当前位置:文档之家› 浅谈电力系统线路相序的测量方法

浅谈电力系统线路相序的测量方法

浅谈电力系统线路相序的测量方法
浅谈电力系统线路相序的测量方法

浅谈电力系统线路相序的测量方法

国能子金质量部边进文

测量数据:

1、测量电压间、电流间、电压与电流间的相位差;

2、测量功率和功率因数;

3、测量三相相序;

4、测量零序电流。

具体功能:

1、感性和容性电路的判别;

2、继电保护各组CT之间相位关系;

3、检查变压器接线组别;

4、检查有功电度表接线正确与否;

5、判断电度表运行快慢,合理收缴电

6、作为漏电流表使用等。

电力系统继电保护和计量专业、工矿企业、石油化工、冶金企

业进行二次回路检查的重要方法。测量电力线路参数,绘制电力系

统向量六角图。

使用方法:

本仪器对向量图的定义为:以时钟12点为零点,顺时针为正

向序。

以直接交流采样法实现对工频电力参数的测量,[电压有效值(U1、U2)、电流有效值(I1、I2),相位(?U1U2、?I1I2、?U1I1、?U2I2、?U1I2、?U2I1)、有功功率(P)、无功功率(Q)、工频频率(F)、功率因数(PF)]并可配置CT变比测量功能

5mA-10A范围内准确测量单相、三相三线、三相四线系统的电压与电压(U-U)、电压与电流(U-I)、电流与电流(I-I)之间的各种相位关系和相位角(?U1U2、?I1I2、

?U1I1、?U2I2、?U1I2、?U2I1)。

在三相四线系统中:

对于三相四线制的电网,三根相线中任意两根间的电压称

线电压,任意一根的相线与零线间的电压称相电压,三相电压

的相位相差120度,线电压是两个相的相电压的矢量和,线电

压与相电压的大小关系是:线电压=根号3倍的相电压.对于市

电,相电压220伏,线电压是220伏的根号3倍,即380伏.

U(V)表示A、B、C三相电压值。I(A)表示A、B、C三相电流值。φ表示同相的电压与电流间的相位值。

φ(U)表示电压间的相位,其中AB表示A相电压与B相电压间的相位差;AC表示A相电压与C相电压间的相位差;BC表示B相电压与C相电压间的相位差。

φ(I)表示电流间的相位,其中AB表示A相电流与B相电流间的相位差;AC表示A相电流与C相电流间的相位差;BC表示B相电流与C相电流间的相位差。

旋转开关置U1U2位置。将A相接U1插孔,B相接U2插孔,零线

同时接入两输入回路的±插孔。若相位显示为120°左右,则为正相序;若相位显示为240°左右,则为负相序。

在三相三线系统中:

U(V)表示的是线电压的值,其中A表示UAB的大小,C表示UCB的大小;

φA表示UAB与IA间的相位,φC表示UCB表示IC间的相位;φ(U)AC表示UABUCB间的相位;φ(I)表示IA与IC间的相位。

旋转开关置U1U2位置。将三相三线系统的A相接入U1插孔,B

相同时接入与U1对应的±插孔及与U2对应的±插孔,C相接入U2

插孔。若此时测得相位值为300°左右,则被测系统为正相序;若测

得相位为60°左右,则被测系统为负相序。

换一种测量方式,将A相接入U1插孔,B相同时接入与U1对

应的±插孔及U2插孔,C相接入与U2对应的±插孔。这时若测得的

相位值为120°,则为正相序;若测得的相位值为240°,则为负相

序。

P(W)表示各相的有功功率,单位(千)瓦;

Q(Var)表示各相的无功(感性或容性)功率,单位(千)乏;

COSφ表示各相的功率因数;

旋转开关置U1I2位置。将负载电压接入U1输入端,负载电流经测量钳接入I2插孔。若相位显示在0°~90°范围,则被测负载感性;若相位显示在270°~360°范围,则被测负载为容性。

故障和非故障不一样;正常情

况下,带的负荷不一样相位也不一

致,受电和送电同样不一致,类似的

太多了,总之电容元件为电流超前

电压90度,电阻元件为电流和电压

同相位,电感元件为电流滞后电压

90度,比如一般星三角11点接线,

低压馈线所有互感器接线方式均为

指向母线,负荷为正常居民用电的

情况下,以A相电压0度为参考点的

话,对应的A相电流为-30度左右.电感特性电压超前电流,电容时相反。

纯电阻电路:0度;纯电容器电路:电压滞后90度;纯电感器电路:电流滞后90度。

对电容突加电压,瞬间电容产生最大的电流,而电压要等到电容两段电荷积累产生,因此电容使电压滞后于电流。同样给电感突加电压,电感电流要慢慢才能增大,故电感电流相位会滞后于电压相位差就是电流的最大值与电压的最大值不同时出现.如果差半个周期就是差180度.可能超前也可能落后.

