当前位置:文档之家› 涡轴发动机压气机流场动态压力测量与分析

涡轴发动机压气机流场动态压力测量与分析

涡轴发动机压气机流场动态压力测量与分析
涡轴发动机压气机流场动态压力测量与分析

轴流式压气机工作原理(伯努利方程)

进口、收缩器、导向叶片(导叶)、动叶片、转子、扩压器、出口 增压原理:伯努利方程,气体从进口流入压气机,经收缩器时流速得到初步提高,进口导向叶片使气流改为轴向,同时还起扩压管的作用,使压力有所提高。转子在外力作用下作高速转动,固装在转子上的动叶片推动气流,使气流获得很高的流速。高速气流进入导叶(静叶),气流动能降低而压力升高,相邻导叶叶片间的通道相当于一个扩压管。气体流经每一级连续进行类似的过程,使气体压力逐渐升高 伯努利方程:理想正压流体在有势体积力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家 D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体,方程为: 式中p、ρ、v分别为流体的压强、密度和线性速度;h为铅垂高度;g为重力加速度;c为常量。 上式各项分别表示单位体积流体的压力能p、重力势能ρgh和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压、动压和总压。显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。

压气机性能实验报告

天津市高等教育自学考试 模具设计与制造专业 热工基础与应用 综合实验报告 (一)压气机性能实验 主考院校: 专业名称: 专业代码: 学生姓名: 准考证号:

一、活塞式压气机概述 1.活塞式压气机结构及工作原理 (1)活塞式压气机结构 压气机在现代工业以及现代人的生活中被越来越多的广泛应用,不论是汽车上的涡轮增压系统还是航空航天发动机中的涡喷应用,随着技术的不断革新,其结构、性能也在不断的优化、提高。本实验旨在通过对简单形式的压气机,进行结构、工作原理以及性能的实验,以达到验证并深刻理解、掌握热工学课程中所学得的知识并应用于实际生产实践中。 本次实验所用压气机为“活塞式压气机”,现就其结构及特点作简要说明。 活塞式压气机是通用的机械设备之一,是一种将机械能转化为气体势能的机械。 图1.1 活塞式压气机机构简图 图1-2 三维仿真示意图

(2)活塞式压气机工作原理: 电机通过皮带带动曲柄转动,由连杆推动活塞作往复移动,压缩汽缸内的空气达到需要的压力。曲柄旋转一周,活塞往复移动一次,压气机的工作过程分为吸气、压缩、排气三步。 具体为:在气缸内作往复运动的活塞向右移动时,气缸内活塞左腔的压力低于大气压力pa ,吸气阀开启,外界空气吸入缸内,这个过程称为压缩过程。当缸内压力高于输出空气管道内压力p后,排气阀打开。压缩空气送至输气管内,这个过程称为排气过程。 这种结构的压缩机在排气过程结束时总有剩余容积存在。在下一次吸气时,剩余容积内的压缩空气会膨胀,从而减少了吸人的空气量,降低了效率,增加了压缩功。且由于剩余容积的存在,当压缩比增大时,温度急剧升高。特别的是,单级活塞式空压机,常用于需要 0 . 3 — 0 . 7MPa 压力范围的系统。压力超过 0 . 6MPa ,各项性能指标将急剧下降。故当输出压力较高时,应采取分级压缩。分级压缩可降低排气温度,节省压缩功,提高容积效率,增加压缩气体排气量。 活塞式空压机有多种结构形式。按气缸的配置方式分有立式、卧式、角度式、对称平衡式和对置式几种。按压缩级数可分为单级式、双级式和多级式三种。按设置方式可分为移动式和固定式两种。按控制方式可分为卸荷式和压力开关式两种。其中,卸荷式控制方式是指当贮气罐内的压力达到调定值时,空压机不停止运转而通过打开安全阀进行不压缩运转。这种空转状态称为卸荷运转。而压力开关式控制方式是指当贮气罐内的压力达到调定值时,空压机自动停止运转。 二、实验内容 1.实验目的 (1)压气机的压缩指数和容积效率等都是衡量其性能先进与否的重要参数。本实验是利用微机对压气机的有关性能参数进行实时动态采集,经计算处理、得到展开的和封闭的示功图。从而获得压气机的平均压缩指数、容积效率、指示功、指示功率等性能参数。 (2)掌握指示功、压缩指数和容积效率的基本测试方法。 (3)对使用电脑采集、处理数据的全过程和方法有所了解。 2.实验装置及测量系统 本实验仪器装置主要由:压气机、电动机及测试系统所组成。 测试系统包括:压力传感器、动态应变仪、放大器、计算机及打印机, 压气机型号:Z—0.03/7 汽缸直径:D=50mm 活塞行程: L=20mm 连杆长度:H=70mm,转速:n=1400转/分

压气机的压气过程

习题提示与答案 第八章 压气机的压气过程 8-1 设压气机进口空气的压力为0.1 MPa ,温度为27 ℃,压缩后空气的压力为0.5 MPa 。设压缩过程为:(1)绝热过程;(2)n =1.25的多变过程;(3)定温过程。试求比热容为定值时压气机压缩1 kg 空气所消耗的轴功及放出的热量。 提示:略。 答案:(1)(w s )c s =-176 kJ/kg ;(2)(w s )c n =-163 kJ/kg ,q c n =-48.94 kJ/kg ; (3)(w s )c T =-138.6 kJ/kg ,q c T =-138.6 kJ/kg 。 8-2 按上题所述条件,若压气机为活塞式压气机,其余隙比为0.05,试求三种压缩过程下压气机的容积效率。 提示:余隙比h s V V ,容积效率1])[(111 2??=n h s V p p V V η。 答案:=0.892,=0.869,=0.8。 Vs ηVn ηVT η 8-3 设活塞式压气机的余隙比为0.05,试求当压气机的压缩过程分别为绝热过程、n =1.25的多变过程、定温过程时,压气机的容积效率降低为零所对应的增压比。 提示:容积效率1])[(1112?? =n h s V p p V V η。 答案:( 12p p )s =70.98;(12p p )n =44.95;(12p p )T =21。 8-4 有一台两级压气机,其进口的空气压力为0.1 MPa ,温度为17 ℃,压气机产生的压缩空气的压力为2.5 MPa 。两级气缸中的压缩过程均为n =1.3多变过程,且两级中的增压比 相同。在两级气缸之间设置有中间冷却器,空气在其中冷却到17 ℃后送入高 压气缸。试求压气机压缩1 kg 空气所需要的轴功,以及中间冷却器和两级气 缸中所放出的热量。 两级压缩的示功图 提示:两级压缩的增压比相同,压缩过程多变指数相同,则两级压缩耗 功量相同;中间冷却器中空气经历的是定压冷却过程,过程放热量q=c p 0ΔT , 且充分冷却时,T 2′ =T 1;压缩过程的初始温度相同、增压比相同,则过程热 量也相同。 答案:(w s )c =-324.5kJ/kg ,q c =-62.26kJ/kg ,q =-131kJ/kg 。

