当前位置:文档之家› 数学分析16多元函数的极限与连续总练习题

数学分析16多元函数的极限与连续总练习题

数学分析16多元函数的极限与连续总练习题
数学分析16多元函数的极限与连续总练习题

第十六章 多元函数的极限与连续

总练习题

1、设E ?R 2是有界闭集,d(E)为E 的直径. 证明:存在P 1,P 2∈E , 使得ρ(P 1,P 2)=d(E).

证:由d(E)=E

Q ,P sup ∈ρ(P ,Q)知,对εn =n 1, ? P n ,Q n ∈E ,使d(E)<ρ(P n ,Q n )+n

1.

{P n },{Q n }均为有界闭集E 中的点列,从而有收敛子列{Pn k },{Qn k }, 记Pn k →P 1, Qn k →P 2,k →∞. ∵ρ(Pn k ,Qn k )≤d(E)<ρ(Pn k ,Qn k )+k

n 1

, 令k →∞得ρ(P 1,P 2)≤d(E)≤ρ(P 1,P 2),即d(E)=ρ(P 1,P 2). 又∵E 为闭集,∴P 1,P 2∈E ,得证!

2、设f(x,y)=

x y 1

,r=22y x +,k>1,D 1={(x,y)|k

x ≤y ≤kx}, D 2={(x,y)|x>0,y>0}. 分别讨论i=1,2时极限i

D )y ,x (r lim ∈+∞

→f(x,y)是否存在,为什么?

解:1

D )y ,x (r lim ∈+∞→f(x,y)存在;2

D )y ,x (r lim ∈+∞

→f(x,y)不存在. 理由如下:

(1)当(x,y)∈D 1时,k

k 12

+|x|≤r=22y x +≤2k 1+|x|,

∴由r →+∞可得x →∞,又|f(x,y)|=|x y 1|≤2x

k

→0, x →∞, ∴1

D )y ,x (r lim ∈+∞→f(x,y)=1

D )y ,x (x lim ∈∞

→f(x,y)=0存在. (2)对y=x k

, 当x>0时,y>0,∴(x,x

k )∈D 2,且 当x →∞时,r=22y x +=22x k x +

→+∞,但f(x,y)=x y 1=k

1,

即极限2

D )y ,x (r lim ∈+∞→f(x,y)与k 的取值有关,∴2

D )y ,x (r lim ∈+∞

→f(x,y)不存在.

3、设0

y y lim →φ(y)=φ(y 0)=A, 0

x

x lim →ψ(x)= ψ(x 0)=0, 且在(x 0,y 0)附近有 |f(x,y)-φ(y)|≤ψ(x). 证明

)

y ,x ()y ,x (00lim

→f(x,y)=A.

证:∵0

y y lim →φ(y)=φ(y 0)=A, ∴?ε>0,?δ1>0,使得当|y-y 0|<δ1时,就有 |φ(y)-A|<2

ε

;∵0

x x lim →ψ(x)=ψ(x 0)=0, ∴对上述ε>0,?δ2>0,

使当|x-x 0|<δ2时,就有|ψ(x)|<2

ε

;又在(x 0,y 0)附近有|f(x,y)-φ(y)|≤ψ(x), ∴?δ=min{δ1,δ2},使|y-y 0|<δ, |x-x 0|<δ时,|f(x,y)-φ(y)|≤ψ(x)<2

ε, 从而有|f(x,y)- A|≤|f(x,y)-φ(y)|+|φ(y)-A|<2ε+2

ε=ε. ∴)

y ,x ()y ,x (00lim

→f(x,y)=A.

4、设f 在R 2上连续,α是任一实数,E={(x,y)|f(x,y)>α,(x,y)∈R 2}; F={(x,y)|f(x,y)≥α,(x,y)∈R 2},证明E 是开集,F 是闭集.

证:(1)对任一点(x 0,y 0)∈E ,f(x 0,y 0)-α>0. ∵f 在R 2上连续,由保号性知, 存在P 0(x 0,y 0)的某邻域U(P 0),使当(x,y)∈U(P 0)时,f(x,y)-α>0,即 (x,y)∈E, 从而U(P 0)?E, ∴E 为开集.

