,在选中门的状态下,可以按空格键调整门的开启方向,或者按下图7-1所示,使用门的“开启方向调节箭头”进行调整。 图7-1 03、调整门的位置。选择门,在出现的临时标注尺寸中单击标注文字,修改尺寸,门会在尺寸的驱动下改变位置。 04、窗户的插入方法与门相同。 依次完成所有门窗的插入。创建屋面此建筑为单层建筑,无楼板层,将直接以屋顶命令创建屋顶,虽然Revit提供了专门创建屋顶的工具,但屋顶也可以用楼板命令来完成,需要注意的是,楼板是以绘制标高为基准向下生成的,而屋顶是向上生成的。 1、双击“项目浏览器”中的“梁顶标高”,打开楼层平面视图。 02、单击“建筑”选项卡中“构建”面板下的“屋顶”工具下拉列表中的“迹线屋顶“,用草图线绘制出屋面的边界,如下图8-1所示。 图8-1 03、框选上下两段草图线,如下图8-2所示,勾选的定义坡度,在属性栏输入坡度值,完成后在视图区域单击鼠标,

系统建模与仿真实验报告

实验1 Witness仿真软件认识 一、实验目的 熟悉Witness 的启动;熟悉Witness2006用户界面;熟悉Witness 建模元素;熟悉Witness 建模与仿真过程。 二、实验内容 1、运行witness软件,了解软件界面及组成; 2、以一个简单流水线实例进行操作。小部件(widget)要经过称重、冲洗、加工和检测等操作。执行完每一步操作后小部件通过充当运输工具和缓存器的传送带(conveyer)传送至下一个操作单元。小部件在经过最后一道工序“检测”以后,脱离本模型系统。 三、实验步骤 仿真实例操作: 模型元素说明:widget 为加工的小部件名称;weigh、wash、produce、inspect 为四种加工机器,每种机器只有一台;C1、C2、C3 为三条输送链;ship 是系统提供的特殊区域,表示本仿真系统之外的某个地方; 操作步骤: 1:将所需元素布置在界面:

2:更改各元素名称: 如; 3:编辑各个元素的输入输出规则:

4: 运行一周(5 天*8 小时*60 分钟=2400 分钟),得到统计结果。5:仿真结果及分析: Widget: 各机器工作状态统计表:

分析:第一台机器效率最高位100%,第二台机器效率次之为79%,第三台和第四台机器效率低下,且空闲时间较多,可考虑加快传送带C2、C3的传送速度以及提高第二台机器的工作效率,以此来提高第三台和第四台机器的工作效率。 6:实验小结: 通过本次实验,我对Witness的操作界面及基本操作有了一个初步的掌握,同学会了对于一个简单的流水线生产线进行建模仿真,总体而言,实验非常成功。

生产系统建模与及仿真实验报告

生产系统建模与及仿真 实验报告 实验一Witness仿真软件认识 一、实验目的 1、学习、掌握Witness仿真软件的主要功能与使用方法; 2、学习生产系统的建模与仿真方法。 二、实验内容 学习、掌握Witness仿真软件的主要功能与使用方法 三、实验报告要求 1、写出实验目的: 2、写出简要实验步骤; 四、主要仪器、设备 1、计算机(满足Witness仿真软件的配置要求) 2、Witness工业物流仿真软件。 五、实验计划与安排 计划学时4学时 六、实验方法及步骤 实验目的: 1、对Witness的简单操作进行了解、熟悉,能够做到基本的操作,并能够进行简单的基础建模。 2、进一步了解Witness的建模与仿真过程。 实验步骤: Witness仿真软件是由英国lanner公司推出的功能强大的仿真软件系统。它可以用于离散事件系统的仿真,同时又可以用于连续流体(如液压、化工、水力)系统的仿真。目前已成功运用于国际数千家知名企业的解决方案项目,有机场设施布局

