当前位置:文档之家› 纳米铜丝尺寸效应的分子动力学模拟

纳米铜丝尺寸效应的分子动力学模拟

纳米铜丝尺寸效应的分子动力学模拟
纳米铜丝尺寸效应的分子动力学模拟

纳米尺寸效应

纳米尺寸效应 纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 (1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。 (2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

纳米材料四大效应

1.小尺寸效应:当纳米粒子尺寸与德布罗意波以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,对于晶体其周期性的边界条件将被破坏,对于非晶态纳米粒子其表面层附近原子密度减小,这些都会导致电、磁、光、声、热力学等性质的变化,这称为小尺寸效应 我的理解是尺寸小了就会出现一些新的现象、新的特性。从理论层面讲主要是由于尺寸变小导致了比表面的急剧增大。由此很好地揭示了纳米材料良好的催化活性。 2.表面效应:是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。 其实质就是小尺寸效应。球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 3. 量子尺寸效应:当粒子尺寸降低到某一值时,金属费米能级附近的电子能级由准连续变为分立能级和纳米半导体微粒的能隙变宽的现象均称为量子尺寸效应。 可否直接说连续的能带变成能级。 宏观量子隧道效应:微观粒子具有穿越势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微粒的磁化强度、量子相干器件中的磁通量等亦具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,故称为宏观量子隧道效应。 表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。因为表面原子数目增多,比表面积大,原子配位不足,表面原子的配位不饱和性导致大量的悬空键和不饱和键,表面能高,因而导致这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。这种表面原子的活性不但易引起纳米粒子表面原子输运和构型的变化,同时也会引起表面电子自旋构象和电子能谱的变化。纳米材料由此具有了较高的化学活性,使得纳米材料的扩散系数大,大量的界面为原子扩散提供了高密度的短程快扩散路径,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。(2)小尺寸效应 当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,从而使其声、光、电、磁,热力学等性能呈现出新的物理性质的变化称为小尺寸效应。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。利用这些特性,可以高效率地将

应变梯度理论word版

应变梯度理论 应变梯度理论是近解释材料在微米尺度下的尺寸效应现象而发展起来的一种新理论。Fleek 等[6]于1994年在细铜丝的扭转实验中观测到微尺度下应变梯度的硬化,其中直径12m μ的无量纲扭转硬化约为直径170m μ的三倍。通过对12.5m μ、25m μ和50m μ三种厚度纯镍薄片的弯曲测试,Stolken 和Evanslv[7]于 1998年发现镍的无量纲弯曲硬化随着薄片厚度的减小而明显增大,然而在拉伸试验中并未发现这种微尺度现象。Chong 和Lam[8]于 1999年通过压痕实验观察到热固性环氧树脂和热塑性聚碳酸酷的无量纲硬化与应变梯度有关,材料的塑性具有微尺度效应。McFarland 和Colton[9J 于2005年通过对不同厚度聚丙烯悬臂微梁的弯曲测试,同样观测到无量纲弯曲刚度随梁厚减小而增大。与宏观尺度相比,微尺度下结构的力学特性及行为研究主要考虑到以下两个方面 (1)尺度效应。材料不是无限可分。因此材料颗粒的固有属性将影响到微结构的力学特性。 (2)表面和界面效应。一些在宏观尺度下常被忽略的力和现象,在微尺度下起着重要的作用;而一些在宏观领域作用显著的力和现象,在微尺度下作用微小,甚至可以忽略。例如,微尺度下,与特征尺寸L 的高次方成比例的惯性力、电磁力(L3)等的作用相对减小,而与尺寸的低次方成比例的粘性力、弹性力(L2)、表面张力(Ll)、静电力(L0)等的作用相对增大。随着尺寸的减小,表面积(L2)与体积(L3)之比相对增大,表面力学和物理效应将起主导作用。 理论模型建立 (1)偶应力理论 早在一个多世纪前,voigt[12]便提出了体力偶和面力偶的概念,并建议构建考虑作用在材料微粒表面或边界上的力偶的连续模型。随后Cosserat 兄弟[14]根据的假设建立了相关的Cosserat 理论,对应的运动方程中出现了偶应力。直到20世纪60年代左右,一些学者才开始尝试Cosserat 理论的改进扩展工作,他们对Cosserat 连续体物质点的旋转施加一定约束,并逐渐发展了一种更为普遍的理论—偶应力理论。相比其它非经典连续介质理论,偶应力理论是一种相对简单的理论。如应变梯度理论考虑旋转梯度、拉伸和膨胀梯度的影响,而偶应力理论仅考虑了旋转梯度(与偶应力共轭)。Ashby[22]指出几何必需位错和统计储存位错是材料的塑性硬化来源,而几何必需位错产生于塑性剪切应变梯度。据此,Fleek 和Hutchinson[23]及Fleek 等[6]在偶应力理论框架上发展了一种应变梯度塑性理论(通常称为CS 应变梯度塑性理论),它是经典的2J 形变或2J 流动理论的推广。在理论中为了考虑旋转梯度的影响,引入了偶应力,并且服从二阶变形梯度本构率的Clausius-Duhem 热力学限制条件[24] 。这种理论不仅在模拟裂纹扩展时能消除裂纹尖端的应力奇异性[25],还能成功预测微结构力学行为中的微尺度效应。例如,Fleck 等[6]铜丝的扭转实验中证实了应变梯度硬化的存在,并应用提出的CS 应变梯度塑性理论成功解释了这种微尺度现象。经典牛顿力学框架下,连续变形体的材料颗粒仅在力的作用下作平动;在TouPin 和Mindiin 等学者 [18-21]建立的传统偶应力弹性理论中,材料颗粒不仅在力的作用下作平动,还在力偶的作用下作转动。因此,偶应力理论中的系统能量包括应力对应变和偶应力对旋转形变做的功,其中旋转形变是二阶变形梯度的反对称部分,含有8个独立分量。对于各向同性线弹性材料而言,系统本构方程中除了两个经典的拉梅系数外,还包含两个与材料微结构有关的附加常数。在上述偶应力理论构建中,仅用到传统的力和力矩的平衡关系,对力偶并没有施加约束。Yang 等[28]从引入高阶平衡关系角度出发,提出一种修正偶应力理论。在添加力偶矩平衡关系后,偶应力张量被约束成对称量,它对与之共轭张量的曲率张量的对称部分做功,并与应力对应变做的功一起转变 为系统能量。这种理论下的本构方程仅包含一个附加常数,从而大大降低了非经典常数的确