(2)设P 0(x 0,y 0)是F 的任一聚点,则存在F 的互异点列{P n },使 P n →P 0, n →∞,由f(P n )=f(x n ,y n )≥α, n=1,2,…,且f(x,y)在P 0连续知, f(P 0)=∞

→n lim f(P n )≥α,即P 0∈F ,∴F 为闭集.

5、设f 在有界开集E 上一致连续;证明: (1)可将f 连续延拓到E 的边界;(2)f 在E 上有界. 证:记?E 为E 的边界,ē=E ∪?E ,

若P ∈?E ,则对任一n ,U(P;n 1)∩E ≠?. 任取P n ∈U(P;n

1)∩E ,则 P n →P , n →∞,且P n ∈E(n=1,2,…). 由f 在E 上一致连续可知, ?ε>0, ?δ>0,当A,B ∈E 且ρ(A,B)< δ时,|f(A)-f(B)|< ε. 于是

对上述的δ>0,存在N, 当m,n>N 时,ρ(P m ,P n )<δ,从而|f(P m )-f(P n )|<ε. ∴{f(P n )}收敛,即∞

→n lim f(P n )存在.

若P n ,Q n ∈E (n=1,2,…)且∞

→n lim P n )=∞

→n lim Q n =P ,则存在N,使当n>N 时,

ρ(P n ,P)<2δ

且ρ(Q n ,P)<2

δ,从而当n>N 时,ρ(P n ,Q n )≤ρ(P n ,P)+ρ(Q n ,P)<δ, ∴|f(P n )-f(Q n )|<ε,∴∞

→n lim f(P n )=∞

→n lim f(Q n ).

∴对每个P ∈?E ,存在唯一的实数∞

→n lim f(P n )与之对应. 定义:

F(P)=?

??∈→∈?∈∞→E P )P (f P)P ,

E E(P P )P (f lim n n n n ,,则

F 为定义在ē上的函数. 显然F 是f 到?E 的一个延拓.

(1)设P 0∈ē,则P 0∈E 或P 0∈?E. 当P 0∈E 时,由E 为开集知, 存在U(P 0)?E ,于是当P ∈U(P 0)时,F(P)=f(P). ∵f 在P 0连续, 从而0

P P lim →F(P)=0

P P lim →f(P)=f(P 0)=F(P 0),∴F 在P 0连续.

当P 0∈?E 时,F(P 0)=∞

→n lim f(P n ),其中{P n }为E 中趋于P 0的点列,

对E 中任一趋于P 0的点列{Q n },有0

P P lim →F(Q n )=0

P P lim →f(Q n )=0

P P lim →f(P n )=F(P 0),

由归结原则知存在0

P P lim →F(P)=F(P 0). ∴F 在P 0连续. ∴F 在ē上连续.

(2)∵ē是有界闭集,且F 在ē上连续,从而F 在ē上有界, ∴F 在E 上有界,又在E 上有F=f ,∴f 在E 上有界.

6、设u=φ(x,y)与v=ψ(x,y)在xy 平面中的点集E 上一致连续; φ与ψ把点集E 映射为uv 平面中的点集D ,f(u,v)在D 上一致连续,

证明:复合函数f[φ(x,y),ψ(x,y)]在E 上一致连续.

证:设P(u 1,v 1), Q(u 2,v 2)为D 上任意两点,由f(u,v)在D 上一致连续知, ?ε>0, ?δ>0, 只要|u 1-u 2|<δ, |v 1-v 2|<δ, 就有|f(u 1,v 1)-f(u 2,v 2)|< ε. 又u=φ(x,y)与v=ψ(x,y)在xy 平面中的点集E 上一致连续;

∴上述δ>0, ?η>0, 使得当(x 1,y 1),(x 2,y 2)∈E 且|x 1-x 2|<η, |y 1-y 2|<η时, 就有 |φ(x 1,y 1)-φ(x 2,y 2)|<δ, |ψ(x 1,y 1)-ψ(x 2,y 2)|<δ, 从而有 |f(φ(x 1,y 1),ψ(x 1,y 1))-f(φ(x 2,y 2), ψ(x 2,y 2))|<ε, 即复合函数f[φ(x,y),ψ(x,y)]在E 上一致连续.

