当前位置:文档之家› 激光原理与激光技术习题答案

激光原理与激光技术习题答案

激光原理与激光技术习题答案
激光原理与激光技术习题答案

*

激光原理与激光技术习题答案

习题一 (1)为使氦氖激光器的相干长度达到1m ,它的单色性

/应为多大

解: 1010

1032861000

106328--?=?=λ=λ

λ?=.L R c

(2) =5000?的光子单色性

/=10-7

,求此光子的位置不确定量x

解: λ

=h p λ?λ

=?2h p h p x =?? m R

p

h x 510

1050007

10

2=?=λ=λ

?λ=?=?--

%

(3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=,r 2=。求由衍射损耗及输出损耗分别引起的、c 、Q 、c (设n=1)

解: 衍射损耗: 1880107501106102

262.)

.(.a L =???=λ=δ-- s ..c L c 881075110318801-?=??=δ=τ 6

86810

113107511061010314322?=??????=πντ=--....Q c

MHz .Hz ...c c 19101910

75114321

2168

=?=???=πτ=

ν?- 输出损耗: 119080985050212

1.)..ln(.r r ln =??-=-=δ s ..c L c 8

81078210

311901-?=??=δ=τ 6

86810

964107821061010314322?=??????=πντ=--....Q c MHz .Hz ...c c 75107510

78214321

2168

=?=???=πτ=

ν?-

(4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=,求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗)

解: MHz Hz .L c q 15010511

2103288=?=??==ν? 11]11501500

[]1[=+=+ν?ν?=?q q

005.02

01

.02===T δ

s c L c 7

8

1067.6103005.01-?=??==

δτ :

MHz c

c 24.01067.614.321

217

=???=

=

-πτν?

(5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=,设此腔总的单程损耗率,求此激光器的无源腔本征纵模的模式线宽。

解: cm L 60155.130=+?=' s 106.36610

30.01π0.6c L 88c -?=??='=δτ 2.5MHz 106.3663.1428

c

c =???=

=

-1

21πτν?

(6)氦氖激光器相干长度1km ,出射光斑的半径为r=0.3mm ,求光源线宽及1km 处的相干面积与相干体积。

解: 0.3MHz 10

103L c 3

8

c =?==ν? )

222 1.42m )

10π(3100.632810A D A 2

41226s c =???==--λ 3

31042.1m L A V c c c ?==

习题二

(1)自然加宽的线型函数为

2022

0)(4)21(

1

)

,(ννπττνν-+c

c

H g 求①线宽②若用矩形线型函数代替(两函数高度

相等)再求线宽。

解:①线型函数的最大值为c N g τνν4),(00= 令

c

c

c

τννπττ2)(4)21(

1

2022

=-+ c

c c τννπττ1)(821202=-+ c c τννπτ21)(8202=

- 2

220161)(c τπνν=- c πτνν410±= c

N πτν21=?∴

②矩形线型函数的最大值若为 c m g τ4= 则其线宽为c

m N g τν411==?

%

(2)发光原子以0.2c 的速度沿某光波传播方向运动,并与该光波发生共振,若此光波波长=0.5m ,求此发光原子的静止中心频率。

解: c v s z ???? ??-=10λλ c

c ???

? ??-=-15.02.00λ 15

.02.00-=-λ m μλ625.08.05.00== MHz c 86

8

00108.410

625.0103?=??==-λν

(3)某发光原子静止时发出0.488m 的光,当它以0.2c 速度背离观察者运动,则观察者认为它发出的光波长变为多大

解: m c

c c v z μλλ5856.0488.02.1488.0)2.01(100=?=?--=??

? ?

?-='

(4)激光器输出光波长=10m ,功率为1w ,求每秒从激光上能级向下能级跃迁的粒子数。

}

解:ν?

h dt

d P = s hc P h P dt d P /11051031063.610101198

346?=?????====--λν? (6)红宝石调Q 激光器中有可能将几乎全部的Cr +3

激发到激光上能级,并产生激光巨脉冲。设红宝石棒直径为1cm ,长为7.5cm ,Cr +3的浓度为2109cm -3

,脉冲宽度10ns ,求输出激光的最大能量和脉冲功率。 解:J h L r V h W 9108

34

15

2

2

103.410

694310310

6.631020.0750.0053.14---?=?????????===ν?πν? w t W P 34.010

10104.39

9

=??==--

(7)静止氖原子3S 22P 4谱线中心波长0.6328m ,求当它以0.1c 速度向观察者运动时,中心波长变为多

解: m c

c c v z μλλ5695.06328.09.06328.0)1.01(100=?=?-=??

? ?

?-='

(9)红宝石激光器为三能级系统,已知S 32=107

1/s, A 31=3105

1/s, A 21=103

1/s 。其余跃迁几率不计。

试问当抽运几率W 13等于多少时,红宝石晶体将对=0.6943m 的光是透明的 解: 02123232=-=A n S n dt dn 32

2123S A n n =∴

3233131313=--=S n A n W n dt

dn

)(32311

3

132331313S A n n n S n A n W +=+=

透明即n 1=n 2 1757

3

323132

2132312313318)105.0103(10

5.0103.0)()(-=?+???=+=+=∴s S A S A S A n n W

/

习题三

(1)若光束通过1m 长的激光介质以后,光强增大了一倍,求此介质的增益系数。 解: 2ln ln 10

==I I z

G

(2) 计算YAG 激光器中的峰值发射截面S 32,已知F

=21011

Hz,

3

=10-4

s,n=。

解:22211

42212232220

32109.110

2103.28.114.341006.14m n S F ---?=???????=?=

ντπλ

(3) 计算红宝石激光器当=

时的峰值发射截面,已知

=0.6943m,

F

= 1011

Hz,

2

=, n=。

S 32

A 21

W 13 A 31

解:2241132212222220211084.210

3.3102.476.11

4.34106943.04m n S F ---?=???????=?=ντπλ

习题四

(1) 红宝石激光器腔长L=11.25cm ,红宝石棒长l =10cm ,折射率n=,荧光线宽

F

=2105

MHz ,当激发参

数=时,求:满足阈值条件的纵模个数

解: MHz H T 45108116.11021?=-??=-?=?ανν cm l n L L 75.1810)175.1(25.11)1(=?-+=-+='

MHz L c q 8001075.182103228=???='=?-ν 101]1800

80000

[]1[=+=+??=?q T q νν

(2) 氦氖激光器腔长1m ,放电管直径2mm ,两镜反射率分别为100%、98%,单程衍射损耗率=,若I s =mm 2

,G m =310-4

/d, 求①

q

=

时的单模输出功率 ②

q

=

+2

1

D

时的单模输出功率

解:①05.004.02

02.004.02

=+=+=T δ mm l

G t /11051000

05.05-?===δ

mm d G m /1105.1210310344

4---?=?=?= 310

5105.15

4

=??==--t m G G α mw STI P s 13.25)13(1.002.0114.35.0)1(22221

0=-?????=-=αν

②mw e e

STI P i q s 8.7)13(1.002.0114.3]1[2ln 222)(2

ln 82

2

2

00=-????=-=-?--ννννα

(3) 氦氖激光器放电管长l =0.5m ,直径d=1.5mm ,两镜反射率分别为100%、98%,其它单程损耗率为,荧

光线宽F =1500MHz 。求满足阈值条件的本征模式数。(G m =310-4

/d ) 解:025.0015.02

02.0015.02

=+=+=T δ mm l

G t /1105500

025.05-?===δ

mm d G m /11025.1103103444---?=?=?= 410

51025

4

=??==--t m G G α ;

MHz D

T 21212

ln 4ln 15002ln ln =?=?=?ανν MHz L c q 3005.0210328

=??==

?ν 8]1300

2121

[]1[

=+=+??=?q T q νν

(5) CO 2激光器腔长L =1m ,,放电管直径d=10mm ,两反射镜的反射率分别为、,放电管气压3000Pa 。可视为

均匀加宽,并假设工作在最佳放电条件下。求 ①激发参数 ②振荡带宽T

③满足阈值条件的纵模个数 ④稳定工作时腔内光强。(频率为介质中心频率0)经验公式:L =(MHz)、

G m =10-2

/d (1/mm )、

I s =72/d 2(w/mm 2

)。

解:①153.0)8.092.0ln(5.0ln 212

1=??-=-=r r δ mm l

G t /11053.11000

153.04-?===δ mm d

G m /1104.110104.110

4.1322

---?=?=?= 15.910

53.1104.14

3=??==--t m G G α ② MHz p L 1473000049.0049.0=?==?ν MHz L T 420115.91471=-?=-?=?ανν