轴流压气机设计流程

轴流压气机设计 压气机是航空发动机的核心部件,压气机内部流场存在很大的逆压梯度,有着高度的三维性、粘性及非线性和非定常性,而多级压气机还存在复杂的级间匹配,这些都使得压气机的设计难度很大,一直是发动机研制中的瓶颈技术。 一、压气机设计方法的发展 一个世纪以来,伴随着气动热力学和计算流体力学的发展!轴流压气机的设计系统在不断进步,带动着压气机设计水平的提高。 20世纪初采用螺桨理论设计叶片;20-30年代采用孤立叶型理论设计压气机;30年代中期开始,由于叶栅空气动力学的发展和大量平面叶栅试验的支持,研制了一系列性能较高的轴流压气机;50年代开始采用二维设计技术,用简单径向平衡方程计算子午流面参数,叶片由标准叶型进行设计;70年代建立了准三维设计体系,流线曲率通流计算和叶片流动分析是这一体系的基础,可控扩散叶型等先进叶型技术开始得到应用;90年代初以来,以三维粘性流场分析为基础的设计体系促进了压气机设计技术的快速发展。 风扇/轴流压气机的设计体系以流动的物理模型发展为线索,以计算能力的高速发展为推动力,大致经历了一维经验设计体系、二维半经验设计体系、准三维设计体系、三维设计体系四个阶段。并正在朝着压气机时均(准四维)和压气机非定常(四维)气动设计体系发展。 目前的压气机的设计体系大致可以分为四个阶段:初始设计、通流设计、二维叶型设计、三维叶型设计。 二、压气机设计体系 1.初始设计 这是一个建立压气机的基本轮廓的阶段,根据给定的流量、压比、效率、稳定裕度等参数,来确定压气机级数、级压比、效率、子午面流道、各排叶片数等,并可以进一步可估算重量。而且整体设计的决策还要统筹风险、技术水平、时间和花费等。 初始设计主要依据一维平均流线计算程序进行计算,在给定设计点流量、压比、转速及转子进口叶尖几何尺寸的条件下,可确定压气机级数、轴向长度、并且优化载荷轴向分布,得到设计点在平均半径处的速度三角形和各级平均气动参数。初始设计阶段包括压气机主要参数的确定以及同其它部件的协调,并且为S2流面计算提供初始流道几何尺寸。而这个程序主要依赖于经验以及以往积累的数据库。 初始设计它是方案设计中的基础阶段,不管计算流体动力学如何发展,该设计过程仍是压气机设计中不可缺少的一部分。正是这个部分是整个设计过程中最重要的部分,因为如果在这里发生了基本的错误,之后就无法通过优化或者其他改变来纠正这一情况,压气机基本结构设计出现错误会带来严重的后果。 2.通流设计 通流设计根据叶片扭向设计规律,采用S2流面流场计算方法,分析并确定各排叶片进出口速度三角形及各排叶片匹配关系。 S2流面气动计算一般采用流线曲率法,求解S2平均流面上的完全径向平衡方程。最初的压气机通流设计计算采用忽略流线坡度和流线曲率的“简化径向平衡方程”获取叶片设计需要的速度三角形,这种方法在低压比的压气机设计中起着基本的作用。后来发展了考虑流线坡度和流线曲率影响的“完全径向平衡方程”和S2流面理论,使压气机的设计计算结果更加准确,特别是针对跨音速流也促进了压气机性能的提高。不过,直到上世纪80年代,由于理论和数值计算方法的原因,通流设计求解方法都是在忽略了气流粘性的影响的简化方程下完成。随着压气机设计的实践的深入和计算方法的发展,上世纪80年代开始在压气机

压气机的理论压缩功

第9章压气机 一、教案设计 教学目标:使学生熟悉压气机热力过程,活塞式压气机工作原理,耗功量计算;余隙容积对压气机性能的影响;多级压缩与级间冷却;叶轮式压气机的工作原理。知识点:活塞式压气机工作原理,耗功量计算;余隙容积对压气机性能的影响;多级压缩与级间冷却;叶轮式压气机的工作原理。 重点:压气机耗功量的计算方法,提高压气机效率的方法和途径。 难点:多级压缩过程中各级增压比的确定,提高压气机效率的方法和途径。教学方式:讲授+多媒体演示+课堂讨论 师生互动设计:提问+启发+讨论 问:余隙容积的存在使压气机产气量下降,对实际耗功有没有影响?。 问:活塞式压气机为什么应采用隔热措施? 问:为什么若实施定温压缩产生高压气体,可不必分级压缩、中间冷却? 问:为什么活塞式压气机适用于高压比、小流量;叶轮式压气机适用于小压比、大流量? 学时分配:2学时 二、基本知识 第一节气体的压缩及压气机的耗功 一、气体压缩 1压气机:用来压缩气体的设备 2.。压气机的分类 1)压气机按其产生压缩气体的压力范围,习惯上常分为: ①通风机(pg<0.01MPa); ②鼓风机(0.01MPa0.3Mpa)。 2)按压缩原理和结构分压气机分为: 活塞式、叶轮式(离心式和轴流式)及引射式。