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

纳米材料的小尺寸效应

纳米材料的小尺寸效应 吴顺康四川大学生命科学学院 2016 级生命科学拔尖班 小尺寸现象产生的原因: 纳米粒子的特性当粒子的尺寸进入纳米量级时,微粒内包含的原子数仅为 100?10000 个,其中有 50 %左右为界原子,纳米微粒的微小尺寸和高比例的表面原子数导致了它的量子尺寸效应和其他一些特殊的物理性质。 小尺寸效应导致的性质(以及部分应用) 由于纳米微粒的尺寸比可见光的波长还小,光在纳米材料中传播的周期性被破坏,其光学性质就会呈现与普通材料不同的情形。例如,金属由于光反射显现各种颜色,而金属纳米微粒都呈黑色,说明它们对光的均匀吸收性、吸收峰的位置和峰的半高宽都与粒子半径的倒数有关。⑵利用这一性质,可以通过控制颗粒尺寸制造出具有一定频宽的微波吸收纳米材 料,可用于磁波屏蔽、隐形飞机等。⑴此外,金属超微颗粒的光反射率极低,可低于1%, 大约几毫米就可以完全消光。可以利用此特性,高效持续的将太阳能转化为热能和电能。 在物质超细微化之后,纳米材料的熔点显著降低,犹在颗粒直径为 10 纳米时较为明显,例如金(Au)常规熔点在1064度;然而在颗粒尺寸减少到 2纳米时仅为327度;由此,超细银粉制成的导电浆料可以进行低温烧结,此时的基片可以仅仅使用塑胶而不是高温陶瓷。使用超细银粉,可以使膜厚均匀,覆盖面积大,省料而质量高。 纳米小尺寸效应的应用: 纳米材料作为功能材料与产业技术的结合,具有很多潜在的应用价值。小尺寸超微颗粒的磁性与大尺寸材料显著不同,在颗粒尺寸下降到 0.02 微米以下之后,其矫顽力可增加 1000 倍,若进一步