③MHz Hz .L c q 150105112103288=?=??==ν? 3]1150

420

[]1[=+=+??=?q T q νν

*

④2

22/72.010

7272mm w d I s ===

2/87.515.872.0)1(0

mm w I I s =?=-=αν

(6)氦氖激光器放电管直径d=0.5mm ,长l =10cm ,两反射镜反射率分别为100%、98%,不计其它损耗,稳态功率输出,求腔内光子数。(设腔内只有0一个模式,且腔内光束粗细均匀) 解: c h TS TSI P ν?2

121== c

TSh P

ν?2=

个7

16

234103103.510

31063.602.01063281.0105.022?=?????????===Φ---c TSh PV V ν? (7)CO 2激光器腔长l =1m ,放电管直径d=10mm ,单程衍射损耗率d =%,两镜面散射损耗率分别为%,两镜

透过率分别为2%、10%,其它损耗不计。当它工作在室温(300K)条件下时,求 ①激发参数 ②碰撞线宽及多普勒线宽,并判断它属于哪种加宽类型(设放电管中气压为最佳气压) ③计算在最佳放电条件下稳定工作时,腔内的光强 ④若输出有效面积按放电管截面积的计,此激光器的最大输出功率是多大有关公式: G m =

10-2

/d (1/mm )、I s =72/d 2

(w/mm 2

)、p d=104

P a mm

L

=(MHz)、

D

=10

-7

21

)(M T

解:①083.0)9.098.0ln(5.0015.0005.0ln 015.0005.0212

1=??-+=-+=r r δ mm l G t /1103.81000083.05-?===δ

mm d G m /1104.110104.1104.1322---?=?=?= 9.1610

3.810

4.15

3=??==--t m G G α ¥

②Pa d p 34

41067.210

1067.21067.2?=?=?= MHz p L 1311067.2049.0049.03=??==?ν

MHz M T D 5344

300

106.10215

215

60

=?=

=?-λν D L νν?>? 属于均匀加宽 ③2

22/72.010

7272mm w d I s ===

2/45.119.1572.0)1(0

mm w I I s =?=-=αν ④04.02)015.0005.0(=?+=α 2228.62514.3mm r S =?==π

w a l G SI P m s m 49)04.010104.12(72.08.625.0)2(23322

1=-??????=-=-

(8)He-Ne 激光器放电管气压p=270Pa ,上、下能级寿命分别为

3=2

10-8

s 、

2

=210-8

s 。求 ①T=300K

时的多普勒线宽D

②计算均匀线宽

H

③计算烧孔宽度=2

H

时的腔内光强(I s =mm 2

解:①MHz M T D 130020

300

106328.0215215

60

=?=

=

?-λν {

②MHz N 810

214.321

218

3

=???=

=

?-πτν MHz p L 5.20227075.075.0=?==?ν MHz L N H 5.2105.2028=+=?+?=?ννν

③ H s

I I νδνν?+=1 H s

H I I ννν?+=?12 s

I I ν+=12 2/3.01.033mm w I I s =?==ν

(9)长10cm 红宝石棒置于20cm 的谐振腔内,已知其自发辐射寿命21=410-3s ,H =2105

MHz ,腔的单程损耗率=。求 ①阈值反转粒子数密度n t ②当光泵激励产生n=n t 时,有多少纵模可以起振(n=

解:①11.01.001.0-===m l G t δ 224113*********

021109.410

210476.114.34106943.04m n S F ---?=???????=?=ντπλ 322242110210

9.41

.0---?=?==

?m S G n t t ②2.1=??==t

t

m n n G G α MHz H T 451094.812.11021?=-??=-?=?ανν

cm l n L L 6.2710)176.1(20)1(=?-+=-+=' MHz L c q 543276

.0210328

=??='=

?ν `

165]1543

89400

[]1[

=+=+??=?q T q νν

习题五

(1) 证明:两种介质(折射率分别为n 1与n 2)的平面界面对入射旁轴光线的变换矩阵为 ????

?

?

?=2

1001

n n T 证:由折射定律 2211sin sin θθn n = 近轴条件 2211θθn n =

12r r =

1212θθn n = 即 ????

?

?

?=2

10

01n n T

(2) 证明:两种介质(折射率分别为n 1与n 2)的球面界面对入射旁轴光线的变换矩阵为 ????

?

??

-=2

121

20

1

n n R n n n T 证: 2211i n i n =

11θα+=i 22θα+=i

r 1 ,

:

n

n i

i

2

\

1

R

r 1=

α 12

1121211211121112112122)()(θθθααθn n r R n n n R r n n R r n n R r i n n R r i R r i +-=--=--=-=-=

-= 12r r =

|

12112122θθn n r R n n n +-= 即 ????

? ??-=2

12

1

201n n R

n n n T

(3)分别按图(a)、(b)中的往返顺序,推导旁轴光线往返一周的光学变换矩阵??

?

? ?

?D C B A ,并证明这两种情况下的)(21D A +相等。 (a) (b)

^

解: 1234T T T T T =

(a) ???? ??=???? ?????

? ??-???? ?????

? ??-

=D C B A L

R L R T 1011201

10112

01

21

221R L A -= 1

2442

1212

+--=R L R L R R L D 244421212

+--=+R L R L R R L D A (b) ???? ??=???? ?????

? ??-???? ?????? ??-

=D C B A L

R L R T 1011201

10112

01

12

121R L A -= 1

2441

2212+--=R L R L R R L D 244421212

+--=+R L R L R R L D A

(4)利用往返矩阵证明共焦腔为稳定腔,即任意旁轴光线在其中可往返无限多次,而且两次往返即自行闭合。

证: 共焦腔 R 1=R 2=L g 1=g 2=0 !

往返一周的传递矩阵???? ??--=1001T , 往返两周的传递矩阵?

??

? ??=10012T

习题七

(1) 平凹腔中凹面镜曲率半径为R ,腔长L=,光波长为,求由此平凹腔激发的基模高斯光束的腰斑半径。 解: 2216.0)2.0(2.0)(f R R R R L R L =-=-= R 4.0f = π

λπ

λ

R f 4.0w 0=

=

·

② ①

L

③ ②

(2) 对称双凹腔长为L ,反射镜曲率半径R=2.5L ,光波长为,求镜面上的基模光斑半径。 解: 22

)5.22(4

)2(4f L L L L L R L =-?=-= L =f πλπλ

L f ==

0w 2201w f

z w +=

镜面处坐标为2

L

±

,镜面光斑:()π

λπλπλL

L L L L f

w L s 52145411w 222

22

=

=+=+=

(3) 稳定双凹球面腔腔长L=1m ,两个反射镜曲率半径分别为R 1=1.5m 、R 2=3m 。求它的等价共焦腔腔长,并

画出它的位置。

解: 1

1

2

1z R z f -=+ 5.1z 121-=+z f 12

215.1z z f -=+ 2222z R z f =+ 3z 2

2

2=+z f 22

223z z f =+

L z =-12z 1z 12=-z 1z 12+=z

2

2

221131.5z -z z z -=- 12z -33z )1()1(31.5z -1211211211--+=+-+=-z z z z }

8.0z 1-= 2.0z 2= 56.08.08.05.15.1f 22112=-?=--=z z 0.75f ≈

(4) 有一个凹凸腔,腔长L=30cm ,两个反射镜的曲率半径大小分别为R 1= 50cm 、R 2=30cm ,如图所示,使用He-Ne 做激光工作物质。①利用稳定性 条件证明此腔为稳定腔 ②此腔产生的高斯光束焦参数 ③此腔产生的高斯 —