引用实例:

1、测量三相相序

可以通过相位角来判断。更直观地,也可根据各被测电量在向量图中的对应位置关系来判断。

2、判断感性、容性电路

将被测电路的电压从仪器的Ua端输入,电流从Ib端输入,若测得相角<90°,则电路为感性;若测得相角>270°,则电路为容性。

3、检查变压器接线组别

电力变压器常采用Y/Y0-12,Y0/Δ-11,Y/Δ-11三种接线组别。当采用Y/Y0-12接法时,UAB与Uab同相,测其相角为0°;当采用Y0/Δ-11或Y/Δ-11接法时,Uab与UAB的相角为330°,即Uab滞后UAB330°。(下标A、B表示高压绕组,a、b表示低压绕组)。

4、三相绕组连接方式的判别

三相交流发电机的三相绕组或三相负载,或三相变压器的高、低压绕组,其连接方式都只有Y(星形)和Δ(三角形)之分。

当采用Y形接法时,测得UAB与UA间的相角为330°,测得Uab与Ua间的相角为330°。

当三相负载或三相变压器的低压绕组采用Δ11接法时,测得Uab与Ua间的相角为300°。

5、判断三相二元件有功电度表的接线

考虑到电流的进出和三相电压相序,七条输入线有48种组合,这48种组合中,错误的有46种,其中不转12种,顺转数字不准有10种,反转12种,(随功率因数的变化)时而顺转、时而翻转的有12种。用该仪器测量UAB与IA的相位角、UCB与IC的相位角,若二者之差等于±300°,则接线正确。

6、估算电度表运行快慢

根据公式:T=3600n/NP,其中P是测量时电度表的负载功率(KW),N是电度表常数(转/KWH),先计算出电度表转n圈时所用的理论时间T;然后测出电电力变压器常采用Y/Y0-12,Y0/Δ-11,Y/Δ-11三种接线组别。当采用Y/Y0-12接法时,UAB与Uab同相,测其相角为0°;当采用Y0/Δ-11或Y/Δ-11接法时,Uab与UAB的相角为330°,即Uab滞后UAB330°。(下标A、B表示高压绕组,a、b表示低压绕组)。

7、估算电度表运行快慢,电力检测设备

根据公式:T=3600n/NP,其中P是测量时电度度表的负载功率(KW),N是电度表常数(转/KWH),先计算出电度表转n圈时所用的理论时间T;然后测出电度表转n圈时,实际所用时间t;比较t与T,就可判断电度表运行快慢。

8、测量漏电流

1)对于两相设备,当设备不漏电时,两线电流大小相等,方向相反,两线电流值和为零;如果让两条线同时从电流钳口通过,则仪器该电流显示为零。如果有漏电,则两线电流不等,此时仪器该电流值即为漏电流值。

2)对于三相三线设备,则让三条线同时从电流钳口通过,根据仪器该电流值来判断。

3)对于三相四线设备,则让四条线同时从电流钳口通过,根据仪器该电流值来判断。

9、测量最多3路电流矢量和将最多3路被测电流任意接入仪器的电流输入端子,仪器的IN值即为被测电流矢量和。

GPS跨河水准测量的理论与实践

GPS定位技术运用于跨河水准测量的理论与实践 目录 第一节:GPS定位技术运用于跨河水准测量的理论依据 (1) 第二节GPS定位技术运用于跨河水准测量的适用范围 (4) 第三节GPS定位技术运用于跨河水准测量的布点要求 (5) 第四节GPS技术运用于跨河水准测量中GPS观测及数据处理 (6) 第五节GPS定位技术运用于淮扬镇新建铁路项目跨河水准测量 (9) 第一节:GPS定位技术运用于跨河水准测量的理论依据 ⒈GPS大地高,水准测量的正常高,高程异常 GPS测量是以WGS-84椭球面为基准,在WGS-84地心坐标系中进行的,所提供的高程为相对于WGS-84椭球的大地高,遗憾的是相对于WGS-84椭球的GPS大地高是没有物理意义的,只是一个假定的高程系统,而实际工程应用中采用的是以似大地水准面为基准的正常高系统。所以,在实际应用中一般要将GPS大地高转化为目前我国使用的正常高(我国现有的高程资料基本属于黄海56高程系或85高程系)。进行GPS高程转换要考虑WGS-84椭球和本地参考椭球的差异以及大地水准面和似大地水准面相对本地参考椭球的高差,即大地水准面高和高程异常。大地高、正常高和高程异常之间有如下关系: H G=H N+ξ 其中,HG为大地高;HN为正常高;ξ为高程异常,

高程异常,即同一测站点以WGS-84为基准的GPS大地高与以似 大地水准面为基准的正常高之间的高程异常。其几何关系见下图 ⒉高程异常变化值,高程异常变化率 高程异常变化值:当测区中某一个点A既用GPS定位技术测得其 GPS大地高HGA,又用常规高程测量方法测得其正常高HNA,我们 就可以求出A点的高程异常值; ξA=H G A- H NA 同样,当测区中某一个点B既用GPS定位技术测得其GPS大地高 HGB,又用常规高程测量方法测得其正常高HNB,我们就可以求出B 点的高程异常值。 ξB=H G B- H NB 测区中AB两点的高程异常变化值即为 △ξAB=ξA-ξB=( H G A- H NA)-( H G B- H NB)高程异常变化率:当AB两点的水平距离为LAB时,那么AB两点 高程异常变化率即为:

浅谈电力系统的继电保护

浅谈电力系统的继电保护 电力系统由发电、变电、输电、配电和用电等环节组成的电能生产运输系统与用电设备等用电消耗系统组成。而在电力系统中常见有危险故障和一些异常运行状态,而这些现象会发展成事故,使整个系统或其中一部分的正常工作遭到破坏。因此,切除故障元件的时间必须要求短到十分之一秒甚至更短,所以要有一套自动装置来执行这一任务。文章阐述了断电保护的要求,分析了断电保护的抗干扰、纵联电流差保护、工频变化量方向保护技术。 标签:电力系统;断电保护;技术 1 引言 断电保护装置能反应电力系统中电气元件发生故障或不正常运行状态,并动作与断路器或发出信号的一种自动装置。其主要任务是自动、迅速、有选择性的将故障原件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复运行。反应电气元件的不正常运行状态,并根据运行维护的条件,而动作于发出信号、减负荷或跳闸。 2 断电保护的基本要求 2.1 可靠性 保护装置的可靠性是指保护在应该动作时可靠动作,即不拒动,也称依赖性;不该动作时,既不误动,也称安全性。可靠性是由保护装置的制造质量、保护回路的连接和运行维护的水平决定。 2.2 选择性 选择性是指在电力系统发生故障时,保护装置仅将故障原件从系统中切除,尽量缩小因故障而停电的范围,保证无故障部分继续运行。只有合理的选择保护方式,并正确的进行整定才能保证保护装置良好的选择性,保护的选择和整定就是一个获得选择性的过程。 2.3 速动性 速动性是指在尽可能快速切除故障,减少设备及用户在大短路电流、低电压下运行的时间,降低设备的损坏程度,提高电力系统并列运行的稳定性。故障切除时间,它等于机电保护装置动作与断路器跳闸时间之和。 2.4 灵敏性 灵敏性是指保护装置对在其保护范围内发生的故障和不正常运行状态的反

