新人教版七年级上册数学第4章几何图形初步全章教案
- 格式:doc
- 大小:5.19 MB
- 文档页数:35
第四章几何图形初步几何图形§立体图形与平面图形一、教课目的1、知识与技术(1)初步认识立体图形和平面图形的看法.(2)能从详细物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出近似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.2、过程与方法(1)过程:在研究实物与立体图形关系的活动过程中,对详细图形进行归纳,发展几何直觉 .(2)方法:能从详细事物中抽象出几何图形,并用几何图形描绘一些现实中的物体 .3、感情、态度、价值观:形成主动研究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情味.二、教课要点、难点 :教课要点:常有几何体的辨别教课难点:从实物中抽象几何图形.三、教课过程1.创建情境,导入新课 .让我们一同来看看北京奥运会奥运村模型图.(出示章前图)展现丰富多彩的图形世界.2直观感知,辨别图形(1)对于各种各种的物体 , 数学中关注是它们的形状、大小和地点.(2)展现一个长方体教具,让学生疏别从整体和局部抽象出几何图形. 察看长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,获得的是正方形或长方形,只看棱、极点等局部,获得的是线段、点.(3)察看其余的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形 .(4)指引学生得出几何图形、立体图形、平面图形的看法.我们把从实物中抽象出的各种图形统称为几何图形 . 比方长方体,长方形,圆柱,线段,点,三角形,四边形等 . 几何图形是数学研究的主要对象之一 . 有些几何体的各部分不都在同一平面内,它们是立体图形 . 如长方体,立方体等 .有些几何图形和各部分都在同一平面内,它们是平面图形 . 如线段,角,长方形,圆等 .3.实践研究 .(1)指引学生察看帐篷 ,, 金字塔的图片 , 从面抽象出棱柱 , 棱锥 .(2)你能谈谈圆柱与棱柱 , 圆锥与棱锥的差别吗 ?(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(4 )以下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来4.小结这节课你有什么收获 ?5.作业设计课本第 123 页习题第 1、2 题;第 125 页习题第 7、8 题。
4.1 立体图形与平面图形 ( 1)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 17教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:能够从简单实物的外形中抽象出几何图形,并认识立体图形与平面图形的差别;2、过程与方法:会判断一个几何图形是立体图形仍是平面图形,能正确辨别棱柱与棱锥.3、感情态度与价值观:经过察看、对照,概括出立体图形和平面图形的看法,并进一步认识常有的棱柱和棱锥等立体图形.教课要点:立体图形和平面图形的看法.教课难点:从实物的外形中抽象出几何图形.教课过程:一、导入:察看这个纸盒, 从中能够看出哪些你熟习的图形?从整体上看,它的形状是__长方体 _ ;看不一样的侧面,获取的是_正方形 _或_长方形;看棱获取的是____ 线段 __;看极点获取的是__点 ____ .说一说下边这些几何图形有什么共同特色?有些几何图形的各部分不都在同一平面内,它们是立体图形.请再举出一些立体图形的例子.二、图形的初步认识认识一下棱柱和棱锥你能再举出一些棱柱、棱锥的实例吗?图 4.1- 4中实物的形状对应哪些立体图形?把相应的实物与图形用线连结起来.说一说下边这些几何图形又有什么共同特色?有些几何图形的各部分都在同一平面内, 它们是平面图形.下边各图中包括哪些简单的平面图形?请再举出一些平面图形的例子.三、练习提高:1. 如图,说出以下图中的一些物体的形状所对应的立体图形.2. 图中的各立体图形的表面包括哪些平面图形?试指出这些平面图形在立体图形中的地点.3. 如图 , 你能看到哪些立体图形?(第 3题) (第4题)4 . 如图 , 你能看到哪些平面图形?四、小结:本节课主要学习了立体图形和平面图形的看法,并初步经历了由详细实物的外形中抽象出几何图形的过程,体验到了现实生活与数学的亲密联系.五、作业:1.结称身旁的实质物体 ,看一看能够获取哪些几何图形 ,此中哪些是立体图形 ?哪些是平面图形 ?说出来与同学沟通一下 .2.着手画一画你所熟习的立体图形.3.