光束的腰斑半径及腰位置 ④此腔产生的高斯光束的远场发散角

解:①4.0503011g 11=-=-=R L 230

30

11g 22=--=-=R L 8.024.0g g 21=?= 满足稳定条件0

② 50z 1

2

1

-=+z f 30z 222-=+z f 30z 12=-z cm 45z 1-= cm 15z 2-= cm 15f =

③cm f 0174.014

.310632815w 8

0=??==

-πλ

,腰在R 2镜右方15cm 处 ④rad w 38

010315.20174

.014.310632822--?=???==πλθ

(5) 有一个平凹腔,凹面镜曲率半径R=5m ,腔长L=1m ,光波长=0.5m ,求①两镜面上的基模光斑半径

②基模高斯光束的远场发散角 解:① 4)15(1)(f 2=-?=-=L R L m 2f = mm f 56.014.3105.02w 60=??==

-πλ

~

平面镜坐标: z 1=0, 凹面镜坐标: z 2=L=1m

z

R 2

R 1

L

平面镜光斑: w s1=w 0=0.56mm, 凹面镜光斑: mm f

z w s 626.041

156.01w 2220

2=+?=+=

②rad w 43

6

01068.510

56.014.3105.022---?=????==πλθ

(6) 求方形镜共焦腔镜面上的TEM 30模的节线位置(以w 0s 为参数)

解:2

02

2)2

12216(),(033030s

w y x s s

e x w x w c y x u +-

-=

021********=-x w x w s s 0)212216(2

2

0=-x x w s

x 1=0 021221622

0=-x w s 034230=-x w s

20243s w x = s x 03,2w 23±= /

习题八

(1) 某激光器(=0.9m )采用平凹腔,腔长L=1m ,凹面镜曲率半径R=2m 。求①它产生的基模高斯光束

的腰斑半径及腰位置②它产生的基模高斯光束的焦参数③它产生的基模高斯光束的远场发散角 解: ①1)12(1)(f 2=-?=-=L R L m 1f = mm f 535.014.3109.01w 6

0=??==

-πλ

,腰在平面镜处 ② f=1m

③ rad w 33

6

01007.110

535.014.3109.022---?=????==πλθ

(2) 某高斯光束的腰斑半径w 0=1.14mm ,光波长=10.6m ,求与腰斑相距z=30cm 处的光斑半径及等相位

曲率半径。 ~

解: mm 385106.1014.114.3w f 3

220=??==-λπ mm f z w 445.1385

300114.11w(z)2

2

220

=+?=+= mm z f z 794300385300R(z)22=+=+=

(3) 某高斯光束的腰斑半径w 0=0.3mm ,光波长=0.6328m ,求腰处、与腰相距30cm 处的q 参数

解:mm 447106328.03.014.3w f 3

220=??==-λπ q 0=if=447i (mm), q(z)=z+if=300+447i (mm)

(4) 某高斯光束的腰斑半径为w 0=1.2mm ,光波长=10.6m ,今用焦距F=2cm 的透镜对它进行聚焦。设光

腰到透镜的距离分别为10m 及0m 时,求聚焦后的腰斑半径及其位置。 解:mm 427106.102.114.3w f 3

2

2

0=??==-λπ

]

腰到透镜距离为l =0m 时:

mm

F f 056.02042712.11w w 2

22

2

00=+

=

+=

' mm f F l 9.19427201201F 2

222=+

=+=

'

腰到透镜距离为l =10m 时: mm F l f 32

2

2

2

104.2)

2010000(4272.120)

(Fw w -?=-+?=

-+=

'

mm F f F l l l l 04.2020427

)2010000(427)2010000(10000)(f F)-(2

22

222=?+-+-?=+-+='

(5) 两个He-Ne 激光器都采用平凹腔,它们的尺 寸与相对位置如图所示,问在何处插入一个焦距 ¥

为多大的透镜,可使这两个激光器所激发的高斯 光束之间实现匹配

解: 2100)30100(30)(f 2=-?=-=L R L 45.8cm f =625)2550(25)(f 2=-?='-''='L R L 25cm f ='

75cm 25500=+=l 0925.28

.4525

258.45000

0=+='+'

='+'=f

f f f

w w w w A cm f f f 83.33258.450=?='= cm A l l f A A F 344

0925.27527583.33)40925.2(0925.24

2)4(222220

20202=-?-+?-?=--+-=

cm f F f f F f F w w F l 5.43483.3334258.4534222022020

±=-?±=-'±=-'±= cm f F f f F f F w w F l 45.23483.33348

.4525

34222022020

±=-?±=-'±=-'±

=' 透镜焦距F=34cm, 置于距R 2镜、R 2镜距离分别为 l =38.5cm , l =36.45cm

若取l =29.5cm , l ==31.55cm, 则l +l l 0 , 舍去。

(6) 激光器使用腔长为L 的半共焦腔,凹面镜为输出镜,光波 长为,现在距离输出镜为L 的地方放置一个焦距F=L 的透镜, 用q 参数求出经透镜变换后的高斯光束腰斑半径与腰位置。 解:由半共焦腔特点知R=2L ,L L L L L R L f =-=-=)2()(

平面镜处q 参数:q 1=if=iL, 透镜处未变化前的q 参数:q 2=iL+2L=L(2+i)

透镜处变化后的q 参数:L i L i i L i i i L L i L q F Fq q 2

32)1)(2(12)2()2(2

2

23

+-=+-+=--+=+-+=-=

l =1.5L, f =0.5L, 腰半径为 π

λπ

λπ

λ25.0w 0L L f =?='=', 腰在透镜右方1.5L 处

(7) 用两个凹面镜构成双凹谐振腔,两镜半径分别为R 1=1m 、R 2=2m ,腔长L=0.5m ,求如何选择高斯光束的

腰斑半径及腰位置,才可以使之成为腔中的自再现光束(设光波长=10.6m )

解: 1121z R z f -=+ 1z 1

2

1

-=+z f

22

2

2z R z f =+ 2z 222=+z f

L z =-12z 5.0z 12=-z 解出 z 1=-0.375m, z 2=0.125m, f=0.484m

L =25cm

D=50cm ?

R 1=1m R 2= R

1

=50cm R

2

=

F

L

L

mm f 28.114.3484.0106.10w 60=??==-πλ 腰在R 1镜右方37.5cm 处

激光原理复习题答案

激光原理复习题 1. 麦克斯韦方程中 0000./.0t t μμερε????=-???????=+????=???=?B E E B J E B 麦克斯韦方程最重要的贡献之一是揭示了电磁场的在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。在方程组中是如何表示这一结果? 答:(1)麦克斯韦方程组中头两个分别表示电场和磁场的旋度,后两个分别表 示电场和磁场的散度; (2) 由方程组中的1式可知,这是由于具有旋度的随时间变化的电场(涡旋 电场),它不是由电荷激发的,而是由随时间变化的磁场激发的; (3)由方程组中的2式可知,在真空中,,J =0,则有 t E ??=? 00B *εμ ;这表明了随时间变化的电场会导致一个随时间变化的磁场;相反一个空间变化的磁场会导致一个随时间变化的电场。这 种交替的不断变换会导致电磁波的产生。 2, 产生电磁波的典型实验是哪个?基于的基本原理是什么? 答:产生电磁波的典型实验是赫兹实验。基于的基本原理:原子可视为一个偶 极子,它由一个正电荷和一个负电荷中心组成,偶极矩在平衡位置以高频做周期振荡就会向周围辐射电磁波。简单地说就是利用了振荡电偶极子产生电磁波。 3 光波是高频电磁波部分,高频电磁波的产生方法和机理与低频电磁波不同。对于可见光围的电磁波,它的产生是基于原子辐射方式。那么由此原理产生的光的特点是什么? 答:大量原子辐射产生的光具有方向不同,偏振方向不同,相位随机的光,它们是非相干光。 4激光的产生是基于爱因斯坦关于辐射的一般描述而提出的。请问爱因斯坦提出了几种辐射,其中那个辐射与激光的产生有关,为什么? 答:有三种:自发辐射,受激辐射,受激吸收。其中受激辐射与激光的产生有 关,因为受激辐射发出来的光子与外来光子具有相同的频率,相同的发射 方向,相同的偏振态和相同的相位,是相干光。