三、压气机的实际耗功(压气机的效率)21 '2'1 cs cs cs w h h w h h η-== -21 '2'1 cs cs cs w T T w T T η-= = -1.压气机的实际耗功 对于理想气体 1 2s p 1 p 2 s T 22.压气机的绝热效率 '2'1 cs w h h =-压气机的实际耗功 第二节 单机活塞式压气机 一、单机活塞式压气机工作过程

压气机性能试验报告_第11组

实验名称压气机性能实验 一、实验目的 1)掌握轴流压气机内流动、加功增压原理和特性; 2)熟悉压气机气动参数测量和计算方法。 二、实验内容 1、性能测试中的气动参数测量与速度三角形 一台压气机在设计完成后,组装到核心机之前一定要经过部件试验的验证。达到设计指标的才能进行组装。这部分试验内容称之为压气机的性能测试。其中最主要的性能参数集中反映在流量、压比和效率这几个参数上。为了能够绘制速度三角形,本次试验要求在设计和近失速这两个特征状态下,测量如下气动参数: 流量管静压、转子进出口外壁静压、静子出口外壁静压、转子进出口和静子出口平均半径处的总压、转子出口平均半径处的气流偏角以及其它必要的辅助参数。 2、额定折合转速下压气机特性曲线 压气机的性能用特性曲线来表示。对于高速压气机,通常的特性曲线图为流量-总压比图和流量-效率图。但对于低速压气机,其横坐标则常用流量 系数来表示,而压比可用压升或压升系数来表示。试验 时首先要在流量全开的情况下将转速开至待测转速。待 转速稳定后逐渐减小排气阀关度,通过减小排气面积来 提高反压,从而得到同一转速下不同流量点的特性。当 流量减小到一定值时就会发生失速或喘振,此时应退出 失速或喘振状态。将同一转速下的这些测点连接起来就 成为一条特性线。如需完整的特性图,还应返回大流量 状态,然后开至其它转速,重复这个过程。图2.1为某低速压气机额定转速下的特性曲线示意图。 0.200.250.300.350.400.450.500.550.600.650.70 ? p / . 5 ρ u m 2 c a /u m 0.200.250.300.350.400.450.500.550.600.650.70 1.010 1.012 1.014 1.016 π c a /u m 0.75 0.80 0.85 0.90 η 图 2.1 压气机特性曲线

离心式压气机的工作原理

航空发动机原理

压气机的工作原理 根据气流在压气机的流动方向,可将压气分为两大类,气流沿离开叶轮中心方向流动的叶做离心式压气机;气流沿与叶轮轴平行方向流动的叫做轴流式压气机。此外还有轴流式与离心式压气机混合而成的混合式压气机。目前使用最广泛的是轴流式压气机,以下将作重点介绍。 轴流式压气机的基本组成,由静子和转子组成。静子由多排叶片组成,这些叶片叫做整流叶片,由一排流叶片组成的圆环叫做整流环,各整流环固定在机匣上。转子由多排叶轮组成,每一排叶轮上固定了许多工作叶片,压气机叶轮最终能过叶轮轴与涡轮的工作叶轮轴相连,并由涡轮带动高速旋转。 轴流式压气机的叶轮和整流环是交错排列的。一个叶轮和后面相邻的整流环构成了压气机的一级。单级压气机增压比不高。一般约为1.2-1.8。为了得到更高的增压比,目前用在民航机上的涡扇发动机的轴流式压气机级数常为10-20级,压气机增压比高达30-40。 有些轴流式压气机的进口安装了一排固定的导流叶片,它们所组成的圆环叫做导流环。空气在压气机中的流动 从进气道流入压气机的空气,首先流过导流环,然后依次流过各级的叶轮和整流环,最后从末级整流环流出进入燃烧室。由于空气在压气机中的流动较为复杂,同时气流在不同半径叶片通道内的流动大体相仿,为了便于分析,我们假想用一条通过各级叶轮平均地半径处的直线绕叶轮旋转,来切割叶轮和整流环叶片,得到压气机——“基本级”,每级压气机可看成是很多基元级相叠加而成。

所以空气在基元级中的流动可看成压气机工作的缩影。把所得到的基元级切片在平面上展开,就得到——平面叶栅图形。 目前大多数航空燃气轮机都采用轴流式压气机,只有小功率、小流量的涡轴和涡浆发动机上才采用离心式压气机。在20世纪40年代末和50年代初、涡喷发 动机也曾采用离心式压气机。 离心式压气机由导流器, 叶轮, 扩压器, 导气管等部分组成,叶轮和扩压器是其中两个主要部件。导流器:安装在叶轮的进口处,其通道是收敛形的使气流以一定方向均匀进入工作叶轮, 以减小流动损失,空气在流过它时速度增大,而压力和温度下降。叶轮:是高速旋转的部件,叶轮上叶片间的通道是扩张形的,空气在流过它时, 对空气作功, 加速空气的流速, 同时提高空气的压力。扩压器:位于叶轮的出口处,其通道是扩张形的,空气在流过它时将动能转变为压力位能,速度下降, 压力和温度都上升。导气管:使气流变为轴向, 将空气引入燃烧室。 离心式压气机属于叶片机械,其工作原理是以高速气流与工作叶轮和固定叶片的相互动力作用为基础,与容积式压气机相比离心式压气机的优点是:消耗同样的功率时,比容积式压气机的效率高,并能得到较高的增压压力,一般能达到0.147~0.196MPa以上;结构简单紧凑,重量轻,金属消耗量少。目前离心式压气机在内燃机增压方面获得广泛的应用。离心式压气机的缺点是随着转速的降低,增压压力便急剧下降。空气经滤清器进入气道,进气道的断面沿气流方向逐渐缩小,以便提高气流的稳定性。进气道一定要能保证在流动损失为最小的情况下,把空气均匀地导向工作轮。工作轮装装花链轴上,尺寸小的可安装在光轴上。工作轮可由曲轴通过机械驱动,也可直接由涡轮机驱动。 空气沿进气道进入工作轮随工作轮一起旋转,受到离心力的作用沿着工作轮上叶片所构成的通道流动,使空气受到压缩,这时压力从P1增加到P2,气流速度从c1增加到c2,驱动工作轮的机械功转化为空气在工作轮中获得的动能,和以压力形式表现的势能。工作轮出口处的功能一般为气流总能量的一半,因此,