7、设f(t)在区间(a,b)内连续可导,函数F(x,y)=

y

-x f(y)

-f(x )(x ≠y), F(x,x)=f ’(x),定义在区域D=(a,b)×(a,b)内,证明:对任何c ∈(a,b)有

)

c ,c ()y ,x (lim

→F(x,y)=f ’(c).

证:∵f(t)在区间(a,b)内连续可导,∴当(x,y)∈D 且x ≠y 时, 在[x,y]或[y,x]上应用格拉朗日定理知:存在ξ∈[x,y]或[y,x],使得 F(x,y)=

y

-x f(y)

-f(x )=f ’(ξ). 又F(x,x)=f ’(x),可见对任意(x,y)∈D , 总存在ξ∈[x,y]或[y,x],使得F(x,y)=f ’(ξ).

∵(x,y)→(c,c)时,ξ→c ,且f ’(t)在c 处连续,∴)c ,c ()y ,x (lim →F(x,y)=f ’(c).

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

第二章极限习题及答案:函数的连续性

函数的连续性 分段函数的极限和连续性 例 设???????<<=<<=) 21( 1)1( 21 )10( )(x x x x x f (1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间. 分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续. 解:(1)1lim )(lim 1 1 ==- - →→x x f x x 11lim )(lim 1 1 ==++→→x x x f ∴1)(lim 1 =→x f x 函数)x f (在点1=x 处有极限. (2))(lim 2 1)1(1 x f f x →≠= 函数)x f (在点1=x 处不连续. (3)函数)x f (的连续区间是(0,1),(1,2). 说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0 x f x f x f x x x x x x →→→+ - =才存在. 函数的图象及连续性 例 已知函数2 4)(2 +-= x x x f , (1)求)x f (的定义域,并作出函数的图象;

(2)求)x f (的不连续点0x ; (3)对)x f (补充定义,使其是R 上的连续函数. 分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0 x f x x →,再让)(lim )(0 0x f x f x x →=即可. 解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22, 当2≠x 时,.22 4)(2 -=+-=x x x x f 其图象如下图. (2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 2 2 -=-=-→-→x x f x x 因此,将)x f (的表达式改写为 ?? ? ??-=--≠+-=)2(4)2(2 4 )(2x x x x x f 则函数)x f (在R 上是连续函数. 说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致. 利用函数图象判定方程是否存在实数根 例 利用连续函数的图象特征,判定方程01523 =+-x x 是否存在实数根.

第十三章 多元函数的极限与连续性习题(学生用)

班级:_______________ 学号:______________ 姓名:________________ 第十三章 多元函数的极限与连续性 §1. 平面点集 1.判别下列平面点集哪些是开集、闭集、有界集和区域,并分别指出它们的聚点: (1)(){}2 ,|E x y y x =<; (2)(){}2 2,|1E x y x y =+≠;(3)(){},|0E x y xy =≠; (4)(){},|0E x y xy ==;(5)(){},|02,222E x y y y x y =≤≤≤≤+;(6)()1,|sin ,0E x y y x x ?? ==>???? ; (7)(){}2 2,|10,01E x y x y y x =+==≤≤或; (8)(){},|,E x y x y =均为整数. 2.证明:平面点列{}n P 收敛的充要条件是:任给正数ε,存在正整数 N ,使得当n N >时,对一切正整数p ,都有(,)n n p P P ρε+<. (其中(,)n n p P P ρ+表,n n p P P +之间的距离)

§2. 多元函数的极限和连续性 1.求下列极限(包括非正常极限): (1) 2200lim x y x y x y →→++; (2) ()332200 sin lim x y x y x y →→++; (3) 2200 x y →→; (4) ()22 00 1 lim sin x y x y x y →→++; (5) ()2 2 2 2 lim ln x y x y x y →→+; (6) 00lim cos sin x y x y e e x y →→+-; (7) 3 2 2 4200 lim x y x y x y →→+; (8) ()02 sin lim x y xy x →→; (9) 10 ln y x y x e →→+ (10) 12 1 lim 2x y x y →→-; (11) 4400 1 lim x y xy x y →→++; (12) 2222001lim x y x y x y →→+++;