08激光原理与技术试卷B

华南农业大学期末考试试卷(B 卷) 2008~2009学年第一学期 考试科目:激光原理与技术 考试类型:(闭卷) 考试时间:120分钟 姓名 年级专业 学号 一.填空题(每空2分,共30分) 1. 设小信号增益系数为0g ,平均损耗系数为α,则激光器的振荡条件为 g o > α 。 2. 相格 是相空间中用任何实验所能分辨的最小尺度。 3. 四能级系统中,设3E 能级向2E 能级无辐射跃迁的量子效率为1η,2E 能级向1E 能 级跃迁的荧光效率为2η,则总量子效率为 。。 4. 当统计权重21f f =时,两个爱因斯坦系数12B 和21B 的关系为 B 12=B 21 。 5. 从光与物质的相互作用的经典模型,可解释 色散 现象和 物质对光的 吸收 现象。 6. 线型函数的归一化条件数学上可写成 。 7. 临界腔满足的条件是 g1g2=1 或 g1g2=0 。 8. 把开腔镜面上的经过一次往返能再现的稳态场分布称为开腔的 自再现模 。 9. 对平面波阵面而言,从一个镜面中心看到另一个镜面上可以划分的菲涅耳半周期 带的数目称为 菲涅耳数 。

10. 均匀加宽指的是引起加宽的物理因素对各个原子是 等同的, 。 11. 入射光强和饱和光强相比拟时,增益随入射光强的增加而减少,称 增益饱和 现 象。 12.方形镜的mnq TEM 模式沿x 方向有 m 条节线,没y 方向有 n 条节线. 二.单项选择题(每题2分,共10分) 1. 关于高斯光束的说法,不正确的是( ) (A)束腰处的等相位面是平面; (B)无穷处的等相位面是平面; (C)相移只含几何相移部分; (D)横向光强分布是不均匀的。 2. 下列各模式中,和圆型共焦腔的模q n m TEM ,,有相同频率的是(A ) (A)1,,2-+q n m TEM ; (B) q n m TEM ,,2+; (C) 1,,1-+q n m TEM ; (D) 1,1,2-++q n m TEM 。 3. 下列各种特性中哪个特性可以概括激光的本质特性(C ) (A)单色性; (B)相干性; (C)高光子简并度; (D)方向性。 4. 下列加宽机制中,不属于均匀加宽的是(B ) (A)自然加宽; (B)晶格缺陷加宽; (C)碰撞加宽; (D)晶格振动加宽。 5. 下列方法中,不属于横模选择的是(D ) (A)小孔光阑选模; (B) 非稳腔选模; (C) 谐振腔参数N g ,选择法; (D)行波腔法。 三、简答题(每题4分,共20分)

激光原理与应用课试卷试题答案

激光原理及应用[陈家璧主编] 一、填空题(20分,每空1分) 1、爱因斯坦提出的辐射场与物质原子相互作用主要有三个过程,分别是(自发辐射)、(受激吸收)、(受激辐射)。 2、光腔的损耗主要有(几何偏折损耗)、(衍射损耗)、(腔镜反射不完全引起的损耗)和材料中的非激活吸收、散射、插入物损耗。 3、激光中谐振腔的作用是(模式选择)和(提供轴向光波模的反馈)。 4、激光腔的衍射作用是形成自再现模的重要原因,衍射损耗与菲涅耳数有关,菲涅耳数的近似表达式为(错误!未找到引用源。),其值越大,则衍射损耗(愈小)。 5、光束衍射倍率因子文字表达式为(错误!未找到引用源。)。 6、谱线加宽中的非均匀加宽包括(多普勒加宽),(晶格缺陷加宽)两种加宽。 7、CO2激光器中,含有氮气和氦气,氮气的作用是(提高激光上能级的激励效率),氦气的作用是(有助于激光下能级的抽空)。 8、有源腔中,由于增益介质的色散,使纵横频率比无源腔频率纵模频率更靠近中心频率,这种现象叫做(频率牵引)。 9、激光的线宽极限是由于(自发辐射)的存在而产生的,因而无法消除。 10、锁模技术是为了得到更窄的脉冲,脉冲宽度可达(错误!未找到引用源。)S,通常有(主动锁模)、(被动锁模)两种锁模方式。 二、简答题(四题共20分,每题5分) 1、什么是自再现?什么是自再现模? 开腔镜面上的经一次往返能再现的稳态场分布称为开腔的自在现摸 2、高斯光束的聚焦和准直,是实际应用中经常使用的技术手段,在聚焦透镜焦距F一定的条件下,画出像方束腰半径随物距变化图,并根据图示简单说明。 3、烧孔是激光原理中的一个重要概念,请说明什么是空间烧孔?什么是反转粒子束烧孔? 4、固体激光器种类繁多,请简单介绍2种常见的激光器(激励方式、工作物质、能级特点、可输出光波波长、实际输出光波长)。 三、推导、证明题(四题共40分,每题10分)

2010激光原理技术与应用 习题解答

习题I 1、He-Ne 激光器m μλ63.0≈,其谱线半宽度m μλ12 10-≈?,问λλ/?为多少?要使其相干长度达到1000m ,它的单色性λλ/?应是多少? 解:63.01012 -=?λλ λλδτ?= ==2 1v c c L c 相干 = = ?相干 L λ λ λ 2、He-Ne 激光器腔长L=250mm ,两个反射镜的反射率约为98%,其折射率η=1,已知Ne 原子m μλ6328.0=处谱线的MHz F 1500=?ν,问腔内有多少个纵模振荡?光在腔内往返一次其光子寿命约为多少?光谱线的自然加宽ν?约为多少? 解:MHz Hz L c v q 60010625 210328 10=?=??==?η

5 .2=??q F v v s c R L c 8 10 1017.410 3)98.01(25)1(-?=??-=-=τ MHz Hz L c R v c c 24104.2)1(21 7=?=-≈=πτδ 3、设平行平面腔的长度L=1m ,一端为全反镜,另一端反射镜的反射率90.0=γ,求在1500MHz 频率范围内所包含的纵模数目和每个纵模的频带宽度? 解:MHz Hz nL c v q 150105.1100 210328 10=?=??==? 10 150 1500==??q v v L c R v c c )1(21 -≈ =πτδ 4、已知CO 2激光器的波长m μλ60.10=处 光谱线宽度MHz F 150=?ν,问腔长L 为多少时,腔内为单纵模振荡(其中折射率η=1)。

解:L c v v F q η2=?=?, F v c L ?=2 5、Nd 3 —YAG 激光器的m μ06.1波长处光 谱线宽度MHz F 5 1095.1?=?ν,当腔长为10cm 时,腔中有多少个纵模?每个纵模的频带宽度为多少? 解:MHz L c v q 3 10105.110 21032?=??==?η 130 =??q F v v L c R v c c )1(21 -≈ =πτδ 6、某激光器波长m μλ7.0=,其高斯光束束腰光斑半径mm 5.00=ω。 ①求距束腰10cm 、20cm 、100cm 时, 光斑半径)(z ω和波阵面曲率半径)(z R 各为多少? ②根据题意,画出高斯光束参数分布图。

激光原理与技术试题

2006-2007学年第1学期《激光原理与技术》B卷试题答案 1 .填空题(每题4分)[20] 1.1激光的相干时间T和表征单色性的频谱宽度△V之间的关系 为 1/ c 1.2 一台激光器的单色性为5X10-10,其无源谐振腔的Q值是_2x109 1.3如果某工作物质的某一跃迁波长为100nm的远紫外光,自发跃迁几率A10等于105S1,该跃迁的受激 辐射爱因斯坦系数B10等于6x1010 m3^2^ 1.4设圆形镜共焦腔腔长L=1m,若振荡阈值以上的增益线宽为80 MHz判断可能存在两个振荡频率。 1.5对称共焦腔的1(A D)_1_,就稳定性而言,对称共焦腔是稳定______________ 空。 2.问答题(选做4小题,每小题5分)[20] 2.1何谓有源腔和无源腔?如何理解激光线宽极限和频率牵引效应? 有源腔:腔内有激活工作物质的谐振腔。无源腔:腔内没有激活工作物质的谐振腔。 激光线宽极限:无源腔的线宽极限与腔内光子寿命和损耗有关: 九';有源腔由于受到自发辐射影响,净损耗不等于零,自发辐射的随机相位造成输出激光的线宽极限 n2t 2 ( C)h 0 ------------------- 。 n t Rut 频率牵引效应:激光器工作物质的折射率随频率变化造成色散效应,使得振荡模的谐振频率总是偏离无源腔 相应的模的频率,并且较后者更靠近激活介质原子跃迁的中心频率。这种现象称为频率牵引效应。 2.2写出三能级和四能级系统的激光上能级阈值粒子数密度,假设总粒子数密度为n阈值反转粒子数密 度为n t. 三能级系统的上能级阈值粒子数密度n 2t n n ——-;四能级系统的上能级阈值粒子数密度2 n2t n t 。 2.3产生多普勒加宽的物理机制是什么? 多普勒加宽的物理机制是热运动的原子(分子)对所发出(或吸收)的辐射的多普勒频移。 2.4均匀加宽介质和非均匀加宽介质中的增益饱和有什么不同?分别对形成的激光振荡模式有何影响? 均匀加宽介质:随光强的增加增益曲线会展宽。每个粒子对不同频率处的增益都有贡献,入射的强光不仅使自身的增益系数下降,也使其他频率的弱光增益系数下降。满足阀值条件的纵模在振荡过程中互相竞争,结果总是靠近中心频率的一个纵模得胜,形成稳定振荡,其他纵模都