电力系统的现状与发展趋势

我国电力系统的现状与发展趋势 马宁宁 (曲阜师范大学电气信息与自动化学院邮编: 276826) 摘要:我国电力系统情况复杂,为了能够深入了解我国电力系统的发展形势,对我国电力的系统进行了调查。 我国电力系统的整体现状比较好,随着经济的增长,电力需求也越来越大,但是存在地区的差异。电源结构也存在在一些问题,要调整这种电源结构,需从以下三个方面着手:一是每一种电源尤其火电需要进行技术进步调整;二是水电、火电及其他发电形式的比例应合理调整;三是电源布局也应调整。我国煤炭资源储藏量不少,但分布极不合理。负荷高的地方如华东地区基本没有煤,煤大部分集中在西北部或华北北部。而适宜建水电的地方大部分在西部。水能资源不少,但分布不合理。应该通过电网建设调整布局使电力资源得到最大优化我国幅员辽阔各种可再生资源比较丰富,要充分利用可再生资源,能够实现绿色电能的效果。 关键词:电力系统、能源、电源结构 China's electric power system status and development trend Ma Ningning (Qufu Normal university electricity information and automated institute zip code: 276826) Abstract:The more complicated the situation of China's electric power system, in order to understand the depth of China's electric power system development situation of China's electricity system were investigated. China's electric power system's overall status quo is better, with economic growth, electricity demand is also growing, but the existence of regional differences. Power structures also exist on some issues, it is necessary to adjust the power structure, to begin from the following three aspects: First, every kind of fire power, in particular the need for technological progress adjustment; Second, hydropower, thermal power and other forms of power generation should be proportional

浅谈电力系统自动化

浅谈电力系统自动化 “安全、可靠、经济、优质”的电能供应是现代社会对电力事业的要求,自动化的电力系统成为现代社会的发展趋势,而且电力系统自动化技术也不断地从低级到高级,从局部到整体。本文试对电力系统自动化发展趋势及新技术的应用作简要阐述。 标签:电力系统自动化探讨 1 电力系统自动化总的发展趋势 1.1 当今电力系统的自动控制技术正趋向于: ①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。②在设计分析上日益要求面对多机系统模型来处理问题。③在理论工具上越来越多地借助于现代控制理论。④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。⑤在研究人员的构成上益需要多“兵种”的联合作战。 1.2 整个电力系统自动化的发展则趋向于: ①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 2 具有变革性重要影响的三项新技术 2.1 电力系统的智能控制电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:

跨河精密水准测量

跨河精密水准测量

§5.6 跨河精密水准测量 水准规范规定,当一、二等水准路线跨越江河、峡谷、湖泊、洼地等障碍物的视线长度在l00m以内时,可用一般观测方法进行施测,但在测站上应变换一次仪器高度,观测两次的高差之差应不超过1.5mm,取用两次观测的中数。若视线长度超过100m时,则应根据视线长度和仪器设备等情况,选用特殊的方法进行观测。 5.6.1 跨河水准测量的特点及跨越场地的布设 由于跨越障碍物的视线较长,使观测时前后视线不能相等,仪器i角误差的影响随着视线长度的增长而增大,致使由短视线后视减长视线前视读数所得高差中包 含有较大的i角误差影响;跨 3 图5-24

3 越障碍的视线大大加长,必然使大气垂直折光的影响增大,这种影响随着地面覆盖物、水面情况和视线离水面的高度等因素的不同而不同,同时还随空气温度的变化而变化,因而也就随着时间而变化;视线长度的增大,水准标尺上的分划,在望远镜中观察就显得非常细小,甚至无法辨认,因而也就难以精确照准水准标尺分划和无法读数。 跨河水准测量场地如按图5-24布设,水准路线由北向南推进,必须跨过一条河流。此时可在河的两岸选定立尺点21b b 、和测站21I I 、。21I I 、同时又是立尺点。选点时使11I b 与2 2I b 相等。 观测时,仪器先在1I 处后视1 b ,在水准标尺上读数为1B ,再前视2I (此时2 I 点上竖立水准标尺),在水准标尺上读数为1 A 。设水准仪具有某一定值的i 角误差,其值为正,由此对读数1B 的误差影响为1?,对于读数1A 的误差影响为2?, 则由1I 站所得观测结果,可按下式计算2 b 相对于1 b 的正确高差 2221)()(2111b I b b h A B h +?--?-='

我国电力系统现状和发展趋势

. .. . 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 1.前言 中国电力工业自1882年在诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,