优化、机场物流规划、电气公司的流程改善、化学公司的供应链物流系统规划、工厂布局优化和分销物流系统规划等。 ◆Witness的安装与启动: ?安装环境:推荐P4 1.5G以上、内存512MB及以上、独立显卡64M以上显存,Windows98、Windows2000、Windows NT以及Windows XP的操作系统支持。 ?安装步骤:⑴将Witness2004系统光盘放入CD-ROM中,启动安装程序; ⑵选择语言(English);⑶选择Manufacturing或Service;⑷选择授权方式(如加密狗方式)。 ?启动:按一般程序启动方式就可启动Witness2004,启动过程中需要输入许可证号。 ◆Witness2004的用户界面: ?系统主界面:正常启动Witness系统后,进入的主界面如下图所示: 主界面中的标题栏、菜单栏、工具栏状态栏等的基本操作与一般可视化界面操作大体上一致。这里重点提示元素选择窗口、用户元素窗口以及系统布局区。 ?元素列表窗口:共有五项内容,分类显示模型中已经建立和可以定义的模型元素。Simulation中显示当前建立的模型中的所有元素列表;Designer中显示当前Designer Elements中的所有元素列表;System中显示系默认的特殊地点;Type中

数据分析与建模实验报告

学生学号实验课成绩 学生实验报告书 实验课程名称数据分析与建模 开课学院 指导教师姓名 学生姓名 学生专业班级 2015 —2016 学年第 1 学期

实验报告填写规范 1、实验是培养学生动手能力、分析解决问题能力的重要环节;实验报告是反映实验教学水 平与质量的重要依据。为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定本实验报告书写规范。 2、本规范适用于管理学院实验课程。 3、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实 验报告外,其他实验项目均应按本格式完成实验报告。在课程全部实验项目完成后,应按学生姓名将各实验项目实验报告装订成册,构成该实验课程总报告,并给出实验课程成绩。 4、学生必须依据实验指导书或老师的指导,提前预习实验目的、实验基本原理及方法,了 解实验内容及方法,在完成以上实验预习的前提下进行实验。教师将在实验过程中抽查学生预习情况。 5、学生应在做完实验后三天内完成实验报告,交指导教师评阅。 6、教师应及时评阅学生的实验报告并给出各实验项目成绩,同时要认真完整保存实验报 告。在完成所有实验项目后,教师应将批改好的各项目实验报告汇总、装订,交课程承担单位(实验中心或实验室)保管存档。

画出图形 由图x=4时,y最大等于1760000 (2)求关于所做的15%假设的灵敏性 粗分析: 假设C=1000 即给定r y=f(x)=(1500-100x)1000(1+rx)=-100000rx^2+1500000rx-100000x+1500000 求导,f’(x)=-200000rx+1500000r-100000,令f’(x)=0,可得相应x值,x=(15r-1)/2r Excel画出相应图形

地理建模原理实验报告

地理建模原理实验报告 学号:201220310262 姓名:高义丰 班级:1223102 专业:地理信息系统 指导老师:陵南燕 2015年6月27日

目录 一、实习项目 (3) 二、实习目的 (3) 三、实习内容 (3) 1、简单相关分析 (3) 2、偏相关 (5) 3、距离过程 (6) 4、因子分析 (7) 5、回归分析 (9) 6、多元线性回归 (11) 7、时序分析 (12) 8、实习总结 (15)

一、实习项目 1.学习SPSS软件,学会如何该软件进行因子分析与回归分析(课堂); 2.学习SPSS软件,学会如何该软件随机时序分析(课堂); 3.利用SPSS软件,完成数据文件里的一系列操作。 二、实习目的 在实习后根据老师讲解的内容能够对spss软件有所了解并能够掌握如何用统计软件进行相关分析、因子分析和回归分析等用实习数据完成此类实习操作,相关分析与回归分析有相关系数、相关分析与偏相关分析、距离分析。 三、实习内容 1、简单相关分析 在进行相关分析时,散点图是重要的工具,分析前应先做散点图,以初步确定两个变量间是否存在相关趋势,该趋势是否为直线趋势,以及数据中是否存在异常点。否则可能的出错误结论。 输入数据后,依次单击Graphs—Scatterplot 散点图 确定两个变量间是否存在相关趋势,该趋势是否为直线趋势

Bivariate相关分析的步骤: (1)输入数据后,依次单击Analyze—Correlate—Bivariate,打开Bivariate Correlations 对话框。 如图打开双变量相关后在点选项就会得到结果图右边结果,如图设置即可得到结果 结果分析: 描述性统计量表,如下:

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

《MATLAB与控制系统。。仿真》实验报告剖析

《MATLAB与控制系统仿真》 实验报告 班级: 学号: 姓名: 时间:2013 年 6 月

目录实验一 MATLAB环境的熟悉与基本运算(一)实验二 MATLAB环境的熟悉与基本运算(二)实验三 MATLAB语言的程序设计 实验四 MATLAB的图形绘制 实验五基于SIMULINK的系统仿真 实验六控制系统的频域与时域分析 实验七控制系统PID校正器设计法 实验八线性方程组求解及函数求极值

实验一 MATLAB环境的熟悉与基本运算(一) 一、实验目的 1.熟悉MATLAB开发环境 2.掌握矩阵、变量、表达式的各种基本运算 二、实验基本原理 1.熟悉MATLAB环境: MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。 2.掌握MA TLAB常用命令 表1 MA TLAB常用命令 3.MATLAB变量与运算符 3.1变量命名规则 3.2 MATLAB的各种常用运算符 表3 MATLAB关系运算符 表4 MATLAB逻辑运算符

| Or 逻辑或 ~ Not 逻辑非 Xor 逻辑异或 符号功能说明示例符号功能说明示例 :1:1:4;1:2:11 . ;分隔行.. ,分隔列… ()% 注释 [] 构成向量、矩阵!调用操作系统命令 {} 构成单元数组= 用于赋值 4.MATLAB的一维、二维数组的寻访 表6 子数组访问与赋值常用的相关指令格式 三、主要仪器设备及耗材 计算机 四.实验程序及结果 1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符) 2、启动MATLAB,将该文件夹添加到MATLAB路径管理器中。 3、学习使用help命令。

汽车模型制作实验报告作业

实验汽车模型制作 说明: 该实验是课程设计性质的实验课。 一、实验目的 1.学习汽车模型制作的程序与方法。 2.认识汽车油泥模型制作常规用的材料与工具。 3.熟悉油泥的加工特性与工具的使用。 4.掌握根据视图确定汽车油泥模型制作的工序。 5.掌握汽车油泥模型制作的表面处理方法。 6.通过汽车油泥模型制作环节的学习学会从正确的角度认识和分析汽车形 态,逐步建立对汽车形态的记忆方法。 二、实验内容 制作汽车油泥模型。 三、主要知识点 1.汽车油泥模型制作的程序与方法。 2.油泥的工艺特性与加工方法。 3.油泥制作工具的使用。 4.汽车油泥模型表面处理。 5.汽车车身的曲线、曲面连接的过渡与关系。 四、制作过程 1.准备材料,在做油泥模 型前,要先选好工具,油泥材 料,木板型芯,泡沫,以及找 好自己的油泥模型台。 2.根据老师的介绍,熟悉每 个工具的用法,金属箱子里装 着17个铁片,他们的用法是让 油泥模型的表面更加的细腻, 另外的刮刀,他们的用法是进 行第一道的初刮,和不很精确地修改,油泥模型台是给油泥模型提供一个平整

的台面,还有提供一些修改参数,木板是支撑油泥模型的地方,泡沫是给油泥提供一个载体,让油泥附在上面,减少重量,省材料。 3.准备图纸,至 少需要顶面、侧面、 正面和后面四个正投 影视图。更具老师的 要求,我准备的是自 己设计的汽车的四个 面的图纸。 4.由于用的是以前的油泥,所 以我们要将油泥融化,油泥融化的 温度一般在58度,所以提前把有你 放进烤箱里,等一段时间,油泥软 化后方可用。 5.模型初步的制作,制作内 胚,用刀把泡沫切成自己想要的 形状,避免一些比较锋利的形状, 内心也不要太小,基本上保证要 小于车体的外形约3cm(预留上泥 的厚度),然后用双面胶把泡沫沾 到木板上固定好。 6.涂油泥,在烤箱里取出油 泥,用力往模型上推,先薄薄的推一次,然后按照面的关系在用力推,这样可以油泥里的空气挤出来,压的比较紧,有利于后面的刮的程序。以及确定油泥模型的强度 7.做模板,模版的尺寸要比较 的精确,这样做出的模型也比较的 精确,模板大型主要有一个中轴线