函数与极限测试题及答案(一)

函数与极限测试题(一) 一、 填空题 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+与2sin a 等价,则常数a =_____。 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量 2 11 sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e =+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????, 则()lim x f x →∞ 为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在

例:()()()11 ,,22 1 x x f x x g x x x x ?==+ =+ ++ 三、 求下列极限 1 、 lim x 2、()2 21212lim 1x x x x x -→?? ?+?? 四、 确定,a b 的值,使() 32 2ln 10 011ln 0 1ax x f x b x x x x x x x ?+<==??-+?>++?? 在(),-∞+∞内连续。 五、 指出函数()1 11x x x e e f x e e --= -的间断点及其类型。 六、 设1234,,,a a a a 为正常数,证明方程 31240123 a a a a x x x x +++=---有且仅有三个实根。 七、 设函数()(),f x g x 在[],a b 上连续,且满足()()()(),f a g a f b g b ≤≥,证明: 在[],a b 内至少存在一点ξ,使得()()f g ξξ=。 函数与极限测试题答案(一) 一、1、 11x x e -+; 2、 11, 2 2a b ++?? ???? ; 3、 4-; 4、0 ; 二、1—4、DCBD 三、1 、解:原式lim 3x ==;

大一高数第一章--函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

(完整版)函数极限与连续习题含答案,推荐文档

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、已知四个命题:(1)若在点连续,则在点必有极限 )(x f 0x )(x f 0x x →(2)若在点有极限,则在点必连续 )(x f 0x x →)(x f 0x (3)若在点无极限,则在点一定不连续 )(x f 0x x →)(x f 0x x =(4)若在点不连续,则在点一定无极限。 )(x f 0x x =)(x f 0x x →其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若,则下列说法正确的是( C ) a x f x x =→)(lim 0A 、在处有意义 B 、)(x f 0x x =a x f =)(0 C 、在处可以无意义 D 、可以只从一侧无限趋近于)(x f 0x x =x 0 x 3、下列命题错误的是( D ) A 、函数在点处连续的充要条件是在点左、右连续 0x 0x B 、函数在点处连续,则)(x f 0x )lim ()(lim 00x f x f x x x x →→=C 、初等函数在其定义区间上是连续的 D 、对于函数有)(x f )()(lim 00 x f x f x x =→4、已知,则的值是( C )x x f 1)(= x x f x x f x ?-?+→?)()(lim 0A 、 B 、 C 、 D 、21x x 21x -x -5、下列式子中,正确的是( B )A 、 B 、 C 、 D 、1lim 0=→x x x 1)1(21lim 21=--→x x x 111lim 1=---→x x x 0lim 0=→x x x 6、,则的值分别为( A )51lim 21=-++→x b ax x x b a 、A 、 B 、 C 、 D 、67和-67-和67--和6 7和7、已知则的值是( C ),2)3(,2)3(-='=f f 3)(32lim 3--→x x f x x A 、 B 、0 C 、8 D 、不存在4-8、( D ) =--→33lim a x a x a x

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

高等数学基础极限与连续

第二章 极限与连续 一、教学要求 1.了解极限概念,了解无穷小量的定义与基本性质,掌握求极限的方法. 2.了解函数连续性的概念,掌握函数连续性的性质及运算. 重点:极限的计算,函数连续性的性质及运算。 难点:极限、连续的概念。 二、课程内容导读 1. 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例1 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =21613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即

x x x 10)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即 222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+? 2. 知道一些与极限有关的概念 (1) 知道数列极限、函数极限、左右极限的概念,知道函数在某点极限存在的充分必要条件是该点左右极限都存在且相等; (2) 了解无穷小量的概念,了解无穷小量与无穷大量的关系,知道无穷小量的性质; (3) 了解函数在某点连续的概念,知道左连续和右连续的概念,了解“初等函数在定义区间内连续”的结论;会判断函数在某点的连续性,会求函数的间断点; 例2 填空、选择题 (1) 下列变量中,是无穷小量的为( ) A. )0(1ln +→x x B. )1(ln →x x C. )0(e 1 →-x x D. )2(422→--x x x 解 选项A 中:因为 +→0x 时, +∞→x 1,故 +∞→x 1ln ,x 1ln 不是无穷小量; 选项B 中:因为1→x 时,0ln →x ,故x ln 是无穷小量; 选项C 中:因为 +→0x 时,-∞→-x 1,故0e 1 →-x ;但是-→0x 时,x 1- +∞→,故+∞→-x 1 e ,因此x 1 e -当0→x 时不是无穷小量。 选项D 中:因为21422+=--x x x ,故当2→x 时,41422→--x x ,4 22--x x 不是无穷小量。 因此正确的选项是B 。 (2) 下列极限计算正确的是( )。 A.=→x x x 1sin lim 001sin lim lim 00=→→x x x x