总量微乎其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以山、大亚湾/岭澳、田湾为代表的三个核电基地,截至2008年底,国已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机组21台,是世界上拥有百万千瓦超超临界机组最多的国家;30万千瓦及以上火电机组占全部火电机组的比重提高到69.43%,火电机组平均单机容量已经提高到2009年的10.31万千瓦。在6000千瓦及以上电厂火电装机容量中,供热机组容量比重为 22.42%,比上年提高了3个百分点; 三、电网建设不断加强。随着电源容量的日益增长,我国电网规模不断扩大,电网建设得到了不断加强,电网建设得到了迅速发展,输变电容量逐年增加。2009年,电网建设步伐加快,全年全国基建新增220千伏及以上输电线路回路长度41457千米,变电设备容量27756万千伏安。2009年底,全国220千伏及以上输电线路回路长度39.94万千米,比上年增长11.29%;220千伏及以上变电设备容量17.62亿千伏安,比上年增长19.40%。其中500千伏及以上交、直流电压等级的跨区、跨省、省骨干电网规模增长较快,其回路长度和变电容量分别比上年增长了16.64%和25.97%。目前,我国电网规模已超过美国,跃居世界首位; 四、西电东送和全国联网发展迅速。我国能源资源和电力负荷分布的不均衡性,决定了“西电东送”是我国的必然选择。西电东送重点在于输送水电电能。按照经济性原则,适度建设燃煤电站,实施西电东送;

浅谈对电力系统的认识

浅谈对电力系统稳态的认识 通过本学期的学习,通过老师耐心详细的教导,我对电力系统及其稳态分析有大致的认识,总结起来,有以下几点 一 电力系统分析的概念和本专业的地位及其作用 1831年法拉第发现了电磁感应定律,再次基础上,很出现了原始交流发电机,直流发电机和直流电动机,由于输电电压低,输送的距离不可能元,疏松的距离也不可能大。第一次高压输电出现于1882年,法国人M 。德波列茨将位于弥斯巴赫煤矿的蒸汽机发出的电能输送到57KM 外的慕尼黑,并用于驱动水泵,这个输电系统虽然规模很小,却可以认为是世界上第一个电力系统,因为他包括电力系统的各个重要的组成部分,即发电,输电,用电设备。 生产的发展对输送功率和输送距离提出了进一步的要求,以至于直流输电已不能适应。于是,1885年在制成变压器的基础上,实现了单相交流输电;1981年在制成三相变压器和三相异步电动机的基础上是,实现了三相交流输电,1891年在法兰克福进行的国际电工技术展览会上,在德国人奥斯卡。冯。米勒主持下展出了输电系统,奠定了近代输电的基础。显然,这已是近代电力系统的雏形,它的建成标志了电力系统去的了重大突破! 嗣后,三相交流制的的优越性很快显示出来,使用三相交流制的发电厂很快迅速发展,而直流制不久便被淘汰,在稍后,汽轮发电机组又取代了以蒸汽机为原动机的发电机组,发电厂之间出现了并列运行,输电电压,输送距离和输送功率不断增大,更大规模的电力系统不断涌现。仅仅数十年,在一些国家甚至涌现了全国性和跨国性的电力系统! 二电力系统中变压器参数的求法及数学模型的构建 电压器在电力系统的应用和发展中中起到了支撑作用,在电力系统中变压器的阻抗,和导纳是作为衡量变压器的主要参数,下面仅以双绕组变压器的模型为例介绍变压器的的参数的求法,(1)阻抗,求取变压器的电阻的方法和电机学课程中介绍的一样,Rt=PkU 2 n /1000S 2 n .其中公式中Rt-变压器高低绕组的总电阻,Pk-变压器的短路损耗(kw ) ;Sn-变压器的额定容量(MV A );UN-变压器的额定电压(KV ) 由于大容器的变压器的阻抗以电抗为主课近似认为变压器的短路电压百分值Uk%与变压器之间的电抗有如下的关系X t ≈Uk%U 2 n /100Sn ,式中Xt-变压器高低绕组的总电抗,Sn- 变压器的额定容量(MV A );UN-变压器的额定电压(KV )。 (2)导纳 变压器的励磁支路有两种表达方式,即以阻抗表示和以导纳表示,变压器励磁支路以导纳表示时Gt=P o /1000U 2 N 式中Gt-变压器的电导 (S );P O –变压器的空载损耗()kw ;U N -变压器的额定电压(kv );B T =I O %S N /100U 2 N 式中B T -变压器的电纳(s ) ;I O -变压器的空载电流百分值;Sn-变压器的额定容量(MV A );UN-变压器的额定电压(KV ) 求得变压器的阻抗,导纳之后,即可作为变压器的等值电路,变压器的等值电路有两种,即∫形等值电路和T 形等值电路,从而就可以构建出数学模型! 三电力系统中电力线路的的参数求法及数学模型的构建 电力线路的参数对线路中阻抗,和导纳的求解,下面就以有色金属导线单相架空线路 的求解为例介绍阻抗和导纳的求法X 1=2∏f(4.6l g D m /r+0.5u r )x10-4 0式中X1-导线长度的电 抗;r-导线的半径;ur-导线材料的相对导磁系数,f-交流电的频率,Dm-几何均距;电力线路的导纳的求法;b1=7.58x10-6 0/(㏒D ab /r)式中b1为电纳,D ab 为a 线时b 线的绝对电位; 电力线路的数学模型:在电力系统稳态分析中的电力线路的数学模型就是以电阻,电抗,电纳,电导表示的他们的等值电路,这大大简化了对电力系统电力线路的复杂分析!