减小尺寸,其矫顽力反而可以降到0,呈现出超顺磁性。利用超顺磁性颗粒的

纳米晶体

纳米晶体 摘要:本文主要介绍了金属纳米晶体、金属氧化物纳米晶体和一些其他纳米晶体的合成方法,并对它们的性能做了些简单的介绍。纳米晶体有许多独特优异的性能,本文对相关的纳米晶体的应用也进行了介绍,随着纳米晶体制备技术的发展,纳米晶体的应用会更加广泛。 关键词:纳米晶体;金属;金属氧化物 0引言 纳米材料是指组分尺寸至少在某一个维度上介于1~100nm之间的材料。纳米材料就其结构上可以分为纳米晶体、纳米颗粒、纳米粉末、纳米管等。由于纳米材料的纳米尺寸效应,使得纳米材料出现了许多不同于常规条件下的材料性能,例如光学性、电导性、抗腐蚀性等,因此人们对纳米材料在未来材料领域的应用与发展寄予了很大期望。但由于纳米材料在结构上存在表面效应和小尺寸效应,使其能量高于平衡态,表面上原子数增多,具有较高的表面能,使得这些表面原子具有较高的活性,非常不稳定,满足一定激活条件时,就会释放出过剩自由能,粒子长大,从而也将失去纳米材料所具有的特性,使块状纳米材料的制备产生困难。而纳米晶体由于晶界数量增加,使材料的强度、密度、韧性等性能大为改善。 纳米晶体指的具有纳米尺度的晶体材料。本文将分类介绍有关纳米晶体在制备、性能、应用等方面的研究进展。 1金属纳米晶体 同传统的金属晶体相比,金属纳米晶体材料由金属纳米晶粒构成,其晶粒尺寸很小( < 100 nm) ,晶界比例很大(30% ~50% ) ,晶体的缺陷密度很高,因此它所表现出来的性能,尤其是对结构敏感的性能与粗晶材料有很大差别。 刘伟[1]等用纯度为99.8%的紫铜丝作为原料,采用自悬浮定向流技术制备出金属Cu纳米粉末,制得平均晶粒尺寸为25 nm的金属Cu纳米晶体材料,其显微硬度为1155~1190GPa,约为普通粗晶Cu材料的3~4倍,硬度随压制工艺而变化,压力增大,保压时间延长,硬度增大. 且样品硬度值受表面抛光的影响。 李才臣[2]等以工业纯铝粉为原料,采用高能球磨法制备了纯铝纳米晶体并对其硬度进行了分析,经实验发现,球磨12 小时后可得平均晶粒尺寸约34nm, 而且此时的硬度最高,可达111HV, 纯铝纳米晶的硬度随着球磨时间的延长先升高后降低,随温度的增加先升高后下降。 对于金属纳米晶体的研究不仅局限在制备方法和显微硬度方面,对于纳米晶体的生长形态和结构稳定性方面也有相关的研究。 张吉晔[3]等对Ag纳米晶体的生长形态进行了相关的研究。他们在利用电化学方法在ITO 基板上沉积出银纳米晶体,然后研究了ITO基板上的沉积电位对Ag纳米晶体生长形态的影响。如图1所示,(a)和(b)中的银纳米粒子具有良好的分散性,粒径较均匀,此时沉积电位为0.3 V 时,粒子的分布密度较小。在(c)中,晶体形貌具有显著的羽毛状形态。(d)中银纳米晶体

纳米材料小尺寸效应的应用

纳米材料小尺寸效应的应用 引言:提起“纳米”这个词,可能很多人都听说过,但什么是纳米,什么是纳米材料,可能很多人并不一定清楚,本文主要对纳米及纳米材料的研究现状和发展前景做了简介,相信随着科学技术的发展,会有越来越多的纳米材料走进人们的生活,为人类造福。纳米技术具有极大的理论和应用价值,纳米材料被誉为“21世纪最有前途的材料”。 关键词:纳米材料小尺寸效应性质分类发展前景 一、纳米材料及其性质 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,具有较强的表面酸性和一定的表面碱性,被广泛应用作催化剂和催化剂载体等新的绿色化学材料。可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。以上这些性能决定了纳米材料在表面效应、小尺寸、量子尺寸效应、量子隧道效应、电子信息领域、航天航空、环保能源等各方面均有应用,尤其是在小尺寸方面的应用。 二、纳米科技的发展现状 著名科学家钱学森指出:“纳米科技是21世纪科技发展的重点,会是一次技术革命,而且还会是一次产业革命”。随着世界发达国家对纳米研究的深入,我国对纳米材料和技术也非常重视,为推动我国纳米技术成果产业化.国家通过财政投资并带动社会投资.希望通过5—10年的努力.造就一批具有市场竞争力的纳米高科技骨干企业。已先后安排了许多纳米科技的研究项目,并取得显著成绩,纳米技术在许多方面已达到国际领先水平。