《激光原理及应用》习题参考答案仅供大家学习参考用

《激光原理及应用》习题参考答案 思考练习题1 1.解答:设每秒从上能级跃迁到下能级的粒子数为n 。 单个光子的能量:λνε/hc h == 连续功率:εn p = 则,ε/p n = a. 对发射m μλ5000 .0=的光: ) (10514.2100.31063.6105000.01188346 个?=?????= =--hc p n λ b. 对发射MHz 3000=ν的光 )(10028.51030001063.6123634个?=???= = -νh p n 2.解答:νh E E =-12……………………………………………………………………..(a) T E E e n n κ121 2--=……………………………………………………………………….(b) λν/c =…………………………………………………………………………….(c) (1)由(a ),(b )式可得: 11 2==-T h e n n κν (2)由(a ),(b ),(c)式可得: )(1026.6ln 31 2 K n n hc T ?=- =κλ 3.解答: (1) 由玻耳兹曼定律可得 T E E e g n g n κ121 12 2//--=, 且214g g =,20 2110=+n n 代入上式可得: ≈2n 30(个)

(2))(10028.5)(1091228W E E n p -?=-= 4.解答: (1) 由教材(1-43)式可得 31733 634 3/10860.3/) 106000.0(1063.68200018q m s J m s J h q ??=??????=?=---πλπρν自激 (2)9 34 4363107.59210 63.68100.5)106328.0(8q ?=?????==---ππρλνh q 自激 5.解答:(1)红宝石半径cm r 4.0=,长cm L 8=,铬离子浓度318102-?=cm ρ,发射波 长m 6 106943.0-?=λ,巨脉冲宽度ns T 10=?则输出最大能量 )(304.2)(106943.0100.31063.684.0102)(6 8 342 182 J J hc L r E =?????????==--πλπρ 脉冲的平均功率: )(10304.2)(10 10304 .2/89 W W T E p ?=?=?=- (2)自发辐射功率 )(10304.2)(10106943.0)84.0102(100.31063.6) (22 621883422 W W L r hc hcN Q ?=??????????== ---πλτ πρλτ = 自 6.解答:由λν/c =,λλνd c d 2 =及λρνρλd d v =可得 1 1 85 -== kT hc e hc d d λνλλ πλνρρ 7.解答: 由 0) (=ννρd d 可得: 31 =-kT h kT h m m m e e kT h υυυ; 令 x kT h m =υ,则)1(3-=x x e xe ;解得:82.2=x 因此:11 82.2--=kh T m ν 同样可求得: 96.4=kT hc m λ 故c m m 568.0=λν

激光原理与激光技术习题

激光原理与激光技术习题答案 习题一 (1)为使氦氖激光器的相干长度达到1m ,它的单色性?λ/λ应为多大? 解: 1010 1032861000 106328--?=?=λ=λ λ?=.L R c (2) λ=5000?的光子单色性?λ/λ=10-7,求此光子的位置不确定量?x 解: λ=h p λ?λ=?2h p h p x =?? m R p h x 510 1050007 10 2=?=λ=λ?λ=?=?-- (3)CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、?νc (设n=1) 解: 衍射损耗: 1880107501 106102 262.) .(.a L =???=λ=δ-- s ..c L c 881075110318801-?=??=δ=τ 6 86 8 10113107511061010314322?=??????=πντ=--....Q c MHz .Hz ...c c 19101910 75114321216 8 =?=???=πτ= ν?- 输出损耗: 119080985050212 1.)..ln(.r r ln =??-=-=δ s ..c L c 8 81078210 311901-?=??=δ=τ 6 86810 964107821061010314322?=??????=πντ=--....Q c MHz .Hz ...c c 7510751078214321216 8 =?=???=πτ= ν?- (4)有一个谐振腔,腔长L=1m ,两个反射镜中,一个全反,一个半反,半反镜反射系数r=0.99,求在1500MHz 的范围内所包含的纵模个数,及每个纵模的线宽(不考虑其它损耗) 解: MHz Hz .L c q 15010511 2103288=?=??==ν? 11]11501500 []1[=+=+ν?ν?=?q q 005.02 01 .02=== T δ s c L c 781067.610 3005.01 -?=??== δτ MHz c c 24.010 67.614.321 217 =???= = -πτν? (5) 某固体激光器的腔长为45cm ,介质长30cm ,折射率n=1.5,设此腔总的单程损耗率0.01π,求此激光器的无源腔本征纵模的模式线宽。

激光原理与技术习题

1.3 如果微波激射器和激光器分别在λ=10μm ,=5×10- 1μm 输出1W 连续功率,试问每秒钟从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中346.62610J s h -=??为普朗克常数, 8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 1.4设一光子的波长=5×10- 1μm ,单色性λ λ ?=10- 7,试求光子位置的不确定量x ?。若光子的波长变为5×10- 4μm (x 射线)和5 ×10 -18 μm (γ射线),则相应的x ?又是多少 m m x m m m x m m m x m h x h x h h μμλμμλμλλμλλ λλλλλλλλ 11171863462122 1051051051051051051055/105////0 /------?=?=???=?=?=???=?==?=???=?=?P ≥?≥?P ??=P?=?P =?P +P?=P 1.7如果工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105S - 1,试问:(1)该跃迁的受激辐射爱因斯坦系数B 10是多少?(2)为使受激跃迁几率比自发跃迁几率大三倍,腔内的单色能量密度ρ应为多少? c P nh nh νλ==P P n h hc λ ν= =

1.8如果受激辐射爱因斯坦系数B10=1019m3s-3w-1,试计算在(1)λ=6 m(红外光);(2)λ=600nm(可见光);(3)λ=60nm(远紫外光);(4)λ=0.60nm(x射线),自发辐射跃迁几率A10和自发辐射寿命。又如果光强I=10W/mm2,试求受激跃迁几率W10。 2.1证明,如习题图2.1所示,当光线从折射率η1的介质,向折射率为η2的介质折射时,在曲率半径为R的球面分界面上,折射光线所经受的变换矩阵为 其中,当球面相对于入射光线凹(凸)面时,R取正(负)值。 习题

激光原理与技术试题答案

2006-2007学年 第1学期 《激光原理与技术》B 卷 试题答案 1. 填空题(每题4分)[20] 激光的相干时间τc 和表征单色性的频谱宽度Δν之间的关系为___1c υτ?= 一台激光器的单色性为5x10-10,其无源谐振腔的Q 值是_2x109 如果某工作物质的某一跃迁波长为100nm 的远紫外光,自发跃迁几率A 10等于105 S -1,该跃迁的受激辐射爱因斯坦系数B 10等于_____6x1010 m 3s -2J -1 设圆形镜共焦腔腔长L=1m ,若振荡阈值以上的增益线宽为80 MHz ,判断可能存在_两_个振荡频率。 对称共焦腔的 =+)(2 1 D A _-1_,就稳定性而言,对称共焦腔是___稳定_____腔。 2. 问答题(选做4小题,每小题5分)[20] 何谓有源腔和无源腔如何理解激光线宽极限和频率牵引效应 有源腔:腔内有激活工作物质的谐振腔。无源腔:腔内没有激活工作物质的谐振腔。 激光线宽极限:无源腔的线宽极限与腔内光子寿命和损耗有关:122' c R c L δ υπτπ?= = ;有源腔由于受到自发辐射影响,净损耗不等于零,自发辐射的随机相位造成输出激光的线宽极限 220 2()t c s t out n h n P πυυυ?= ?。 频率牵引效应:激光器工作物质的折射率随频率变化造成色散效应,使得振荡模的谐振频率总是偏离无源腔相应的模的频率,并且较后者更靠近激活介质原子跃迁的中心频率。这种现象称为频率牵引效应。 写出三能级和四能级系统的激光上能级阈值粒子数密度,假设总粒子数密度为n ,阈值反转粒子数密度为 n t. 三能级系统的上能级阈值粒子数密度22 t t n n n += ;四能级系统的上能级阈值粒子数密度2t t n n ≈。 产生多普勒加宽的物理机制是什么 多普勒加宽的物理机制是热运动的原子(分子)对所发出(或吸收)的辐射的多普勒频移。 均匀加宽介质和非均匀加宽介质中的增益饱和有什么不同分别对形成的激光振荡模式有何影响 均匀加宽介质:随光强的增加增益曲线会展宽。每个粒子对不同频率处的增益都有贡献,入射的强光不仅使自身的增益系数下降,也使其他频率的弱光增益系数下降。满足阀值条件的纵模