跨河高程传递 精密三角高程测量代替一二等水准测量方法

跨河高程传递精密三角高程测量代替一二等水准测量方法 [摘要]跨河高程传递的测量技术有很多,本文主要简述了精密三角高程的方法来代替一二等水准测量方法的过程,国家一、二等水准测量规范》(CB/r12897-2007)规定了精密三角高程法跨河水准测量的作业方法。此方法应用于长距离三角高程多个项目大桥高程控制网。探讨了一下其中几个比较关键的问题,三角高程测量的误差来源及精度,得出了减弱各项误差从而提高精度的一些相关结论。 [关键词]跨河高程传递精密三角高程二等水准测量 目前高程测量方法一般分为几何水准测量、GPS水准测量和三角高程测量三大类。用传统水准的方法测定点与点之间的高差,所得到的地面点高程精度较高,普遍用于建立国家高程控制点。 跨河三角高程测量以它的测量时间、生产效率优于几何水准测量得以广泛应用,尤其在山区、水域作业,几何水准测量困难,精密三角高程测量发挥了很大优势,解决了几何水准测量难以解决的高程传递问题。随着科技的发展,例如莱卡TC2002、TCA2003测距测角的精度大大提高。通过一定的测量方法又可以减弱或者消除三角高程测量中各种误差源的影响,从而达到高等级水准测量的精度。 1具体跨河精密三角高程作业方法 现行《国家一、二等水准测量规范》规定,精密三角高程法跨河水准测量作业应布设成大地四边形,跨海测量既是通过该方法对近海海岛进行高程传递。 如图l所示。该图形由四条跨河边构成三个独立的闭合环。具有检核条件较多的优点。 ①水准仪测定本岸站点间高差hAB和hCD。②用全站仪测量测站点问距离D-AC、D-AD、D-BC、D-BD。③垂直角观测程序:(a)A、C两点设全站仪,B、D两点设标尺,首先观测本岸近标标定仪器高,测定bB,bD然后同步观测对岸远标尺,测定aAD、aCB;(b)A点仪器不动,C点移到D点,同步观测对岸远标尺,测定aAC、aDB;(c)D点仪器不动,同步观测对岸远标尺,测定aBC、aDA;(d)B点仪器不动,观测本岸近标尺,测定bA,再将D点仪器移回到C 点,同步观测对岸远标尺,测定aBD、aCA,最后,c点仪器观测本岸近标尺。至此,第一仪器位置的观测结束,2台仪器共完成4个单测回的观测量。④观测员、仪器、标尺相互调岸,按上述观测程序完成第二时段仪器位置的观测。 每条边均按单向观测进行高差计算,公式为: 式中:D为跨河点问的水平距离;Iv为垂直角;i为仪器高;v为照准高度.k

跨河测量

当水准路线需要跨越较宽的河流或山谷时,因跨河视线较长,超过了规定的长度,使水准仪i角的误差、大气折光和地球曲率误差均增大,且读尺困难。所以必须采用特殊的观测方法,这就是跨河水准测量方法。 图8-3 进行跨河水准测量,首先是要选择好跨河地点,如选在江河最窄处,视线避开草丛沙滩的上方,仪器站应选在开阔通风处,跨河视线离水面2~3m以上。跨河场地仪器站和立尺点的位置见图8-3。当使用两台水准仪作对向观测时,宜布置成图中的(a)或(b)的形式。图中I1、I2为仪器站,b1、b2为立尺点,要求跨河视线尽量相等,岸上视线I1b1、I2b2不少于10m并相等。当用一台水准仪观测时,宜采用图中(c)的形式,此时图中I1、I2既是仪器站又是立尺点。这种布置除了要观测跨河高差和外,还应观测同岸点高差和,以便求出b1b2的高差。 跨河水准测量,当跨河视线在500m以下时,通常用精密水准仪,以光学测微法进行观测。由于跨河视线较长,须要特制一觇板供照准和读数之用。觇板构造如图8-4。觇板上的照准标志用黑色绘成矩形,其宽度为视线长的1/2.5万,长度为宽度的5倍。觇板中央开一小口,并在中央安装一水平指标线,指标线应平分矩形标志的宽度。 用光学测微法的观测方法如下: 1.观测本岸近标尺。直接照准标尺分划线,用光学测微器读数两次。 2. 图8-4 观测对岸标尺。照准标尺后使气泡精密符合,测微器读旋到50。指挥对岸持尺者将觇板沿标尺上下移动,使觇板指标线置于水平视线附近,并精确对准标尺上的基本分划线,记下标尺读数,每次读数差不大于0.1S(mm),S为视线长(m),如此构成一组观测。然后移动觇板重新对准标尺分划级,按同样顺序进行第二组观测。 以上1、2两步操作,称一测回的上半测回。 3.上半测回完成后,立即将仪器迁至对岸,并互换两岸标尺。然后进行下半测回观测。下半测回应先测远尺再测近尺,观测每一标尺的操作与上半测回相同。 由上、下半测回组成一测回。

我国电力系统现状及发展趋势

WoRD文档下载可编辑 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 ‘、八— 1. 刖言 中国电力工业自1882年在上海诞生以来,经历了艰难曲折、发展缓慢的67年, 到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达 到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开 放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国 的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年 均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009 年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82. 6%。水电装机占总装机容量的24.5%, 核电发电量占全部发电量的2. 3%,可再生能源主要是风电和太阳能发电,总量微乎 其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以秦山、大亚湾/岭澳、田湾为代表的三个核电基地, 截至2008年底,国内已投入运营的机组共11台,占世界在役核电机组数的 2.4%,装机容量约910万千瓦,为全国电力装机总量的 1.14%、世界在役核电装机总量的 2.3%。