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

四旋翼飞行器仿真-实验报告

动态系统建模仿真实验报告(2) 四旋翼飞行器仿真 姓名: 学号: 指导教师: 院系: 2014.12.28

1实验容 基于Simulink建立四旋翼飞行器的悬停控制回路,实现飞行器的悬停控制; 建立GUI界面,能够输入参数并绘制运动轨迹; 基于VR Toolbox建立3D动画场景,能够模拟飞行器的运动轨迹。 2实验目的 通过在 Matlab 环境中对四旋翼飞行器进行系统建模,使掌握以下容: 四旋翼飞行器的建模和控制方法 在Matlab下快速建立虚拟可视化环境的方法。 3实验器材 硬件:PC机。 工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 4.1四旋翼飞行器 四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。四个旋翼位于一个几何对称的十字支架前,后,左,右四端,如图 1 所示。旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。 图1四旋翼飞行器旋转方向示意图

在图 1 中, 前端旋翼 1 和后端旋翼 3 逆时针旋转, 而左端旋翼 2 和右端的旋翼 4 顺时针旋转, 以平衡旋翼旋转所产生的反扭转矩。 由此可知, 悬停时, 四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。 4.2建模分析 四旋翼飞行器受力分析,如图 2 所示 图2四旋翼飞行器受力分析示意图 旋翼机体所受外力和力矩为: 重力mg , 机体受到重力沿w z -方向; 四个旋翼旋转所产生的升力i F (i= 1 , 2 , 3 , 4),旋翼升力沿b z 方向; 旋翼旋转会产生扭转力矩i M (i= 1 , 2 , 3 , 4)。i M 垂直于叶片的旋翼平面,与旋转矢量相反。 力模型为:2i F i F k ω= ,旋翼通过螺旋桨产生升力。F k 是电机转动力系数, 可取826.1110/N rpm -?,i ω为电机转速。旋翼旋转产生旋转力矩Mi(i=1,2,3,4),

动态系统建模仿真 实验报告

动态系统建模仿真实验报告 实验二,实验四 姓名 学号

实验二直流电动机-负载建模及仿真实验 1实验内容 在运动控制系统中电机带动负载转动,电机-负载成为系统的被控对象。本实验项目要求根据电机工作原理及动力学方程,建立模型并仿真。 2实验目的 掌握直流电动机-负载的模型的建立方法; 3实验器材 (1)硬件:PC机。 (2)工具软件:操作系统:Windows系列;软件工具:MATLAB及simulink。 4实验原理 在很多应用场合中,直流电动机的输出轴直接与负载轴相连,转动部件固定在负载轴上,即为常见的电机直接驱动负载形式。如果不考虑传动轴在转动过程中的弹性形变,即把传动轴的刚度看作无穷大,就可以在系统设计过程中,将执行电机和负载视为一个整体对象,这样被控对象的模型就可以用如图2.1所示的 框图来表示。其中 U表示控制电压;a U,a L,a R分别表示电机的电枢电压,电 r 枢电感和电枢电阻; J为电机的转动惯量,L J为负载的转动惯量,包括由电机 m 驱动的转动体、轴承内圈、转动轴、轴套、速度测量元件、角度测量元件以及被测试件折合到电机轴上的转动惯量等; D、L D分别表示电机和负载的粘性阻尼 m 系数; k为电机的电磁力矩系数;e k为电机的反电势系数;mθ为电机-负载的转 m 角, θ 为电机-负载的角速度。 m 在这一实验中,认为电机与负载的转角是相同的,并考虑了电机及负载转动中产生的粘滞阻尼力矩,所以其电压方程、力矩方程变为如下形式

?????+=+--=+=-s s J J D D M s I k s k s E s s I T s I Ra s E s Ua m l m L m l m m e l )()()()()()())()(()()(θθ (2.1) 由方程组(2.1)可以得到相应的结构框图如图1所示。 图1直流电动机-负载数学模型结构框图 5实验要求: (1)建立从a u 到m θ 的传递函数模型,求其频率特性,并与项目1中的电机频率特性进行对比。 (2)分别取(Dm+D L )1=0.1(Dm+D L )和(Dm+D L )2=0.01(Dm+D L ),编制MATLAB 或simulink 程序,比较阻尼系数不同时电机-负载模型的频率特性。 (3)分别取J L1=0.1J L 和J L 2=10J L ,编制MATLAB 或simulink 程序,比较电机-负载模型的频率特性。 实验所需具体参数如下表。