激光原理习题 (详细)

1、光与物质相互作用的三个基本过程:自发辐射、受激辐射、受激吸收。 2、激光器的损耗指的是在激光谐振腔内的光损耗,这种损耗可以分为两类:内部损耗、镜面损耗。 3、形成激光的条件:实现粒子数反转、满足阈值条件和谐振条件。 4、激光的四个基本特性:高亮度、方向性、单色性和相干性。 5、激光调制方法:内调制是指在激光生成的振荡过程中加载调制信号,通过改变激光的输 出特性而实现的调制。 外调制则是在激光形成以后,再用调制信号对激光进行调制,它并不改 变激光器的参数,而是改变已经输出的激光束的参数。 就调制方法来讲,也有振幅调制、强度调制、频率调制、相位调制以及脉冲调制等形式。 6、三种谱线增宽形式:自然增宽、碰撞增宽、多普勒增宽。 7、单纵模激光器的选频方法:短腔法、法布里—珀罗标准具法、三反射镜法。 8、激光器的基本结构:激光工作物质:能够实现粒子数反转,产生受激光放大。激励能源:能将低能级的粒子不断抽运到高能级,补充受激辐射减少高能级上的粒子数。光学谐振腔:提高光能密度,保证受激辐射大于受激吸收。 9、高斯光束的基膜腰斑半径(腰粗)公式:W 0= 2 1 W s = 2 1 π λL 简答题: 1、用速率方程组证明二能级系统不可能实现粒子数反转分布。

2、简述光频电磁场与物质的三种相互作用过程,并指出其影响因素。(画图说明) 答:光与物质相互作用的本质是光与物质中的电子发生相互作用,使得电子在不同的能级之间跃迁。包括三种基本过程:自发发射、受激辐射以及受激吸收。 .自发发射——在无外电磁场作用时,粒子自发地从E2跃迁到E1,发射光子hv。(a)特点:各粒子自发、独立地发射的光子。各光子的方向、偏振、初相等状态是无规的, 独立的,粒子体系为非相干光源。受激辐射:——原处于高能级E2的粒子, 受到能量恰为hv=E2-E1的光子的激励, 发射出与入射光子相同的一个光子而跃迁到低能级E1 。特点:①受激发射只能在频率满足hv=E2-E1的光子的激励下发生;②不同粒子发射的光子与入射光子的频率、位相、偏振等状态相同; 这样,光场中相同光子数目增加,光强增大,即入射光被放大——光放大过程。受激吸收:——原处于低能级E1的粒子,受到能量恰为hv=E2-E1的光子照射而吸收该光子的能量,跃迁到高能级E2。 3、

激光原理与技术习题一样本

《激光原理与技术》习题一 班级序号姓名等级 一、选择题 1、波数也常见作能量的单位, 波数与能量之间的换算关系为1cm-1 = eV。 ( A) 1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er光纤激光器的中心波长为波长为1.530μm, 则产生该波长的两能级之间的能量 间隔约为 cm-1。 ( A) 6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm的He-Ne激光器, 谱线线宽为Δν=1.7×109Hz。谐振腔长度为50cm。 假设该腔被半径为2a=3mm的圆柱面所封闭。则激光线宽内的模式数为个。 ( A) 6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于、、光子的科学。 2、光子具有自旋, 而且其自旋量子数为整数, 大量光子的集合, 服从统计分布。 3、设掺Er磷酸盐玻璃中, Er离子在激光上能级上的寿命为10ms, 则其谱线宽度 为。 三、计算与证明题 1.中心频率为5×108MHz的某光源, 相干长度为1m, 求此光源的单色性参数及线宽。

2.某光源面积为10cm 2, 波长为500nm, 求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/ex p(1-kT hv 。 《激光原理与技术》习题二 班级 姓名 等级 一、 选择题 1、 在某个实验中, 光功率计测得光信号的功率为-30dBm, 等于 W 。 ( A) 1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、 激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、 填空题 1、 如果激光器在=10μm λ输出1W 连续功率, 则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、 一束光经过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍, 则该物 质的增益系数为 。 三、 问答题 1、 以激光笔为例, 说明激光器的基本组成。 2、 简要说明激光的产生过程。 3、 简述谐振腔的物理思想。 4、 什么是”增益饱和现象”? 其产生机理是什么? 四、 计算与证明题 1、 设一对激光能级为2E 和1E (设g 1=g 2), 相应的频率为ν(波长为λ), 能级上的粒子数密度 分别为2n 和1n , 求 (a) 当ν=3000MHz , T=300K 时, 21/?n n =

2009-2010《激光原理与技术》课程试题B 试卷试题答案

一、填空题(20分,每空1分) 1、爱因斯坦提出的辐射场与物质原子相互作用主要有三个过程,分别是(自发辐射)、(受激吸收)、(受激辐射)。 2、光腔的损耗主要有(几何偏折损耗)、(衍射损耗)、(腔镜反射不完全引起的损耗)和材料中的非激活吸收、散射、插入物损耗。 3、激光中谐振腔的作用是(模式选择)和(提供轴向光波模的反馈)。 4、激光腔的衍射作用是形成自再现模的重要原因,衍射损耗与菲涅耳数有关,菲涅耳数的近似表达式为(错误!未找到引用源。 ),其值越大,则衍射损耗(愈小)。 5、光束衍射倍率因子文字表达式为(错误!未找到引用源。 )。 6、谱线加宽中的非均匀加宽包括(多普勒加宽),(晶格缺陷加宽)两种加宽。 7、CO2激光器中,含有氮气和氦气,氮气的作用是(提高激光上能级的激励效率),氦气的作用是(有助于激光下能级的抽空)。 8、有源腔中,由于增益介质的色散,使纵横频率比无源腔频率纵模频率更靠近中心频率,这种现象叫做(频率牵引)。 9、激光的线宽极限是由于(自发辐射)的存在而产生的,因而无法消除。 10、锁模技术是为了得到更窄的脉冲,脉冲宽度可达(错误!未找到引用源。)S ,通常有(主动锁模)、(被动锁模)两种锁模方式。 二、简答题(四题共20分,每题5分) 1、什么是自再现?什么是自再现模? 开腔镜面上的经一次往返能再现的稳态场分布称为开腔的自在现摸 2、高斯光束的聚焦和准直,是实际应用中经常使用的技术手段,在聚焦透镜焦距F 一定的条件下,画出像方束腰半径随物距变化图,并根据图示简单说明。 3、烧孔是激光原理中的一个重要概念,请说明什么是空间烧孔?什么是反转粒子束烧孔? 4、固体激光器种类繁多,请简单介绍2种常见的激光器(激励方式、工作物质、能级特点、可输出光波波长、实际输出光波长)。 三、推导、证明题(四题共40分,每题10分) 1、短波长(真空紫外、软X 射线)谱线的主要加宽是自然加宽。试证明峰值吸收截面为π λσ22 = 。