压气机性能实验 实验指导书

《压气机性能实验》实验指导书 发动机燃烧实验室 2006年3月

压气机性能实验 1 实验目的 1) 掌握轴流压气机内部流动、加功增压原理和特性; 2) 熟悉压气机气动参数测量和计算方法。 2 实验基本原理 在单级轴流压气机试验台上改变压气机工作状态,测量气流通过压气机级的流量以及压力和温度变化,然后根据测得参数计算得出单级轴流压气机典型特性曲线。通过对特性曲线的分析,掌握轴流压气机内部流动、加功增压原理。 3 实验内容 1) 压气机设计状态和近失速状态转子进出口和静子出口气流参数及转子进出口速度三角形; 2) 额定折合转速下的压气机特性曲线。 4 实验设备 实验装置: 单级压气机实验台。一排动叶和一排静叶组成的单级轴流压气机,压气机进口流场均匀,空气流量可微调。气流通道外径500mm ,内径375mm (轮毂比0.75),通道平直,可改变叶片安装角和动静叶排间轴向间隙。额定转速2400转/分。计算机控制数据采集处理,可测气流参数:空气流量,动叶进口、动静叶排间和静叶出口三个截面上外壁气流静压和气流总压、静压、速度及偏角沿叶高分布,级温升,流量测量精度1%,压升(或压比)测量精度1%,效率测量精度3%。气动参数和几何参数详见附图。 仪器设备: 压力信号引出管路,压力信号处理箱,压力测量探针,温度测量探针,数据采集板,计算机,大气压力表,温度计。 5 具体实验步骤 1. 了解实验台构造和测试仪器功能; 2. 读取实验时大气压力和大气温度; 3. 根据当时的大气温度0T ,算出换算转速2400转/分时的实际转速,启动后平缓加速到该转速;15 .28824000T n ?=转/分; 4. 改变压气机工作状态,记录进出口压力、温度参数,包括流量管静压00p (表压);转子进口、转子出口和静子出口截面外壁气流静压1s p (表压)和3s p (表压);转子进口总温1t T 和静子出口与转子进口总温差t T ?; 5. 计算得出压比和效率同流量的关系; 6. 记录设计状态压气机进出口流动参数,包括静压、总压,绘出速度三角形;