浅谈电力系统自动化

浅谈电力系统自动化 【摘要】本文通过对电力系统的自动控制的基本要求入手,分析了电力系统自动化的技术,同时就针对电力系统自动化的应用能力及发展趋势进行了探讨。 【关键词】电力系统自动化发展应用 1 电力系统自动化总的发展趋势 1.1 当今电力系统的自动控制技术正趋向于 (1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。(2)在设计分析上日益要求面对多机系统模型来处理问题。(3)在理论工具上越来越多地借助于现代控制理论。(4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。(5)在研究人员的构成上益需要多“兵种”的联合作战。 1.2 整个电力系统自动化的发展则趋向于 (1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。(2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS (配电管理系统)。(3)由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。(4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。(5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。(6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。(7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 2 电力系统自动化技术的应用能力数据处理能力 数据共享能力伴随着电力系统的自动化技术方面的发展,系统模型通常集中在对相关地理空间属性方面的描述上,但是在实际的相关应用中,电力系统方面的控制对象通常具有比较复杂的电力的处理结构。对于这种基础而言,主要包括2个方面: (1)物理实体的几何属性方面的标准定义与表达。其包含了电力系统服务能够覆盖的空间区域方面的几何属性。 (2)物理属性数据方面的标准定义以及表达。对于相关的电力系统来说,其不仅包含了物理结构,而且还包含各种组成部件、整体方面的物理性能和运行规范方面的信息共享以及动态、多维的应用分析等。数据整合能力电力系统的发展和形成是由市场经济的需求所产生的驱动结果。比如:在用电高峰,提高变电

我国电力系统现状及发展趋势

我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 1.前言 中国电力工业自1882年在上海诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,总量微乎其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以秦山、大亚湾/岭澳、田湾为代表的三个核电基地,截至2008年底,国内已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机

(完整版)电力系统自动化的发展趋势和前景

目前电力系统市场发展中的自动控制技术趋向于控制策略的日益优化,呈现出适应性强、协调控制完善、智能优势明显、区域分布日益平衡的发展趋势。在设计层面电力自动化系统更注重对多机模型的问题处理,且广泛借助现代控制理论及工具实现综合高效的控制。在实践控制手段的运用中合理引入了大量的计算机、电子器件及远程通信应用技术。而在研究人员的组合构建中电力企业本着精益求精、综合适用的原则强调基于多功能人才的联合作战模式。在整体电力系统中,其工作方式由原有的开环监测合理向闭环控制不断发展,且实现了由高电压等级主体向低电压丰富扩展的安全、合理性过度,例如从能量管理系统向配电管理系统合理转变等。再者电力系统自动化实现了由单个元件到部分甚至全系统区域的广泛发展,例如实现了全过程的监测控制及综合数据采集发展、区域电力系统的稳定控制发展等。相应的其单一功能也实现了向多元化、一体化综合功能的发展,例如综合变电站实现了自动化发展与提升。系统中富含的装置性功能更是向着灵活、快速及数字化的方向发展;系统继电保护技术实现了全面更新及优势发展等。依据以上创新发展趋势电力系统自动化市场的发展目标更加趋于优化、协调与智能的发展,令潮流及励磁控制成为市场新一轮的发展研究目标。因此我们只有在实践发展中不仅提升系统的安全运行性、经济合理性、高效科学性,同时还应注重向自动化服务及管理的合理转变,引入诸如管理信息系统等高效自动化服务控制体系,才能最终令电力系统自动化市场的科学发展之路走的更远。 电力系统自动化市场科学发展前景 经过了数十年的研究发展,我国先进的计算机管理技术、通信及控制技术实现了跨越式提升,而新时期电力系统则毋庸置疑的成为集计算机、通信、控制与电力设备、电力电子为一体的综合自动化控制系统,其应用内涵不断扩充、发展外延继续扩展,令电力系统自动化市场中包含的信息处理量越来越庞大、综合因素越来越复杂,可观、可测的在数据范围越来越广阔,能够合理实施闭环控制、实现良好效果的控制对象则越来越丰富。由此不难看出电力系统自动化市场已摒弃了传统的单一式、滞后式、人工式管理模式,而全面实现了变电站及保护的自动化发展市场、调度自动化市场、配电自动化市场及综合的电力市场。在变电站及保护的自动化市场发展中,我国的500千伏变电站的控制与运行已经全面实现了计算机化综合管理,而220千瓦变电站则科学实现了无人值班看守的自动化控制。当然我国众多变配电站的自动化控制程度普及还相对偏低,同时新一轮变电站自动化控制系统标准的广泛推行及应用尚处在初级阶段,因此在未来的发展中我们还应继续强化自动化控制理念的科学引入,树立中小变电站的自动化控制观念、提升大型变电站的自动化控制水平,从而继续巩固电力自动化系统在整体市场中占据的排头兵位置,令其持之以恒的实现全面自动化发展。 电力调度及配电自动化市场的前景发展 随着我国电力系统自动化市场的不断发展电力调度自动化的市场规模将继续上升,省网及地方调度的自动化普及率将提升至近一半的比例,且市场需求将不断扩充。电力调度系统