采用适合的资料和工具,做一个三棱柱和一个四棱锥.4.1 立体图形与平面图形(2)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 17教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:能够画出从不一样方向看一些常有的立体图形所获取的平面图形.2、过程与方法:能够依据从不一样方向看一个立体图形获取的平面图形, 想象并描绘它的形状 .3、感情态度与价值观:领会立体图形与平面图形的互相转变关系教课要点:从正面、左面、上边看一些简单几何体或它们的组合获取平面图形.教课难点:正确画出察看所得的平面图形.教课过程:四、导入:对于一些立体图形的问题,常把它们转变为平面图形来研究和办理 . 从不一样方向看立体图形 , 常常会获取不一样形状的平面图形 . 在建筑、工程等设计中 , 也经常用从不一样方向看到的平面图形来表示立体图形 .这是一个工件的立体图, 设计师们经常画出从不一样方向看它获取的平面图形来表示它.二、解说新课:例 1:分别从正面、左面、上边察看这个长方体,看一看各能获取什么平面图形?例 2:分别从正面、左面、上边看圆柱、圆锥、球,各能获取什么平面图形?例 3:分别从正面、左面、上边察看三棱柱和四棱锥,看一看各能获取什么平面图形?提示:可见棱应画为实线形线段;不行见棱应画为虚线形线段.三、稳固提高:练习:如图,右边三幅图分别是从哪个方向看这个棱柱获取的?练一练:分别从正面、左面、上边察看下边的立体图形,各能获取什么平面图形?四、小结:这节课我们主要学习了从不一样方向看立体图形获取平面图形,回首学习过程,谈一谈自己有哪些学习成就 .(据学生回答状况睁开讲)五、作业:教科书习题 4.1 第 4 题 .4.1 立体图形与平面图形(3)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 18教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:能画出简单的几何体的睁开图;2、过程与方法:能依据睁开图判断几何体的形状,并能理解这样做的现实意义3、感情态度与价值观:对峙体图形进行定量研究的认知教课要点:经过“睁开”和“围成”两种门路认识常有几何体的睁开图.教课难点:剖析理解正方体的11 种睁开图的画法等教课过程:五、导入:这些精巧的包装盒是怎么制成的?好依据它来要设计、制作一个包装盒,除了美术设计以外,还要认识它睁开后的形状,准备资料,这就是我们今日学习的立体图形的睁开图.二、实践感知:自己着手把一个包装盒剪开摊平,看看它的睁开图由哪些平面图形构成?再把睁开的纸板复原为包装盒,领会包装盒与它的睁开图的关系.三、研究常有的立体图形的睁开图:将正方体的表面沿棱适合剪开,察看它的睁开图是如何的,而后画出表示图. (沿着不同的棱剪开,会获取不一样的睁开图,比一比,看谁获取的结果多!)正方体的睁开图有11 种基本状况:练习 : 以下图形中能够作为一个正方体的睁开图的是().下边是一些立体图形的睁开图,用它们能围成什么样的立体图形?把它们画在一张硬纸片上,剪下来,折叠、粘贴,看看获取的图形和你想象的能否相同.制作立体模型的步骤: 1 .画出睁开图; 2 .裁剪、折叠、粘贴; 3 .修饰、加工.练习 1.将正确答案的序号填在横线上:圆柱的睁开图是———;圆锥的睁开图是————;三棱柱的睁开图是____.练习 2.如图是一个小正方体的睁开图,把睁开图折叠成小正方体后, 与有“建”字的一面相对的那一面上的字是().五、小结:这节课我们学习了将立体图形睁开成平面图形,认识了多种立体图形的睁开图,而且从展开图的角度进一步认识了立体图形与平面图形的转变关系.回首本节课的学习,你掌握了什么本领 ?向大家报告一下!六、作业:习题 4.1 第 6、7 题.4.2 直线、射线、线段(1)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 18教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:能联合几何模型或身旁环境,指出体、面、线、点,并能划分平面和曲面、直线和曲线;2、过程与方法:能从运动、会合的角度描绘点、线、面、体的关系,并能适合地举例来说明它们的关系;3、感情态度与价值观:初步领会“详细→抽象→详细”的认知方法.教课要点:点、线、面、体的看法.教课难点:从实物或模型中抽象出看法,并举出切实的实例描绘看法.教课过程:六、导入:问题 : 物体的构成常常包括多种元素,几何图形也是这样.察看长方体模型,它有几个面?面与面订交的地方形成了几条线?线与线订交成几个点,三棱柱呢?察看可知 :长方体有 ____个面,面与面订交的地方形成了___条线,线与线订交成____个点;三棱柱有 ____ 个面 ,面与面订交的地方形成了___条线,线与线订交成____个点.