最新航空发动机构造复习题

一、填空题(请把正确答案写在试卷有下划线的空格处) 容易题目 1. 航空涡轮发动机的五大部件为进气装置;压气机;燃烧室;涡轮和排气装置;其中“三大核心”部件为:压气机;燃烧室和涡轮。 2. 推力是发动机所有部件上气体轴向力的代数和。 3. 轴流式压气机转子的组成盘;鼓(轴)和叶片。 4. 压气机转子叶片的组成:叶身和榫头。 5. 压气机叶片的榫头联结形式有销钉式榫头;燕尾式榫头;和枞树形榫头。 6. 压气机静子的固定形式T形(或者燕尾形)榫头;柱形榫头和焊接在中间环或者机匣上。 7. 燃气涡轮的组成:转子;静子和冷却系统。 8. 涡轮叶片的特点剖面厚;弯曲大;和内腔有冷却通道。 9. 涡轮不可拆卸式盘轴联接的方案有径向销钉联接方案;盘、轴焊接联接方案和盘轴整体方案 10. 燃烧室的基本类型有:分管式;环管式;环形式;回流式和折流式。 11. 火焰筒的组成:涡流器;筒体及传焰管(连焰管) 12. 加强的盘式转子是在盘式转子的基础上增加了定距环和将轴加粗。 13. 在压气机的某些截面放气的目的是防止压气机发生喘振 14. 燃气涡轮发动机压气机的作用是提高空气压力。 15. 燃气涡轮发动机燃烧室的作用是燃油与空气混合并进行燃烧,提高燃气的温度。 16. 燃气涡轮发动机加力燃烧的作用是加力时,燃油与空气混合并进行燃烧,提高喷管前燃气的温度 17. 燃气涡轮发动机喷管的作用是燃气在其中膨胀加速,高速喷出。 18. 外涵道是涡轮风扇发动机的附件。 19. 燃气涡轮发动机附件机匣的作用是安装和传动附件 20. 影响喷气发动机推力的因素有空气流量和流过发动机的气流的速度增量。 21. 燃气涡轮发动机中,组成燃气发生器的附件有压气机、涡轮和燃烧室。 22. 航空发动机压气机的功用是提高气体压力。 23. 航空发动机压气机可以分成轴流式、离心式和组合式等三种类型。 24. 轴流式压气机叶栅通道形状是扩散形。 25. 轴流式压气机级是由工作叶轮和整流环组成的。 26. 在轴流式压气机的工作叶轮内,气流相对速度减小,压力、密度增加。 27. 在轴流式压气机的整流环内,气流绝对速度减小,压力增加。 28. .多级轴流式压气机由前向后,叶片长度的变化规律是逐渐缩短。 29. 气流M数的定义是某点气流速度与该点音速的比值,称为该点的气流M数。 30. 在绝能条件下,要使亚音速气流加速,必须采用收敛形管道。 31. 在绝能条件下,要使超音速气流加速,必须采用扩散形管道。 32. 在绝能条件下,要使气流从亚音速加速到超速,必须采用先收敛后扩散的管道。 33. 在绝能条件下,要使亚音速气流减速,必须采用扩散形管道。 34. 压气机增压比的定义是压气机出口压力与进口压力的比值。 35. 压气机增压比的大小反映了气流在压气机内压力提高的程度。 36. 压气机由转子和静子等组成。 37. 压气机转子可分为鼓式、盘式和鼓盘式。 38. 压气机转子可分为鼓式、盘式和鼓盘式。 39. 压气机转子可分为鼓式、盘式和鼓盘式。 40.压气机的盘式转子可分为盘式和加强盘式。 41.压气机转子叶片上的凸台的作用是防止叶片振动。 42.压气机转子叶片通过燕尾形榫头与轮盘上的燕尾形榫槽连接在轮盘上。 43.多级轴流式压气机由前向后,转子叶片的长度的变化规律是逐渐缩短。 44.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘振。 45.压气机是安装放气带或者放气活门的作用是防止压气机喘振 46.采用双转子压气机的作用是防止压气机喘振。 47.压气机进口整流罩的功用是减小流动损失。 48.压气机进口整流罩做成双层的目的是通加温热空气 49.涡轮的功用是把高温、高压燃气的部分热能、压力能转变为旋转地机械功从而带动压气机和其他附件工作 50.涡轮叶片一般通过枞树形榫头与轮盘上的榫槽连接到轮盘上。 51.为了冷却涡轮叶片,一般把叶片做成空心的,通冷却空气。 52.涡轮叶片带冠的目的是减小振动。 53.在两级涡轮中,一般第二级涡轮叶片更需要带冠。 54.空气—空气热交换器的功用是利用外涵道的空气给冷却涡轮的空气降温 55.航空发动机的燃烧室可以分为分管形、环管形和环形。 56.航空发动机的燃烧室可以分为分管形、环管形和环形。 57.航空发动机的燃烧室可以分为分管形、环管形和环形。 12.鼓式转子的优点是抗弯刚性好,结构简单。 三选一 1.加力燃烧室前的气流参数不变,那么,发动机的推力是: A 。 A.增大; B.减小; C.不变 2.直通管气体力恒指 A 方向 A.收敛; B.扩散; C.直径 3.卸荷使发动机推力 B 。 A.增大; B. 不变; C. 减小 4.涡桨发动机承受的总扭矩为 B 。 A.零; B.不为零; C.与螺旋桨扭矩无关 5.发动机转子所受的陀螺力矩是作用在 A 。 A.静子上; B.转子上; C.飞机机体上 6.在恰当半径处 C 。 A.盘的变形大于鼓的变形; B.盘的变形小于鼓的变形; C. 盘的变形等于.鼓的变形 7.涡喷发动机防冰部位 A 。 A.进口导流叶片; B.压气机转子叶片; C.涡轮静子叶片 8.涡轮叶片榫头和榫槽之间的配合是 B 。 A.过渡配合; B.间隙配合; C.过盈配合 9.首当其冲地承受燃烧室排出的高温燃气的部件是A 。 A.涡轮一级导向器; B. 涡轮二级导向器; C. 涡轮三级导向器 10.加力燃烧室的功用是可以 C 。 A.节能; B.减小推力; C.增大推力 四选一 1.燃气涡轮发动机的核心机包括 C 。 A.压气机、燃烧室和加力燃室B.燃烧室、涡轮和加力燃室 C.压气机、燃烧室和涡轮D.燃烧室、加力燃室和喷管 答案:C。 2.下列发动机是涡轮喷气发动机的是 D 。 A.АЛ—31ФB.Д—30 C.WJ—6 D.WP—13 答案:D。 3.下列发动机属于涡轮风扇发动机的是_____A____。 A.АЛ—31ФB.WP—7 C.WJ—6 D.WP—13 答案:A。 8.发动机正常工作时,燃气涡轮发动机的涡轮是____ B.燃气推动____旋转的。 9.气流在轴流式压气机基元级工作叶轮内流动,其____C_ C.相对速度降低,压力增加____。 10.气流在轴流式压气机基元级整流环内流动,其__C_______。A.相对速度增加,压力下降B.绝对速度增加,压力增加C.相对速度降低,压力增加D.绝对速度下降,压力增加答案:C。 11.气流流过轴流式压气机,其_____C____。 A.压力下降,温度增加B.压力下降,温度下降 精品文档

第三章 轴流压气机工作原理

第三章 轴流压气机的工作原理 压气机是燃气涡轮发动机的重要部件之一,它的作用是给燃烧室提供经过压缩的高压、 高温气体。根据压气机的结构和气流流动特点,可以把它分为两种主要型式:轴流式压气机 和离心式压气机。本章论述轴流式压气机的基本工作原理,重点介绍压气机基元级和压气机 一级的流动特性及工作原理。 第一节 轴流压气机的增压比和效率 轴流式压气机由两大部分组成,与压气机旋转轴相联接的轮盘和叶片构成压气机的转 子,外部不转动的机匣和与机匣相联接的叶片构成压气机的静子。转子上的叶片称为动叶,静子上的叶片称为静叶。每一排动叶(包括动叶安装盘)和紧随其后的一排静叶(包括机匣)构成轴流式压气机的一级。图3-1为一台10级轴流压气机,在第一级动叶前设有进口导流 叶片(静叶)。 图3-1 多级轴流压气机 压气机的增压比定义为 ***=1p p k k π (3-1) *k p :压气机出口截面的总压;*1p :压气机进口截面的总压;*号表示用滞止参数(总参数)来定义。 依据工程热力学有关热机热力循环的理论,对于燃气涡轮发动机来讲,在一定范围内, 压气机出口的压力愈高,则燃气涡轮发动机的循环热效率也就愈高。近六十年来,压气机的 总增压比有了很大的提高,从早期的总增压比3.5左右,提高到目前的总增压比40以上。 图3-2 压气机的总增压比发展历程