浅谈电力系统可靠性

浅谈电力系统可靠性 随着电力工业引入市场机制,市场条件下的电力系统可靠性和系统运营经济性之间的矛盾便逐渐显现出来,如何在电力市场的运营过程中保证系统运行的可靠性已成为研究的热点。本文简单论述了电力系统的可靠性以及在电力市场环境下电力系统可靠性的发展、所面临的问题、挑战等。 标签:电力系统可靠性发展挑战 1 基本概念 1.1 可靠性可靠性是指元件、设备、系统等在规定的条件下和预定的时间内完成其额定功能的概率。 1.2 电力系统可靠性电力系统可靠性包括两方面的内容:即充裕度和安全性。前者是指电力系统有足够的发电容量和足够的输电容量,在任何时候都能满足用户的峰荷要求,表征了电网的稳态性能,后者是指电力系统在事故状态下的安全性和避免连锁反应而不会引起失控和大面积停电的能力,表征了电力系统的动态性能。 2 电力系统可靠性的重要性 向用户提供源源不断、质量合格的电能是电力系统的主要任务。因为电力系统设备很复杂,包括发电机、变压器、输电线路、断路器等一次设备及与之配套的二次设备,这些设备都可能发生不同类型的故障,从而影响电力系统正常运行和对用户的正常供电。如果电力系统发生故障,将对电力企业、用户和国民经济,都会造成不同程度的经济损失。社会现代化速度越来越快,生产和生活对电源的依赖性也越来越强,停电造成的损失以及给人们带来的不便也将日益显现。因此,要求电力系统应有很高的可靠性。 3 电力市场环境下的可靠性 现如今人们普遍思索的问题是怎样揭示电力系统可靠性背后所隐含的经济意义。一些新的研究成果有:怎样将客户的可靠性需求货币化、如何评价发输电系统的可靠性以及新的适应电力市场需求的可靠性指标怎样设定等。这些研究仍面临一个普遍问题:即使人们已经认识到可靠性是一种稀缺的资源,并感觉到其背后所蕴涵的经济意义,但在对可靠性的价值研究时,却往往摆脱不了对可靠性进行“收费”的思想。我们应当在市场的环境中使电力系统的可靠性发挥作用。为此就要去探索如何利用市场的供给需求机制实现统一可靠性和经济性的目的。有些资料中提到了可靠性价值的概念,但并没有就在市场条件下的可靠性的供给和需求关系以及这种关系对系统可靠性带来的影响展开讨论,而这些也正是电力市场环境下可靠性研究面临的新挑战。

电力系统高压输电线路施工技术问题论述 王克伟

电力系统高压输电线路施工技术问题论述王克伟 发表时间:2019-03-27T11:22:08.330Z 来源:《基层建设》2018年第35期作者:王克伟 [导读] 摘要:在电力系统输电线路中,其施工质量与电力系统的安全运行和电力行业的发展息息相关。 甘肃送变电工程有限公司甘肃兰州 730000 摘要:在电力系统输电线路中,其施工质量与电力系统的安全运行和电力行业的发展息息相关。而高压输电线路能不能安全稳定,从而使电力系统保证正常运行以及信息的顺利传输,则是本论文需要研究的,文中就进一步研究了电力系统高压输电线路施工技术问题,以供参考。 关键词:电力系统;高压输电线路;施工技术 引文 我国电力技术水平不断提高。在长距离输电过程中,高压输电线路安全稳定运行。根据我们目前的电网结构,输电线路是保证电网有效运行的重要传输方式。鉴于高压架空输电线路运行质量与电网运行正相关,有必要重视特高压架空输电线路的建设质量。 1电力系统高压输电线路施工技术问题 在对湖北襄阳的电力系统进行高压输电线路的施工时期,本文主要对其施工的技术问题进行详细研究与探究,得出其在以下三方面存在一定的施工技术问题。第一方面,由于湖北襄阳地势山路丘陵居多,在其施工的过程中,施工材料的运输方面存在一定困难。同时在供电公司对湖北襄阳地段的电路系统进行建设的过程中还发现某些施工路段长期受到雨水的浸泡、冲刷,进而导致物料运输出现一定困难。第二方面,在基础施工的地基稳定性以及平衡性方面,由于湖北襄阳的地势不平,多为山地与丘陵,而在对地基进行施工建设的过程中,供电公司规划的路线图经过某些山地,若不进行特殊处理,将导致地基建设中的稳定性以及平衡性的质量较差,影响着基础施工的工程质量,进而影响电力系统的后续使用。第三方面,在架线施工的过程中,存在测量施工技术质量不高以及复检装设施工技术质量不高的问题,进而影响架线施工质量,影响电力工程中的线路使用。第四方面,在杆塔施工的过程中存在施工技术的可靠性能以及安全性能不高两种问题。杆塔施工技术的可靠性与安全性不高将直接影响电力工程建设地区的实际使用质量,并且无法对人民群众的实际用电需求进行满足,进而造成我国基础设施建设质量不高的问题。 2?高压输电线路的施工中的控制要点 2.1?高压输电线路的基本建设 高压输电线路的基本建设主要用于支持混凝土结构和加强塔杆。基础施工主要包括三个主要技术点,即挖掘技术、岩石技术和桩基技术。在挖掘基础施工技术的应用中,最适合用于黏土质软土施工环境。这种环境的土壤是客观的地质条件,为后续的施工提供良好的基础,就需要选择合适的地址挖掘洞,之后使用混凝土密封。在混凝土浇注之前,确保隧道的杂质清理干净,混凝土的调制比例要符合标准。当浇注施工完成后,还要采取保护措施。岩石基础施工技术的应用中,施工之前要做好充分调查工作,对于岩石成分进行验证,保证其不会被破坏。钻孔和灌浆施工完毕后,在桩基础的施工中,要考虑到施工方便。 2.2?高压输电线路的建设 整个高压输电线路中,塔是重要的角色。这就要求塔的材料要符合规格,保证塔足够坚固。不同的地形环境中所使用的塔杆类型有所不同,这样便于运输。由于高山地区和地形是复杂的,对于硬度和强度都要进行选择。塔的质量要有所保证,可以采用如下的控制技术。调查施工场地的环境,确定路线和塔杆的最佳位置,还要考虑到过渡角和张力的相关规范。塔杆的近似位置要确定下来,明确精确的位置。塔杆的安全位置确定下来之后,还要确保塔的高度桩和旋转的程度能够应用于室外定位的塔。调整和校准好杆定位,做好安装和技术维修工作。 2.3?高压输电线路的建设 高压输电线路的施工技术非常复杂,如果施工技术不当就会影响施工安全。所以,需要强化监督管理工作,还要强化施工控制。做好建筑工地的各项保护工作。高压输电线路建设中需要注意以下的技术要点:准备布线。框架线技术主要包括地板膨胀和张力膨胀。施工方便,但拖拽和摩擦的过程中,很容易损坏。张力是由于传播张力所造成的,会使得导线距离地面有一定的高度,对电线产生的磨损比较轻。 光纤电缆的结构保护。光纤电缆的雷电防护非常重要。因为光电缆中含有金属部件,在安装之前应按需要装好特定的部件以及内部的部件。混凝土施工中,需要保证连接线没有质量问题。焊接接头的连续性和水分要去除,避免接头产生变形。检查和维护。员工要定期检查线路。紧急情况还要及时修理。维修完毕后,员工将对设备的电气线路进行全面检查,并做好技术维护工作,保证电源安全稳定。 3高压输电线路架设施工中采用的工艺技术 高压输电线路架设施工中采用的工艺技术。针对高压输电线路的架设进行研究,开发了新的施工技术。这些技术的高技术含量保证了工程建设的质量。 3.1?通过悬挂杆架设电力系统的高压输电线路 举杆组的过程中,要对施工现场进行实地考察,根据施工现场的地形选择杆组。对于比较复杂的施工场地环境,我们应该减少支撑杆的使用量,确定杆体的高度之后,提高吊杆的装配。首先,在提升塔腿的过程中,根据电力系统高压输电线路施工现场和腿部重量确定提升方案。吊杆的过程中,所装配的塔必须达到规定的高度,拧紧螺丝,将保持杆抬高到规定的高度。手臂的抬起可以由滑车发挥辅助性的作用。其次,在进行弯臂吊装的过程中,应根据施工现场的承载力和吊杆的承载力将吊装方案确定下来,还要考虑施工人员的技术水平。第三,当承载横臂吊装的过程中,塔形的技术要求很高。对于环形塔,吊装方法主要由切片和吊装两部分组成,要求吊装符合施工现场环境。同时,应充分考虑提升棒的质量。对于猫头型杆塔,应在施工现场做好调查工作,还要考虑到吊杆所具备的承载力,并根据分析结果选择吊装方法。 3.2?超高压架空输电线路安装用八个分路导线的同步布线方法 高压输电线路输电电压较高,输电线路截面面积增加,输电线路重量也会相应增加。连接电线的时候,必须使用大型号的机械设备。同时,为了避免导体发生变化,在导体扩散的过程中必须保证应力均匀,避免施工中产生质量问题。高压输电线路采用八股线同步释放方式架设,张力机可用于放线。在铺设管线的过程中,需要有足够的施工孔,保证张力机和牵引车可以顺利进入到施工现场。在放线的过程中,应根据施工场地的环境选择张力截面的组合形式。拧紧线的过程中,需要根据施工需要安装平衡装置。