激光原理与技术习题一

《激光原理与技术》习题一 班级 序号 姓名 等级 一、选择题 1、波数也常用作能量的单位,波数与能量之间的换算关系为1cm -1 = eV 。 (A )1.24×10-7 (B) 1.24×10-6 (C) 1.24×10-5 (D) 1.24×10-4 2、若掺Er 光纤激光器的中心波长为波长为1.530μm ,则产生该波长的两能级之间的能量间 隔约为 cm -1。 (A )6000 (B) 6500 (C) 7000 (D) 10000 3、波长为λ=632.8nm 的He-Ne 激光器,谱线线宽为Δν=1.7×109Hz 。谐振腔长度为50cm 。假 设该腔被半径为2a=3mm 的圆柱面所封闭。则激光线宽内的模式数为 个。 (A )6 (B) 100 (C) 10000 (D) 1.2×109 4、属于同一状态的光子或同一模式的光波是 . (A) 相干的 (B) 部分相干的 (C) 不相干的 (D) 非简并的 二、填空题 1、光子学是一门关于 、 、 光子的科学。 2、光子具有自旋,并且其自旋量子数为整数,大量光子的集合,服从 统计分布。 3、设掺Er 磷酸盐玻璃中,Er 离子在激光上能级上的寿命为10ms ,则其谱线宽度为 。 三、计算与证明题 1.中心频率为5×108MHz 的某光源,相干长度为1m ,求此光源的单色性参数及线宽。 2.某光源面积为10cm 2,波长为500nm ,求距光源0.5m 处的相干面积。 3.证明每个模式上的平均光子数为 1 )/exp(1 kT hv 。

《激光原理与技术》习题二 班级 姓名 等级 一、选择题 1、在某个实验中,光功率计测得光信号的功率为-30dBm ,等于 W 。 (A )1×10-6 (B) 1×10-3 (C) 30 (D) -30 2、激光器一般工作在 状态. (A) 阈值附近 (B) 小信号 (C) 大信号 (D) 任何状态 二、填空题 1、如果激光器在=10μm λ输出1W 连续功率,则每秒从激光上能级向下能级跃迁的粒子数 是 。 2、一束光通过长度为1m 的均匀激励的工作物质。如果出射光强是入射光强的两倍,则该物 质的增益系数为 。 三、问答题 1、以激光笔为例,说明激光器的基本组成。 2、简要说明激光的产生过程。 3、简述谐振腔的物理思想。 4、什么是“增益饱和现象”?其产生机理是什么? 四、计算与证明题 1、设一对激光能级为2E 和1E (设g 1=g 2),相应的频率为ν(波长为λ),能级上的粒子数密度分 别为2n 和1n ,求 (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=? 2、设光振动随时间变化的函数关系为 (v 0为光源中心频率), 试求光强随光频变化的函数关系,并绘出相应曲线。 ???<<=其它,00),2exp()(00c t t t v i E t E π

08激光原理与技术试卷B

08激光原理与技术试卷B

2 华南农业大学期末考试试卷(B 卷) 2008~2009学年第一学期 考试科目:激光原理与技术 考试类型:(闭卷) 考试时间:120分钟 姓名 年级专业 学号 题号 一 二 三 四 总分 得分 评阅人 一.填空题(每空2分,共30分) 1. 设小信号增益系数为0g ,平均损耗系数为α,则激光器的振荡条件为 g o > α 。 2. 相格 是相空间中用任何实验所能分辨的最小尺度。 3. 四能级系统中,设3E 能级向2E 能级无辐射跃迁的量子效率为1η,2E 能级向1E 能 级跃迁的荧光效率为2η,则总量子效率为 。。 4. 当统计权重21f f =时,两个爱因斯坦系数12B 和21B 的关系为 B 12=B 21 。 5. 从光与物质的相互作用的经典模型,可解释 色散 现象和 物质对光的 吸收 现象。 6. 线型函数的归一化条件数学上可写成 。 7. 临界腔满足的条件是 g1g2=1 或 g1g2=0 。 8. 把开腔镜面上的经过一次往返能再现的稳态场分布称为开腔的 自再现模 。 9. 对平面波阵面而言,从一个镜面中心看到另一个镜面上可以划分的菲涅耳半周期 带的数目称为 菲涅耳数 。

3 10. 均匀加宽指的是引起加宽的物理因素对各个原子是 等同的, 。 11. 入射光强和饱和光强相比拟时,增益随入射光强的增加而减少,称 增益饱和 现 象。 12.方形镜的mnq TEM 模式沿x 方向有 m 条节线,没y 方向有 n 条节线. 二.单项选择题(每题2分,共10分) 1. 关于高斯光束的说法,不正确的是( ) (A)束腰处的等相位面是平面; (B)无穷处的等相位面是平面; (C)相移只含几何相移部分; (D)横向光强分布是不均匀的。 2. 下列各模式中,和圆型共焦腔的模q n m TEM ,,有相同频率的是(A ) (A)1,,2-+q n m TEM ; (B) q n m TEM ,,2+; (C) 1,,1-+q n m TEM ; (D) 1,1,2-++q n m TEM 。 3. 下列各种特性中哪个特性可以概括激光的本质特性(C ) (A)单色性; (B)相干性; (C)高光子简并度; (D)方向性。 4. 下列加宽机制中,不属于均匀加宽的是(B ) (A)自然加宽; (B)晶格缺陷加宽; (C)碰撞加宽; (D)晶格振动加宽。 5. 下列方法中,不属于横模选择的是(D ) (A)小孔光阑选模; (B) 非稳腔选模; (C) 谐振腔参数N g ,选择法; (D)行波腔法。 三、简答题(每题4分,共20分)

激光原理例题

第四章思考与练习题 1.光学谐振腔的作用。是什么 2.光学谐振腔的构成要素有哪些,各自有哪些作用 3.CO2激光器的腔长L=1.5m,增益介质折射率n=1,腔镜反射系数分别为r1=,r2=,忽 略其它损耗,求该谐振腔的损耗δ,光子寿命Rτ,Q值和无源腔线宽ν?。 4.证明:下图所示的球面折射的传播矩阵为 ?? ? ? ? ? ? ? - 2 1 2 1 2 1 η η η η η R 。折射率分别为 2 1 ,η η的两介质分界球面半径为R。 5.证明:下图所示的直角全反射棱镜的传播矩阵为 ? ? ? ? ? ? ? ? - - - 1 2 1 η d 。折射率为n的棱镜高d。 6.导出下图中1、2、3光线的传输矩阵。

R 7. 已知两平板的折射系数及厚度分别为n 1,d 1,n 2,d 2。(1)两平板平行放置,相距l ,(2) 两平板紧贴在一起,光线相继垂直通过空气中这两块平行平板的传输矩阵,是什么 8. 光学谐振腔的稳定条件是什么,有没有例外谐振腔稳定条件的推导过程中,只是要求光 线相对于光轴的偏折角小于90度。因此,谐振腔稳定条件是不是一个要求较低的条件,为什么 9. 有两个反射镜,镜面曲率半径,R 1=-50cm ,R 2=100cm ,试问: (1)构成介稳腔的两镜间距多大 (2)构成稳定腔的两镜间距在什么范围 (3)构成非稳腔的两镜间距在什么范围 10. 共焦腔是不是稳定腔,为什么 11. 腔内有其它元件的两镜腔中,除两腔镜外的其余部分所对应传输矩阵元为ABCD ,腔镜 曲率半径为1R 、2R ,证明:稳定性条件为1201g g <<,其中11/g D B R =-;22/g A B R =-。 12. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。 13. 激光器谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物 质长0.5m ,其折射率为,求腔长L 在什么范围内是稳定腔。 14. 如下图所示三镜环形腔,已知l ,试画出其等效透镜序列图,并求球面镜的曲率半径R 在什么范围内该腔是稳定腔。图示环形腔为非共轴球面镜腔,在这种情况下,对于在由光轴组成的平面内传输的子午光线,f = R cos /2,对于在于此垂直的平面内传输的弧矢光线,f = R/(2cos),为光轴与球面镜法线的夹角。

激光原理及应用试卷

激光原理及应用 考试时间:第18周星期五(2007年1月5日) 一单项选择(30分) 1.自发辐射爱因斯坦系数与激发态E2平均寿命τ的关系为(B) 2.爱因斯坦系数A21和B21之间的关系为(C) 3.自然增宽谱线为(C) (A)高斯线型(B)抛物线型(C)洛仑兹线型(D)双曲线型 4.对称共焦腔在稳定图上的坐标为(B) (A)(-1,-1)(B)(0,0)(C)(1,1)(D)(0,1) 5.阈值条件是形成激光的(C) (A)充分条件(B)必要条件(C)充分必要条件(D)不确定 6.谐振腔的纵模间隔为(B) 7.对称共焦腔基模的远场发散角为(C) 8.谐振腔的品质因数Q衡量腔的(C) (A)质量优劣(B)稳定性(C)储存信号的能力(D)抗干扰性 9.锁模激光器通常可获得(A)量级短脉冲 10.YAG激光器是典型的(C)系统 (A)二能级(B)三能级(C)四能级(D)多能级 二填空(20分) 1.任何一个共焦腔与等价,