压气机的绝热效率定义为 ** *=k adk k L L η (3-2) 效率公式定义的物理意义是将气体从*1p 压缩到*2p ,理想的、无摩擦的绝热等熵过程 所需要的机械功* adk L 与实际的、有摩擦的、绝热熵增过程所需要的机械功k L * 之比。 p 1*p k *1k ad k L *k L *ad k s h * 图3-3 压气机热力过程焓熵图 由热焓形式能量方程(2-5)式、绝热条件、等熵过程的气动关系式)1(1 1)(k k adk adk p p T T -****=和R k k c p 1 -=可以得到 )1(1)(111--=-=-****k k k adk p adk RT k k T T c L π (3-3) )1(1)(1 11--=-=******T T RT k k T T c L k k p k (3-4) 将(3-3)和(3-4)式代入到(3-2)式,则得到 11 11--=**-**T T k k k k k πη (3-5) 效率公式(3-5)式可以用来计算多级或单级压气机的绝热效率,也可以用来计算单排 转子的绝热效率,只要*k p 和*k T 取相应出口截面处值即可。压气机静子不对气体作功,静子 的性能不能用效率公式(3-5)式衡量,静子的气动品质用总压恢复系数*23σ反映,*23σ= p *静子出口/ p * 静子进口 。 压气机的效率高,说明压缩过程中的流阻损失小,实际过程接近理想过程。或者说, 压气机效率愈高,达到相同增压比时,所需要外界输入的机械功愈少。目前,单级轴流压气 机的绝热效率可以达到90%以上,高增压比的多级轴流压气机的绝热效率也可以达到85% 以上。

轴流式压缩机

一、轴流式压缩机简介 轴流式压缩机是属于一种大型的空气压缩机它是由3大部分组成,一是以转轴为主体的可以旋转的部分简称转子,二是以机壳和装在机壳上的静止部件为主体的简称定子(静子),三是壳体、密封体、轴承箱、调节机构、联轴器、底座和控制保护等组成。 轴流压缩机主要是由机壳、叶片承缸、调节缸、转子、进口圈扩压器、轴承箱、油封、密封、轴承、平衡管道、伺服马达、底座等组成。 轴流式压缩机的静叶可调机构和带动该机构的中间气缸,机壳是标准化的同一种型号不同级数的机壳,进排气缸是一样的,不同级数机身长度的改变组合木模来实现,当级数不用时,除轴向长度不同外,其它所有结构都一样。主轴都是为镍铬合金钢,叶片材料为铬不锈钢,静叶内缸结构尺寸、轴封、密封、联轴器级轴流式压缩机的附属设备、润滑油系统、控制系统、保护系统都是非常智能型的。前6级的反动为百分之70,以后几级的反动向为百分之100。 压缩机底座由钢板焊接而成,压缩机本体重量通过下壳体的支腿,支撑在底座的4个支柱上,下机壳与底座上的支座间有定位及导向结构,整个轴流式压缩机的重量支撑在4个支柱上,其低压侧的2个支柱与机壳支腿的上下面做成球面的,支柱与支腿之间的间隙因此允许机器低压侧在各个方向上摆动以适应受热膨胀。定子的死点在高压侧,所以高压侧的支柱不允许机器的高压侧轴向移动,只允许在垂直于轴的横向移动。为了保持轴孔的水平高度不变,高压侧的2个支柱为特殊材料做成,不会因受热而伸长。

当我们启动轴流式压缩机后,空气从压缩机过滤器中进入,同时产生的噪声会沿着进气口传出,然后经过整流栅使吸入的气流稳定,为隔离压缩机对吸气管道的机械震动、降低噪音,同时补偿压缩机的热膨胀位移,也利于压缩机检修时设备对中调整,在压缩机与吸入气管道的连接处配置了柔性补偿器。采用柔性合成胶材料,其耐温以产生逆流时的风温,经过进气节流阀来控制压缩机启动带来的阻力,当压缩机运行稳定后,压力值上升到指定时。进气调节阀开始关闭,放空阀动作卸掉内部多余的气压。 二、轴流压缩机的基本工作原理 图1-5为轴流压缩机的构造示意图。在压缩机主轴上安装有多级动叶片,整个通道由收敛器、进口导流叶片、各级工作叶片(动叶片)和导流叶片、扩压器等组成。气体由进口法兰流经收敛器10,使进人进日导流叶片1的气流均匀,并得到初步的加速。气流流经进口导叶叶片间的流道,使气流整理成轴向流动,并使气体压力有少许提高。转子8由原动机拖动作高速旋转,由工作叶片2将气流推动,使之大大加速,这是气体接受外界供给的机械能转变为气体动能的过程。高速气流流经导流叶片3构成的流道(相当于扩压管),在其中 降低流速而使气体压缩,这是靠减少气流动能来使气体压缩的升压过程。一列工作叶片(动叶)与一列导流叶片(静叶)构成一个工作级。气体连续流经压缩机的各级,逐级压缩升压。最后经整流装置4将气流整理成轴向,流经扩压器7,在扩压器中气流速度降低,压力升高,最后汇入蜗壳经出口法兰排出压缩机。 轴流压缩机每级的增压比不大,约为1.15~1.25,若要获得较高压力,需要较多的级。例如压比为4的空气压缩机,一般需要十几级。 三、轴流式压缩机的技术特点 1、一是轴流压缩机气体动力学设计采用最先进的三元流理论和优化设计方法;采用效率高、压头大的新型叶栅,成功进行了各种反动度叶型组合设计。在同样参