二、新课解说:我们先来认识“体” .察看一本书、圆罐、篮球,从它们外形中分别能够抽象出什么立体图形?请再举出一些你所熟习的立体图形.概括 : 长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体简称体.以以下图 : 四棱锥有 ____个面;圆柱有 ____个面;圆锥有 ___个面 . 再联想上一课“睁开图”的知识,能够得出结论:包围着体的是 ___.察看这些面,它们有差别吗?面是有区其余,能够分为平面和曲面;围成体的面不过平面或曲面的一部分 .练一练:围成下边这些几何体的各个面中,哪些面是平的?哪些面是曲的?察看几何体模型,回答以下问题:(1)面与面订交的地方形成了什么图形?它们有什么不一样?(2)线与线订交的地方形成了什么图形?它们有什么不一样?结论:面与面订交的地方形成线,线分为直线和曲线;线与线订交的地方是点,点只代表地点,没有大小,因此点都是相同的 .物体的运动会留下运动轨迹 , 这些运动轨迹常常也能抽象成几何图形 . 假如把笔尖当作一个点, 这个点在纸上运动时 , 形成的图形是什么 ?着手试一试 .概括结论:点动成线汽车的雨刷在挡风玻璃上画出一个扇面,从几何的角度察看这类现象,你能够得出什么结论?(线动成面)既然“点动成线,线动成面”,那么请同学们想想:当面运动时又会形成什么图形?如何考证你的猜想?(面动成体)练习 : 如图 , 上边的平面图形绕轴旋转一周 , 能够得出下边的立体图形 , 把有对应关系的平面图形与立体图形连结起来 .三、小结:1.谈一谈你认识到的点、线、面、体及它们之间的关系.2.说一说经过今日的学习你对四周环境有了哪些新的认识.3.想想在获取一个结论的过程中,我们都经历哪几个环节,这对你未来研究新知识有何帮助?四、作业:习题 4.1 第 5题.4.2 直线、射线、线段(2)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 19教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:研究获取“两点确立一条直线”的事实,并能举例说明这一事实;2、过程与方法:理解直线、射线、线段的看法并掌握其表示法,认识他们之间的练习与差别;3、感情态度与价值观:能读懂简单的几何语言并据此作出图形.教课要点:直线、射线、线段的看法及其表示法.教课难点:直线、射线、线段的看法、性质、表示法、画法及计算教课过程:七、导入:问题 1:小学的时候我们已经学习过直线、射线和线段,请同学们回想一下他们的形状并分别画出一条直线、射线和线段.问题 2:如图,经过一点O画直线,能画几条?经过两点A、 B 呢?问题 3 :你还可以举出一些实质生活中应用“两点确立一条直线”的实例吗?(木工用的墨线、砌墙时的拉线)二、概括完美,丰富新知问题 4 :联合直线自己的特色,请同学们想想,我们该如何表示一条直线呢?这样表示有什么道理?直线 AB 或直线 l直线有两种表示方法:( 1)能够用一个小写字母表示直线;(2)由于“两点确立一条直线”,因此也能够用直线上的两点表示直线问题 5:当点与直线、直线与直线同时在一个图形中出现的时候,我们应如何描绘它们之间的关系呢?如图试着描绘图中点与直线、直线与直线的关系.概括:( 1)点与直线的地点关系:点在直线上(直线经过点);点不在直线上(直线不经过点).(2)当两条不一样的直线有一个公共点时,我们就称这两条直线订交,这个公共点叫做他们的交点.三、即时练习,稳固新知问题 6:( 1)用适合的语句描绘图中点与直线,直线与直线的关系.(2)按以下语句画出图形:①直线 EF经过点 C;②点 A 在直线 l 外;③直线 AB 与直线 CD 订交于点 A.问题 7 :射线和线段都是直线的一部分,类比直线的表示方法,你以为应如何适合的表示射线和线段呢?请你举出一些生活中能当作射线、线段的实例.问题 8 :(1 )已知线段 AB,你能由线段 AB 获取直线 AB 和射线 AB 吗?( 2)可否用几何语言简单描绘一下直线、射线、线段?问题 9 :填写表格,概括直线、射线、线段的联系与差别.问题 10:( 1)判断以下说法能否正确:①线段 AB 与射线 AB 都是直线AB 的一部分;②直线 AB 与直线 BA 是同一条直线;③射线 AB 和射线 BA 是同一条射线;④把线段向一个方向无穷延长可获取射线,把线段向两个方向无穷延长可获取直线.四、小结:经过本节课的学习,你知道了什么?学会了什么?意会了什么?