而任何一个满足稳定条件的球面腔地等价于一个共焦腔。(4分) 2.光子简并度指光子处于、 、、。(4分) 3.激光器的基本结构包括三部分,即、 和。(3分) 4.影响腔内电磁场能量分布的因素有、 、。(3分) 5.有一个谐振腔,腔长L=1m,在1500MHz的范围内所包含的纵模个数为 个。(2分) 6.目前世界上激光器有数百种之多,如果按其工作物质的不同来划分,则可分为四大类,它们分别是、、和。(4分) 三、计算题(42分) 1.(8分)求He-Ne激光的阈值反转粒子数密度。已知=6328?,1/f(ν) =109Hz,=1,设总损耗率为,相当于每一反射镜的等效反射率R=l-L =98.33%,=10—7s,腔长L=0.1m。 2.(12分)稳定双凹球面腔腔长L=1m,两个反射镜的曲率半径大小分别为R 1=3m求它的等价共焦腔腔长,并画出它的位置。 =1.5m,R 2 3.(12分)从镜面上的光斑大小来分析,当它超过镜子的线度时,这样的横模就不可能存在。试估算在L=30cm,2a=0.2cm的He-Ne激光方形镜共焦腔中所可能出现的最高阶横模的阶次是多大? 4.4.(10分)某高斯光束的腰斑半径光波长。求与腰斑相距z=30cm处的光斑及等相位面曲率半径。 四、论述题(8分) 1.(8分)试画图并文字叙述模式竞争过程

激光原理及应用习题

《激光原理及应用》习题 1. 激光的产生分为理论预言和激光器的诞生两个阶段?简述激光理论的创始人,理论要点和提出理论的时间。简 述第一台激光诞生的时间,发明人和第一台激光器种类? 答:激光理论预言是在1905年爱因斯坦提出的受激辐射理论。世界上第一台激光器是于1960年美国的梅曼研制成功的。第一台激光器是红宝石激光器。 2. 激光谱线加宽分为均匀加宽和非均匀加宽,简述这两种加宽的产生机理、谱线的基本线型。 答:如果引起加宽的物理因数对每一个原子都是等同的,则这种加宽称为均匀加宽,线型为洛仑兹线型。自然加宽、碰撞加宽及晶格振动加宽均属均匀加宽类型。 非均匀加宽是原子体系中每一个原子只对谱线内与它的表观中心频率相应的部分有贡献,线型为高斯线型。多普勒加宽和固体晶格缺陷属于非均匀加宽。 3. 军事上的激光器主要应用那种激光器?为什么应用该种激光器? 答:军事上主要用的是CO 2激光器,这是因为CO 2激光波长处于大气窗口,吸收少,功率大,效率高等特点。 4. 全息照相是利用激光的什么特性的照相方法?全息照相与普通照相相比有什么特点? 答:全息照相是利用激光的相干特性的。全息照片是三维成像,记录的是物体的相位。 1. 激光器的基本结构包括三个部分,简述这三个部分 答:激光工作物质、激励能源(泵浦)和光学谐振腔; 2. 物质的粒子跃迁分辐射跃迁和非辐射跃迁,简述这两种跃迁的区别。 答:粒子能级之间的跃迁为辐射跃迁,辐射跃迁必须满足跃迁定则;非辐射跃迁表示在不同的能级之间跃迁时并不伴随光子的发射或吸收,而是把多余的能量传给了别的原子或吸收别的原子传给他的能量。 3. 工业上的激光器主要有哪些应用?为什么要用激光器? 答:焊接、切割、打孔、表面处理等等。工业上应用激光器主要将激光做热源,利用激光的方向性好,能量集中的特点。 4. 说出三种气体激光器的名称,并指出每一种激光器发出典型光的波长和颜色。 答:He-Ne 激光器,632.8nm (红光),Ar+激光器,514.5nm (绿光),CO 2激光器,10.6μm (红外) 计算题 1.激光器为四能级系统,已知3能级是亚稳态能级,基态泵浦上来的粒 子通过无辐射跃迁到2能级,激光在2能级和1能级之间跃迁的粒子产 生。1能级与基态(0能级)之间主要是无辐射跃迁。 (1)在能级图上划出主要跃迁线。 (2)若2能级能量为4eV ,1能级能量为2eV ,求激光频率; 解:(1)在图中画出 (2)根据爱因斯坦方程 21h E E ν=- 得 ()1914213442 1.610 4.829106.62610E E Hz h ---??-===??ν 2.由凸面镜和凹面镜组成的球面腔,如图。凸面镜的曲率半径为2m ,凹面镜的曲率半径为3m ,腔长为1.5m 。发光波长600nm 。判断此腔的稳定性; 解: 激光腔稳定条件 R3 32ω 21ω

激光原理及应用

激光原理及应用 第1章 辐射理论概要与激光产生的条件 1.光波:光波是一种电磁波,即变化的电场和变化的磁场相互激发,形成变化的电磁场在空间的传播。光波既是电矢量→E 的振动和传播,同时又是磁矢量→B 的振动和传播。在均匀介质中,电矢量→ E 的振动方向与磁矢量→B 的振动方向互相垂直,且→E 、→B 均垂直于光的传播方向→k 。(填空) 2.玻尔兹曼分布:e g n g n kT n n m m E E n m )(--=(计算) 3.光和物质的作用:原子、分子或离子辐射光和吸收光的过程是与原子的能级之间的跃迁联系在一起的。物质(原子、分子等)的相互作用有三种不同的过程,即自发辐射、受激辐射及受激吸收。对一个包含大量原子的系统,这三种过程总是同时存在并紧密联系的。在不同情况下,各个过程所占比例不同,普通光源中自发辐射起主要作用,激光器工作过程中受激辐射起主要作用。(填空) 自发辐射:自发辐射的平均寿命A 211=τ(A 21指单位时间内发生自 发辐射的粒子数密度,占处于E 2能级总粒子数密度的百分比) 4.自发辐射、受激吸收和受激吸收之间的关系 在光和大量原子系统的相互作用中,自发辐射、受激辐射和受激吸收三种过程是同时发生的,他们之间密切相关。在单色能量密度为ρV 的光照射下,dt 时间内在光和原子相互作用达到动平衡的条件下有下述关系:dt dt dt v v n B n B n A ρρ112221221=+ (自发辐射光子数) (受激辐射光子数) (受激吸收光子数)

即单位体积中,在dt 时间内,由高能级E2通过自发辐射和受激辐射而跃迁到低能级E1的原子数应等于低能级E1吸收光子而跃迁到高能级E2的原子数。(简答) 5.光谱线增宽:光谱的线型和宽度与光的时间相干性直接相关,对许多激光器的输出特性(如激光的增益、模式、功率等)都有影响,所以光谱线的线型和宽度在激光的实际应用中是很重要的问题。(填空) 光谱线增宽的分类:自然增宽、碰撞增宽、多普勒增宽 自然增宽:自然增宽的线型函数的值降至其最大值的1/2时所对应的两个频率之差称作原子谱线的半值宽度,也叫作自然增宽。 碰撞增宽:是由于发光原子间的相互作用造成的。 多普勒增宽:是由于发光原子相对于观察者运动所引起的谱线增宽。当光源和接收器之间存在相对运动时,接收器接收到的光波频率不等于光源与接收器相对静止时的频率,叫光的多普勒效应。 6.按照谱线增宽的特点可分为均匀增宽和非均匀增宽两类。 7.要实现光的放大,第一需要一个激励能源,用于把介质的粒子不断地由低能级抽运到高能级上去;第二需要有合适的发光介质(或称激光工作物质),它能在外界激励能源的作用下形成g n g n 1 122 的粒子数密度反转分布状态。 8.要使受激辐射起主要作用而产生激光,必须具备三个条件: (1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或者离子)有适合于产生受激辐射的能级结构; (2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能

相关主题
文本预览
相关文档 最新文档