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

(完整)量子尺寸效应

(完整)量子尺寸效应 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)量子尺寸效应)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)量子尺寸效应的全部内容。

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级 由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道和最低未 被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、催化和超导性等 特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下降而增大,电阻温度 系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~ 25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力 变为零,表现为超顺磁性。 1。1。2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等 物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面 层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小尺寸效应.例如: 光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态转变,超导相向正常相 的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1。1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应.由于表面原子与内部原子所处的环境 不同,当粒子直径比原子直径大时(如大于0。01时),表面原子可以忽略,但当粒子直径 逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表 面能和表面结合能都发生很大变化.人们把由此引起的种种特殊效应统称表面效应[8,9]。 随着粒径的减小,比表面迅速增大.当粒径为5nm时,表面原子数比例达到约50%以上,当 粒径为2nm时,表面原子数达到80%,原子几乎全部集中到纳米粒子的表面.庞大的表面原 子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强,主要表现在:(1)熔点降低.就熔点来说,纳 米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅 较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时 纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔 点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点 仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大.(3)化学活性增加,有利于催化反应等。 1.1。4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微 粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧道效应,利 用它可以解释纳米镍粒子在低温下继续保持超顺磁性的现象。宏观量子隧道效应的研究对 基础研究及实用都具有重要的意义,它确立了现存微电子器件进一步微型化的极限,是未来 微电子器件的基础. 上述的小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应都是纳米微粒与 纳米固体的基本特性。它使纳米微粒和纳米固体呈现许多奇异的物理、化学性质,出现一 些“反常现象”。例如金属纳米材料的电阻随尺寸下降而增大,电阻温度系数下降甚至变 成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10nm-25nm的铁磁金属

(完整版)纳米材料四大效应及相关解释

纳米材料四大效应及相关解释 四大效应基本释义及内容: 量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。 小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。 宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。 四大效应相关解释及应用: 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径的变小比表面积将会显著地增加。例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。表面原子周围缺少相邻的原子,有许多悬空键,具有不饱

量子尺寸效应

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道 和最低未被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、 催化和超导性等特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下 降而增大,电阻温度系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力变为零,表现为超顺磁性。 1.1.2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒 的颗粒表面层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小 尺寸效应。例如:光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态 转变,超导相向正常相的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1.1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应。由于表面原子与内部原子所处的环境不同,当粒子直径比原子直径大时(如大于0.01时),表面原子可以忽略,但当 粒子直径逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的 比表面积、表面能和表面结合能都发生很大变化。人们把由此引起的种种特殊效应统 称表面效应[8,9]。随着粒径的减小,比表面迅速增大。当粒径为5nm时,表面原子数比例达到约50%以上,当粒径为2nm时,表面原子数达到80%,原子几乎全部集中 到纳米粒子的表面。庞大的表面原子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强, 主要表现在:(1)熔点降低。就熔点来说,纳米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量, 造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易 在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大。(3)化学活性增加,有利于催化反应等。 1.1.4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧

分子动力学模拟基础知识

分子动力学模拟基础知识 ? Molecular Dynamics Simulation o MD: Theoretical Background Newtonian Mechanics and Numerical Integration The Liouville Operator Formalism to Generating MD Integration Schemes o Case Study 1: An MD Code for the Lennard-Jones Fluid Introduction The Code, mdlj.c o Case Study 2: Static Properties of the Lennard-Jones Fluid (Case Study 4 in F&S) o Case Study 3: Dynamical Properties: The Self-Diffusion Coefficient ? Ensembles o Molecular Dynamics at Constant Temperature Velocity Scaling: Isokinetics and the Berendsen Thermostat Stochastic NVT Thermostats: Andersen, Langevin, and Dissipative Particle Dynamics The Nosé-Hoover Chain Molecular Dynamics at Constant Pressure: The Berendsen Barostat Molecular Dynamics Simulation We saw that the Metropolis Monte Carlo simulation technique generates a sequence of states with appropriate probabilities for computing ensemble averages (Eq. 1). Generating states probabilitistically is not the only way to explore phase space. The idea behind the Molecular Dynamics (MD) technique is that we can observe our dynamical system explore phase space by solving all particle equations of motion . We treat the particles as classical objects that, at least at this stage of the course, obey Newtonian mechanics. Not only does this in principle provide us with a properly weighted sequence of states over which we can compute ensemble averages, it additionally gives us time-resolved information, something that Metropolis Monte Carlo cannot provide. The ``ensemble averages'' computed in traditional MD simulations are in practice time averages : (99) The ergodic hypothesis partially requires that the measurement time, , i , in the system. The price we pay for this extra information is that we must at least access if not store particle velocities in addition to positions, and we must compute interparticle forces in addition to potential energy. We will introduce and explore MD in this section.