西北工业大学航空发动机结构分析课后答案第3章压气机

第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 压气机类型优点缺点 轴流式压气机增压比高、效率高、单位面积空气质量 流量大、迎风面积小等。结构复杂,零件数多,重量大。成本高,维修不方便。 单级增压比低。 离心式压气机结构简单、零件数量少,成本低。 尺寸小、转子强度好,重量轻。 良好的工作可靠性。 稳定工作范围宽,维修方便。 单级增压比高迎风面积大。效率低。 3.在盘鼓式转子中恰当半径是什么?在什么情况下是盘加强鼓? 恰当半径:在盘鼓式转子中,随着圆周速度的增大,鼓筒和轮盘都会发生形变,这里有三种情况:一是在小半径处,轮盘的自由变形大于鼓筒的自由变形;二是在大半径处,轮盘的自由变形小于鼓筒的自由变形;三是在中间某个半径处,两者的自由变形相等。对于第三种情况,联成一体后,相互没有约束,即没有力的作用,这个半径称为恰当半径。 在第二种情况下,实际变形处于两者自由变形之间,对于鼓筒,自由变形变小,轮盘则相反。这种情况是盘加强鼓。 5.转子级间联接方法有哪些? 转子级间联接方法有用拉杆联接、短螺栓连接和长轴螺栓连接等几种。 7.如何区分盘鼓式转子和加强的盘式转子? 区分方法在于辨别转子的传扭方式。鼓盘式转子靠鼓筒传扭,而加强的盘式转子主要靠轴来传扭。 9.风扇叶片叶身凸台的作用是什么? 风扇叶片叶身凸台的作用:在叶片较长的情况下,为了避免发生危险的共振或颤震,叶身中部常常带一个减振凸台。 11.压气机机匣的功能是什么? 压气机机匣是发动机的主要承力壳体之一,又是气流通道的外壁。工作时,机匣承受静子的重力、惯性力,内外空气压差,整流器上的扭矩,轴向力,相邻组合件传来的弯矩、扭

航空发动机原理与构造知识点

航空发动机原理与构造知识点 1.热力系 2.热力学状态参数 3.热力学温标表示方法 4.滞止参数在流动中的变化规律 5.连续方程、伯努利方程 6.激波 7.燃气涡轮发动机分类及应用 8.燃气涡轮喷气发动机即使热机也是推进器 9.涡喷发动机结构、组成部件及工作原理 10.涡扇发动机结构、组成部件及工作原理 11.涡桨发动机结构、组成部件及工作原理 12.涡轴发动机结构、组成部件及工作原理 13.EPR、EGT、涡轮前燃气总温含义 14.喷气发动机热力循环(理想循环、实际循环) 15.最佳增压比、最经济增压比 16.热效率、推进效率、总效率 17.喷气发动机推力指标 18.发动机中各部件推力方向 19.喷气发动机经济指标 20.涡扇发动机中N1、涡扇发动机涵道比的定义 21.涡扇发动机的优缺点及质量附加原理 22.发动机的工作原理(涡喷、涡扇、涡轴和涡桨) 23.发动机各主要部件功用和原理,各部件热力过程和热力循环 24.进气道的分类及功用 25.总压恢复系数和冲压比的定义 26.超音速进气道三种类型 27.超音速进气道工作原理(参数变化) 28.离心式压气机组成部件 29.离心式压气机增压原理 30.离心式压气机优缺点 31.轴流式压气机组成部件 32.轴流式压气机优缺点 33.压气机叶片做成扭转的原因 34.压气机基元级速度三角形及基元级增压原理 35.扭速 36.多级轴流式压气机特点 37.喘振现象原因及防喘措施(原因) 38.轴流式压气机转子结构形式、优缺点 39.鼓盘式转子级间连接形式 40.叶片榫头类型、优缺点

41.减振凸台的作用以及优缺点 42.压气机级的流动损失 43.多级轴流压气机流程形式,机匣结构形式 44.压气机喘振现象、根本原因、机理过程 45.压气机防喘措施、防喘措施原理 46.燃烧室的功用和基本要求 47.余气系数、油气比、容热强度的定义 48.燃烧室出口温度分布要求 49.燃烧室分类及优缺点 50.环形燃烧室的分类及区别 51.燃烧室稳定燃烧的条件和如何实现 52.燃烧室分股进气作用 53.燃烧室的组成基本构件及功用 54.旋流器功用 55.涡轮的功用和特点(与压气机比较) 56.涡轮叶片的分类和结构 57.一级涡轮为何可以带动更多级压气机 58.提高涡轮前温度措施 59.带冠叶片优缺点 60.间歇控制定义、发动机在起动巡航、停车时间隙变化情况 61.如何实现涡轮主动间隙控制 62.涡轮叶片冷却方式 63.喷管功用 64.亚音速喷管工作原理(参数变化) 65.亚音速喷管三种工作状态(亚临界、临界和超临界)的判别 66.超音速喷管形状 67.发动机噪声源及解决措施 68.发动机的基本工作状态 69.发动机特性(定义、表述) 70.涡喷发动机稳态工作条件(4个)举例说明如何保持稳态工作 71.稳态下涡轮前温度随转速变化规律 72.剩余功率的定义 73.发动机加速的条件 74.联轴器的分类及作用 75.封严装置的作用、基本类型 76.双转子、三转子支承方案 77.中介支点、止推支点作用 78.封严件作用和主要类型 79.燃油系统功用和主要组件功用 80.燃油泵分类和特点 81.燃油喷嘴分类和特点 82.发动机控制系统分类 83.滑油系统功用、主要部件及分类,滑油性能指标 84.起动过程的定义

航空发动机压气机转子叶片强度计算及气流场模拟

航空发动机压气机转子叶片强度计算及气流场模拟

摘要 压气机是为航空发动机提供需要压缩空气的关键部分,由转子和静子等组成,其中转子叶片是完成该功能的核心零件,在能量转换方面起着至关重要的作用。叶片工作的环境比较恶劣,除了承受高转速下的气动力、离心力和高振动负荷外,还要承受热应力,所以在叶片设计之中,首先遇到的问题是叶片结构的强度问题,转子叶片强度的高低直接影响发动机的运行可靠性,叶片强度不足,可能会直接导致叶片的疲劳寿命不足,因此在强度设计中必须尽量增大强度,以提高叶片疲劳寿命和可靠性。 由进气道、转子、静子等组成的离心式压气机内部流动通道是非常复杂的,由于压气机是发动机的主要增压设备,其工作的好坏对发动机的性能有很大的影响。随着现在的计算机和数字计算方法的大力发展,三维计算流体模拟软件越来越多的被运用到旋转机械的内部流场进行数值分析。本文利用三维流体模拟软件ANSYS系列软件对压气机内部的气体流动性能进行模拟,得到一些特征截面的压力和速度分布情况。 关键字:转子叶片;强度计算;Fluent;轴流式压气机