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ② 要掌握常见的几种函数式变形求极限。 ③ 函数 f(x)在 x=x 0 处连续的充要条件是在 x=x 0 处左右连续。 ④ 计算函数极限的方法,若在 x=x 0 处连续,则 ⑤ 若函数在 [a,b] 上连续,则它在 [a,b] 上有最大值,最小值。 二、典型例题 例 1 .求下列极限 解:由 可知 x 2+mx+2 含有 x+2 这个因式, ∴ x=-2 是方程 x 2+mx+2=0 的根, ∴ m=3 代入求得 n=-1。 求 m,n 。 ① ④ ④ ③ ③ ② 解析:① 例 2.已知

的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处 函数是连续的, 从而 f(x)在点 x=-1 处不连续。 ∴ f(x) 在 (- ∞,-1),(- 1,+∞) 上连续, x=-1 为函数的不连续点。 , (a,b 为常数 ) 。 试讨论a,b 为何值时,f(x)在 x=0 处连续。 例 3 .讨论函数 例 4 .已知函数 , ∴ f(x)在 x=1 处连续。 解析: ∴ a=1, b=0 。 例 5 .求下列函数极限 ① ② 解析:① ②

要使 存在,只需 ∴ 2k=1 ,故 时, 存在。 例7.求函数 在 x=-1 处左右极限,并说明在 x=-1 处是否有极限? ,∴ f(x)在 x=-1处极限不存在。 三、训练题: 2. 的值是 3. 已知 ,则 = ,2a+b=0,求 a 与 b 的值。 ,求 a 的值。 5.已知 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0 例 6 .设 ,问常数k 为何值时,有 存在? 解析:∵ 4.已知 解析:由 1.已知

第十六章多元函数的极限与连续习题集课

第十六章 多元函数的极限与连续习题课 一 概念叙述题 1.叙述0 lim ()P P f P A →=,其中0,P P 的坐标为00(,),(,)x y x y . lim ()0,0,P P f P A εδ→=??>?>当00(;)P U P D ∈I δ时,有()f P A ε-< (方形邻域)0,0,εδ??>?>当0x x δ-<,0y y δ-<, 00(,)(,)x y x y ≠,有(,)f x y A ε-< (圆形邻域)0,0,εδ??>?>当0δ<,有(,)f x y A ε-<. 2. 叙述 00(,)(,) lim (,)x y x y f x y →=+∞,00(,)(,) lim (,)x y x y f x y →=-∞,00(,)(,) lim (,)x y x y f x y →=∞的定义. 000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=+∞??>?>-<-<≠>当时,有 0,0,0(,)G f x y G δδ??>?>< <>当时,有000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=-∞??>?>-<-<≠<-当时,有 000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=∞??>?>-<-<≠>当时,有. 3.叙述 0(,)(,) lim (,)x y y f x y A →+∞=的定义. 00(,)(,) lim (,)0,0,0,,(,)x y y f x y A M x M y y f x y A εδδε→+∞=??>?>?>>-<-<当时,有 4.叙述 0(,)(,) lim (,)x y x f x y →-∞=+∞的定义. 00(,)(,) lim (,)0,0,0,,(,)x y x f x y G M x x y M f x y G δδ→-∞=+∞??>?>?>-<<->当时,有 5. 叙述 (,)(,) lim (,)x y f x y →-∞+∞=-∞的定义. (,)(,) lim (,)0,0,,(,)x y f x y G M x M y M f x y G →-∞+∞=-∞??>?><-><-当时,有. 注:类似写出(,)(,) lim (,)x y f x y →=VW d 的定义,其中d 取,,,A ∞+∞-∞,?取0,,,x ∞+∞-∞, W 取0,,,y ∞+∞-∞. 6.叙述f 在点0P 连续的定义. f 在点0P 连续?ε?, 0δ?>,只要0(;)P U P D δ∈I ,就有0()()f P f P ε-< ?ε?, 0δ?>,当0x x δ-<,0y y δ-<,就有00(,)(,)f x y f x y ε-<