纳米材料的基本效应及应用

纳米材料的特异效应及应用 摘要:介绍了纳米材料所独有的小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效以及介电限域效应,这些效应使得它们在磁、光、电、敏感等方面呈现出常规材料不具备的特性。综述了纳米材料在催化、传感、磁性、食品、化妆品、生物医学等方面的应用,叙述了纳米材料在科学技术发展和社会进步中所起到的重要作用,并说明了它还将有更广阔的应用前景。 关键词:纳米材料;基本效应;应用 Nanostructured material’s special effects and its applications Abstract:The particular small size effect,surface effect,quantum size effect, macroscopic quantum tunneling effect and dielectric confinement effect with nanometer materials are presented . As a result of these effects,nanometer materials possess some special properties which normal materials do not have as far as magnetics ,optics ,electronics ,and sensitivity,ect . are concerned . The application of nanometer in the catalytics ,sensitivity ,magnetics,food ,cosmetics and biomedicine,and so on are summarized . And t he important role of nanometer material in science and technology development and social progress is described. The application prospect of nanometer materials is also illustrated. Key words:nanometer materials ;basic effect ;application 1984年德国科学家Gleiter首先制成了金属纳米材料,同年在柏林召开了第二届国际纳米粒子和等离子簇会议,使纳米材料成为世界性的热点之一;1990年在美国巴尔的摩召开的第一届NST会议,标志着纳米科技的正式诞生;1994年在德国斯图加特举行的第二届NST会议,表明纳米材料已成为材料科学和凝聚态物理等领域的焦点。 纳米材料是指由纳米粒子构成的固体材料,其中纳米颗粒的尺寸最多不超过100nm,在通常情况下,应不超过l0nm。即这种材料是指其基本颗粒在l~100nm 范围内的材料。纳米粒子是处在原子簇和宏观物质交界的过渡区域,是一种典型的介观系统,包括金属、非金属、有机、无机和生物等多种颗粒材料。随着物质

分子动力学模拟I

Gromacs中文教程 淮海一粟 分子动力学(MD)模拟分为三步:首先,要准备好模拟系统;然后,对准备好的系统进行模拟;最后,对模拟结果进行分析。虽然第二步是最耗费计算资源的,有时候需要计算几个月,但是最耗费体力的步骤在于模拟系统准备和结果分析。本教程涉及模拟系统准备、模拟和结果分析。 一、数据格式处理 准备好模拟系统是MD最重要的步骤之一。MD模拟原子尺度的动力学过程,可用于理解实验现象、验证理论假说,或者为一个待验证的新假说提供基础。然而,对于上述各种情形,都需要根据实际情况对模拟过程进行设计;这意味着模拟的时候必须十分小心。 丢失的残基、原子和非标准基团 本教程模拟的是蛋白质。首先需要找到蛋白质序列并选择其起始结构,见前述;然后就要检查这个结构是否包含所有的残基和原子,这些残基和原子有时候也是模拟所必需的。本教程假定不存在缺失,故略去。 另一个需要注意的问题是结构文件中可能包含非标准残基,被修饰过的残基或者配体,这些基团还没有力场参数。如果有这些基团,要么被除去,要么就需要补充力场参数,这牵涉到MD的高级技巧。本教程假定所有的蛋白质不含这类残基。 结构质量 对结构文件进行检查以了解结构文件的质量是一个很好的练习。例如,晶体结构解析过程中,对于谷氨酰胺和天冬酰胺有可能产生不正确的构象;对于组氨酸的质子化状态和侧链构象的解析也可能有问题。为了得到正确的结构,可以利用一些程序和服务器(如 WHATIF)。本教程假定所用的结构没有问题,我们只进行数据格式处理。 二、结构转换和拓扑化 一个分子可以由各个原子的坐标、键接情况与非键相互作用来确定。由于.pdb 结构文件只含有原子坐标,我们首先必须建立拓扑文件,该文件描述了原子类型、电荷、成键情况等信息。拓扑文件对应着一种力场,选择何种力场对于拓扑文件的建立是一个值得仔细考虑的问题。这里我们用的是GROMOS96 53a6连接原子力场,该力场对于氨基酸侧链的自由能预测较好,并且与NMR试验结果较吻合。

相关主题
文本预览
相关文档 最新文档