数学建模实验报告1

桂林电子科技大学2017-2018学年第1学期 数学建模 一、实验目的 1. 熟悉MATLAB 软件的用户环境; 2. 了解MATLAB 软件的一般命令; 3. 掌握MATLAB 向量、数组、矩阵操作与运算函数; 4. 掌握MATLAB 软件的基本绘图命令; 5. 掌握MATLAB 语言的几种循环、条件和开关选择结构及其编程规范。 二、实验内容 1. MATLAB 软件的矩阵输入和操作 2. 用MA TLAB 语言编写命令M 文件和函数M 文件 3. 直接使用MATLAB 软件进行作图练习; 三、实验任务 1. 有一个4× 5的矩阵,编程求出其元素最大值及其所在的位置。 Jm.m 文件代码: clear; a=input('请输入一个4*5矩阵'); max=a(1,1); maxi=0; maxj=0; for i=1:4 for j=1:5 if a(i,j)>max max=a(i,j); maxi=i; maxj=j; end end end fprintf('最大值为:%d 位置:o%d %d \n',max,maxi,maxj); 实验结果: 2. 有一函数f(x,y)=x 2+sin xy+2y,写一程序,输入自变量的值,输出函数值。 Jm_5.m 文件代码: function f=Jm_5(x,y) f=x.^2+sin(x*y)+2*y;

实验结果: 3.用surf,mesh绘制曲面z=2x2+y2。 Jm5.m代码: x=-3:0.1:3; y=1:0.1:5; [X,Y]=meshgrid(x,y); Z=2*X.^2+Y.^2; subplot(1,2,1);surf(X,Y,Z);title('surf(x,y)'); subplot(1,2,2);mesh(X,Y,Z);title('mesh(x,y)'); 实验结果: 4.在同一平面的两个窗口中分别画出心形线和马鞍面。要求: (1)在图形上加格栅、图例和标注 (2)定制坐标 (3)以不同的角度观察马鞍面 Jm7.m文件代码: ax1=subplot(1,2,1); t=linspace(0,2*pi,400);

word实验报告格式

word实验报告格式 篇一:实验报告模板——word格式 实验2 一元线性回归模型 一、实验内容:利用一元线性回归模型研究我国经济水平对消费的影响 1、实验目的:掌握一元线性回归方程的建立和基本的经济检验和统计检验 2、实验要求: (1)对原始指标变量数据作价格因子的剔除处理;(2)对回归模型做出经济上的解释;(3)独立完成实验建模和实验报告。 二、实验报告 ----中国1978-XX年人均消费与经济水平之间的关系 1、问题的提出 居民的消费在社会经济发展中具有重要的作用,合理适度的消费可以有利的促进经济的平稳健康的增长。要充分发挥消费对经济的拉动作用,关键问题是如何保证居民的消费水平。根据宏观经济学理论,一国的GDP扣除掉折旧和税收就是居民的可支配的收入了,而居民的收入主要用于两个方面:一是储蓄,二是消费。如果人均GDP增加,那么居民的可支配收入也会增加,这样居民用于消费的应该也会增加。本次实验通过运用中国1978-XX年人均消费与经济水平(用

人均GDP这个指标来表示)数据,建立模型研究人均消费和经济水平之间的关系。 西方消费经济学者们认为,收入是影响消费者消费的主要因素,消费是需求的函数。消费经济学有关收入与消费的关系即消费函数理论有:(1)凯恩斯的绝对收入理论。该理论认为消费主要取决于消费者的净收入,边际消费倾向小于平均消费倾向。并且进一步假定,人们的现期消费,取决于他们现期收入的绝对量。(2)杜森贝利的相对收入消费理论。该理论认为消费者会受自己过去的消费习惯以及周围消费水准来决定消费,从而消费是相对的决定的。这些理论都强调了收入对消费的影响。 除此之外,还有其他一些因素也会对消费行为产生影响。(1)利率。一般情况下,提高利率会刺激储蓄,从而减少消费。但在现实中利率对储蓄的影响要视其对储蓄的替代效应和 收入效应而定,具体问题具体分析。(2)价格指数。价格的变动可以使得实际收入发生变化,从而改变消费。(3)生活环境,生活理念。有些人受传统消费观念的影响,对现在流行的超前消费很不赞同,习惯于把钱存入银行,这样势必会影响一个地区的消费水平。(4)人口结构。不同年龄段的人的消费率不同,青少年和老年人的消费率一般较高。一

相关主题
文本预览
相关文档 最新文档