函数及极限习题及答案

第一章 函数与极限 (A ) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2 x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→352352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设?? ?>≤+=0 ,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f == ; (3)x x x g x f 22tan sec )(, 1)(-== ; 3、判定函数的奇偶性 (1))1(2 2 x x y -= ; (2)3 2 3x x y -= ;

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

(完整版)函数极限与连续习题含答案.docx

基本初等函数是实变量或复变量的指数函数、 对数函数、 幂函数、 三角函数和反三角函数经 过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、 已知四个命题: ( 1)若 f (x) 在 x 0 点连续,则 f ( x) 在 x x 0 点必有极限 (2)若 f ( x) 在 x x 0 点有极限,则 f ( x) 在 x 0 点必连续 (3)若 f ( x) 在 x x 0 点无极限,则 f ( x) 在 x x 0 点一定不连续 (4)若 f ( x) 在 x x 0 点不连续,则 f (x) 在 x x 0 点一定无极限。 其中正确的命题个数是( B ) A 、 1 B 、2 C 、 3 D 、 4 2、若 lim f ( x) a ,则下列说法正确的是( C ) x x 0 A 、 f ( x) 在 x x 0 处有意义 B 、 f ( x 0 ) a C 、 f ( x) 在 x x 0 处可以无意义 D 、 x 可以只从一侧无限趋近于 x 0 3、下列命题错误的是( D ) A 、函数在点 x 0 处连续的充要条件是在点 x 0 左、右连续 B 、函数 f ( x) 在点 x 0 处连续,则 lim f ( x) f ( lim x) x x 0 x x 0 C 、初等函数在其定义区间上是连续的 D 、对于函数 f (x) 有 lim f ( x) f ( x 0 ) x x 0 4、已知 f ( x) 1 ,则 lim f ( x x) f ( x) 的值是( C ) x x 0 x 1 1 B 、 x D 、 x A 、 C 、 x 2 x 2 5、下列式子中,正确的是( B ) x x 2 1 x 1 x A 、 lim 1 B 、 lim 1 C 、 lim D 、 lim 0 1 x 0 x x 1 2(x 1) x1 x 1 x 0 x 6、 lim x 2 ax b ,则 a 、 b 的值分别为( A ) 1 x 5 x 1 A 、 7和 6 B 、 7和 6 C 、 7和 6 D 、 7和 6 7、已知 f (3) 2, f (3) 2, 则 lim 2x 3 f ( x) 的值是( C ) x 3 x 3 A 、 4 B 、 0 C 、 8 D 、不存在 8、 lim x a ( D ) 3 3 x a x a

函数与极限测试题及答案一

函数与极限测试题(一) 一、 填空题 二、 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 三、 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 四、 3、若0x →时,无穷小221ln 1x x -+与2sin 2a 等价,则常数a =_____。 五、 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则 ()f x 的间断点为x =_____。 六、 单选题 七、 1、当0x →时,变量 211 sin x x 是( ) 八、 A 、无穷小 B 、无穷大 九、 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 十、 2、设函数()bx x f x a e = +在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) 十一、 A 、0,0a b << B 、0,0a b >> 十二、 C 、0,0a b ≥< D 、0,0a b ≤> 十三、 3、设()232x x f x =+-,则当0x →时( ) 十四、 A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 十五、 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 十六、 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????,则 ()lim x f x →∞ 为( ) 十七、 A 、存在且等于零 B 、存在但不一定等于零 十八、 C 、一定不存在 D 、不一定存在 十九、 例:()()()11 ,,22 1 x x f x x g x x x x ?==+=+ ++ 二十、 求下列极限 二十一、 1、 2 241lim sin x x x x x +-+、()2 21212lim 1x x x x x -→?? ?+??