Abstract The compressor is to provide compressed air for the needs of key parts of aero engine, the rotor and the stator, etc., wherein the rotor blades are core components to complete the function, plays a crucial role in the transformation of energy. The blade working environment is relatively poor, in addition to withstand high speed aerodynamics, centrifugal force and vibration in high load, to withstand greater thermal stress, so in the blade design, the first problem is the strength of the blade structure, the rotor blade strength directly affect the reliability of the engine, blade lack of strength, may directly lead to the fatigue life of the blade is insufficient, so the strength design must try to increase the strength, to improve the blade fatigue life and reliability. The internal flow passage of centrifugal compressor inlet, rotor and stator which is very complex, is mainly due to the high pressure equipment of the engine, has great impact on the performance of the quality of its work on the engine. With the development of computer and digital calculation method, 3D computational fluid simulation software has been applied to numerical analysis of internal flow field of rotating machines. In this paper, the fluid flow characteristics in the compressor are simulated by using a series of ANSYS software, and the pressure and velocity distributions of some characteristic sections are obtained. Keywords: rotor blade; strength calculation; Fluent; axial flow compressor

航空发动机原理

2简单叙述燃气涡轮喷气发动机的组成以及工作原理:燃气涡轮发动机由进气道、压气机、燃烧室、涡轮、尾喷管组成。工作原理:以空气为工作介质。进气道将所需的外界空气以最小的流动损失顺利地引入发动机,压气机通过高速旋转的叶片对空气做功压缩空气,提高空气的压力,高压空气在燃烧室内和燃油混合,燃烧,将化学能转变为热能,形成高温高压的燃气,高温高压的燃气首先在涡轮内膨胀,将燃气的部分焓转变为机械能,推动涡轮旋转,去带动压气机然后燃气在喷管内继续膨胀,加速燃气,提高燃气速度,使燃气以较高的速度喷出,产生推力。 3燃气涡轮发动机分为哪几种?它们在结构以及工作原理上有什么明显区别 燃气涡轮发动机分为涡喷、涡扇、涡桨、涡轴四种。 涡轮螺旋桨发动机由燃气轮机和螺旋桨组成,他们之间还安排了一个减速器。工作原理:空气通过排气管进入压气机;压气机以高速旋转的叶片对空气做功压缩空气,提高空气压力;高压空气在燃烧室内和燃油混合,燃烧,将化学能转变为热能,形成高温高压燃气;高温高压燃气在涡轮内膨胀,推动涡轮旋转输出功去带动压气机和螺旋桨,大量空气流过旋转的螺旋桨,其速度有一定的增加,使螺旋桨产生相当大的拉力;气体流过发动机,产生反作用力。 如果燃气发生器后的燃气可用能全部用于驱动动力涡轮而不产生推力,则燃气涡轮发动机成为涡轮轴发动机,动力涡轮轴上的功率可以用来带动直升机的旋翼。 涡轮风扇发动机是由进气道、风扇、低压压气机、高压压气机、燃烧室、高压涡轮、低压涡轮和喷管组成。 4什么是EGT ,为什么它是一个非常重要的监控参数:EGT 是发动机排气温度。 原因:1、 EGT 的高低反映了发动机中最重要、最关键的参数涡轮前总温 的高低,EGT 高,则 就 高:EGT 超限,则 超限。2、EGT 的变化反映了发动机性能的变化;3、EGT 的变化反 应发动机的故障。 8进气道的功用以及分类:功用:(1)在各种状态下, 将足够量的空气, 以最小的流动损失, 顺利地引入压气机并在压气机进口形成均匀的流场以避免压气机叶片的振动和压气机失速;(2)当压气机进口处气流马赫数小于飞行马赫数时, 通过冲压压缩空气, 提高空气的压力。 分类:(1)亚音速进气道:主要用于民用航空发动机,而且为单状态飞机,大多采用扩张形、几何不可调的亚音速进气道。(2)超音速进气道:分为内压式、外压式和混合式三种 。 11. 离心式压气机由哪些部件组成,各部件是如何工作的? 答:离心式压气机由导流器, 叶轮, 扩压器, 导气管等部分组成,叶轮和扩压器是其中两个主要部件。导流器:安装在叶轮的进口处,其通道是收敛形的 使气流以一定方向均匀进入工作叶轮, 以减小流动损失,空气在流过它时速度增大,而压力和温度下降。叶轮:是高速旋转的部件,叶轮上叶片间的通道是扩张形的,空气在流过它时, 对空气作功, 加速空气的流速, 同时提高空气的压力。扩压器:位于叶轮的出口处,其通道是扩张形的,空气在流过它时将动能转变为压力位能, 速度下降, 压力和温度都上升 。导气管 :使气流变为轴向, 将空气引入燃烧室 。 12. 离心式压气机是如何实现增压的:叶轮中的扩散增压和离心增压,扩压器增压。气体增压主要靠离心增压: 气体流过叶轮,气体随叶轮作圆周运动,气体微团受惯性离心力作用,气体微团所在位置半径越大,圆周速度越大,气体微团所受离心力也越大,因此,叶轮外径处的压力远比内径处的压力高。 13. 离心式压气机的优缺点:离心式压气机的主要优点:单级增压比高:一级的增压比可达4:1-5:1, 甚至更高;同时离心式压气机稳定的工作范围宽;结构简单可靠;重量轻, 所需要的起动功率小。 *3T *3T *3T

相关主题
文本预览
相关文档 最新文档