最新 跨河水准测量方法及其平差处理方法-精品

跨河水准测量方法及其平差处理方法 1 概述 《国家一、二等水准测量规范》(GB/T12897-2006)规定:当一、二等水准路线跨越江河、峡谷、湖泊、洼地等障碍物的视线长度在 l00m以内时,可用一般观测方法进行施测,但在测站上应变换一次仪器高度,观测两次的高差之差应不超过 1.5mm,取用两次观测的中数。若视线长度超过 100m 时,则应根据视线长度和仪器设备等情况,选用特殊的方法进行观测。 某一等水准网跨河段长度约为 530 米为保证该工程顺利实施,选用合适的跨河水准测量方法是的关键工作之一,本工程实例,采用了三角高程测量方法,精度要求达到国家一等水准准测量精度,仪器采用徕卡 TS30(测角精度0.5“,测距精度 0.6mm+1ppm)。 2 观测网形及场地选择 2.1 观测网形布设 为提高跨河水准精度,减小气温、气压、大气折光的影响,测点C1、C2、D1、D2 近似在同一水平面上,且保证四个测点成一近似矩形。跨河水准示意图如图 1. 2.2 布设场地遵循原则 2.2.1 观测墩建在测线处于河段较狭窄处,保证其同意水平面上。跨河视线不得通过草丛,干丘、沙滩的上方,且保证避免正对日照方向。 2.2.3 两岸由仪器至水边的一段河岸,其距离应近于相等,其地貌、土质、植被等也应相似,仪器位置应选在开阔、通风之处,不得靠近墙壁及土、石、砖堆等。 3 施测方法 在 D1 架 TS30,分别照准 C1、C2、D2,得到一测回观测高差:(S为斜距,δ为竖角),两点之间的高差为S×sinδ+i-(li 为仪器高,l 为目标高),C1 点的高程为Hc1=HD1+S×sinδ+i-l,C2、D2 的高程同理可得。利用以上三点的高程求 C1 D2、C2 D2 之间的高差。HD1,i 均一样,相互抵消,若目标高相等则高差等于S×sinδ的差值。为了使目标高也相互抵消,可以先全部采用使用同一型号的棱镜及觇标,这样目标高可看成一致,但世上没有完全相同的两个物体,为消除不同的目标高对观测高差的影响,把棱镜及觇标分成 A、B 两组,A 组总与仪器在一起,B 组总是在仪器的对岸,这样往返测求平均高差则影响抵消。

(完整word版)集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

相关主题
文本预览
相关文档 最新文档