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

(整理)多元函数的极限与连续习题.

多元函数的极限与连续习题 1. 用极限定义证明:14)23(lim 1 2=+→→y x y x 。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-=),(; (2) y x y x y x f 1s i n 1s i n )(),(+=; (3) y x y x y x f ++=23 3),(; (4) x y y x f 1 s i n ),(=。 3. 求极限 (1)2 20 ) (lim 22 y x x y x y +→→; (2)1 1lim 2 2 220 0-+++→→y x y x y x ; (3)2 20 01 sin )(lim y x y x y x ++→→; (4)22220 0) sin(lim y x y x y x ++→→。 4. 试证明函数?? ???=≠+=0 0)1ln(),(x y x x xy y x f 在其定义域上是连续的。

1. 用极限定义证明:14)23(lim 2 1 2=+→→y x y x 。 因为1,2→→y x ,不妨设0|1|,0|2|<-<-y x , 有54|2||42||2|<+-≤+-=+x x x , |22123||1423|2 2 -+-=-+y x y x |1|2|2|15|1|2|2||2|3-+-<-++-≤y x y x x |]1||2[|15-+-?ε,要使不等式 ε<-+-<-+|]1||2[|15|1423|2 y x y x 成立 取}1,30 min{ ε δ=,于是 0>?ε, 0}1,30 min{ >=?ε δ,),(y x ?:δδ<-<-|1|,|2|y x 且 )1,2(),(≠y x ,有ε<-+|1423|2 y x ,即证。 2. 讨论下列函数在(0,0)处的两个累次极限,并讨论在该点处的二重极限的存在性。 (1)y x y x y x f +-= ),(; 1lim lim 00=+-→→y x y x y x , 1l i m l i m 00-=+-→→y x y x x y , 二重极限不存在。 或 0l i m 0=+-=→y x y x x y x , 3 1l i m 20-=+-=→y x y x x y x 。

函数极限连续单元测试与答案

函数单元测试(A ) 一、填充题: 1、设的定义域为[]1,0,则)2(+x f 的定义域是________________。 2、1sin )(,)(2 +==x x q x x f ,则[]=)(x q f ________,()[]=x f q __________。 3、设()2212 ++=+x x x f ,则()=x f _____________。 4、 ()_________ )2(_________,)4(,1 ,01 ,sin =-=?????≥=ππf f x x x x f π。 5、已知函数()x f 是偶函数,且在()+∞,0上是减函数,则函数()x f 在()0,∞-上必 是____________函数。 6、设x v v u u y arccos , 1 ,3 =+==,则复合函数()_____________==x f y 。 7、______________,cos sin )(2 2其周期为设函数x x x f -=。 二、选择题: 1、函数??? ??? ? > ≤+=2,sin 2,)1ln()(ππx x x x x f 则) 4(π f 等于( ) (A ) ) 41ln(π + (B )22 (C )2π (D )4π 2、设x e x g x x f ==)(,)(2,则=)]([x g f ( ) (A )2 x e (B )x e 2 (C )2 x x (D )x e 3、设函数()x f 的定义域是]1,0[,则()2 x f 的定义域是( ) (A )[-1,1] (B )[0,1] (C )[-1,0] (D )(- ∞,+∞) 4、函数()x x x f -+=1010是( ) (A )奇函数 (B )偶函 数 (C )非奇非偶函 (D )既是 奇函数又是偶函数 5、函数()[]2 13arcsin +=x y 的复合过程是( ) ()()13sin ,sin ,(D) 13,arcsin ,)(13,arcsin B) ( 13arcsin ,)(2222+===+===+==+==x v v u u y x v v u u y C x u u y x u u y A 6、3 4x y -=的反函数是( ) ()()33334(D) 4C) ( 4(B) 4)(x y x y x y x y A -=-=-=-= 7、下列函数中为基本初等函数的是( ) 1 23)()( )15arctan()()( 0,10 ,0)()( 1)ln()()(-=+=???≥=+=x x f D x x f C x x x f B x x f A π

相关主题
文本预览
相关文档 最新文档