(据学生回答状况睁开回首)五、作业:习题 4.2 第 1, 2,3,4 题.4.2 直线、射线、线段(3)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 19教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:理解“两点确立一条直线”的基本领实,掌握直线、射线、线段的表示方法,理解直线、射线、线段的联系与差别.2、过程与方法:能够理解“经过” 、“确立”等几何语言的意义,并能依据几何语言画出简单的图形.3、感情态度与价值观:激发学习兴趣,培育应企图识.教课要点:直线、射线、线段的表示方法教课难点:“直线、射线、线段”有关的图形的画法及它们之间的差别.教课过程:八、导入:问题 1 :老师手里的纸上有一条线段,你能在你的本上作出一条相同大小的线段来吗?九、新课解说:问题 2 :黑板上有两条线段,你能判断一下它们的长短吗?你有什么方法来考证你的判断?1.胸怀法2.叠合法(叠合法要注意什么问题?)练习 1 :判断线段AB 和 CD的大小 .( 1)如图 1,线段 AB 和 CD的大小关系是AB CD;( 2)如图 2,线段 AB 和 CD的大小关系是AB CD;( 3)如图 3,线段 AB 和 CD的大小关系是AB CD.问题 3: 如图,线段 AB和 AC的大小关系是如何的?线段AC与线段 AB 的差是哪条线段?你还可以从图中察看出其余线段间的和、差关系吗?问题 4: 如图,已知线段 a 和线段 b,如何经过作图获取 a 与 b 的和、a 与 b 的差呢?问题 5 :如图,已知线段a,求作线段AB= 2a.点 B 把线段 AC 分红相等的两条线段 AB 与 BC,点 B 叫做线段 AC 的中点 ,可知 AB= BC =1/2 AB. 那么什么叫做三均分点?四均分点呢?三、稳固提高:练习 2:预计以下图形中AB、 AC 的大小关系,再用刻度尺或圆规查验你的预计.练习 3:如图,已知线段a、 b,画一条线段使它等于2a- b.四、拓展:问题 6: 如图,从 A 地到 B 地有四条道路,除它们以外可否再修一条从 A 地到 B 地的最短道路?假如能,请联系你从前所学的知识,在图上画出最短路线.1.两点的全部连线中,线段最短 . 简单地说 :两点之间,线段最短 .2.连结两点间的线段的长度,叫做这两点的距离.五、小结:六、作业:习题 4.2 第 5~8 题.4.3 角( 1)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 24教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:理解角的定义和有关看法,用运动的看法理解角、平角、周角等看法,掌握角的表示方法.2、过程与方法:经过研究角的静态定义和角的表示方法,在学习知识的过程中领会研究几何图形的方法和步骤.3、感情态度与价值观:经过从较为复杂的几何图形中鉴别角,培育辨别图形的能力.教课要点:角的看法及其表示方法.教课难点:角的表示方法.教课过程:十、导入:我们知道,线段是一种基本的几何图形,角也是一种基本的几何图形.在小学我们已经对角有些浅显的认识,本节课在已有的知识基础上,我们将对角作进一步的研究.(PPT展现生活中有关角的图片)十一、新课解说:角 : 有公共端点的两条射线构成的图形叫做角 . 公共端点叫角的极点,两条射线叫角的边. ——角的静态定义 .角的表示如图,如何表示这个角?角用符号“∠”来表示.(1)用三个大写字母:∠AOB或∠BOA;或用一个大写字母:∠O.(2)用一个数字加弧线表示:(3)用一个小写希腊字母加弧线表示:三、稳固提高:四、小结:五、作业:1、课本中练习 1.2、 (1)过 25 min ,钟表的分针转过了多少度的角?时针呢?(2) 5 时 30 分,钟表的时针和分针构成多少度的角?8 时 20 分呢? 1 时 15分呢 ?4.3 角( 2)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 24教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:认识角度制,经过与时间单位相类比,理解和掌握角的度分秒及其换算 .2、过程与方法:经过回想量角器的使用方法,获取用量角器作一个角等于已知角的方法,从而从数的角度认识角.3、感情态度与价值观:经过分组议论解决问题,培育合作沟通的意识.教课要点:角的胸怀单位及其换算.教课难点:角的胸怀单位换算.教课过程:十二、导入:1.如图,点O是直线 AB上随意一点, OC、 OD、 OE是三条射线,图中共有几个小于平角的角? (9 个)DCEA O B2.假如把钟表的时针在任一时辰所在的地点作为开端地点,那么时针旋转出一个平角及一个周角,起码各需要多长时间?(6小时,12小时)把一个周角360 均分,每一份就是 1 度的角,记做1° . 除了“度”以外,还有其余的胸怀单位吗?角的度、分、秒是60 进制的,这和计量时间的时、分、秒是相同的.1 °的 60 分之一为 1 分,记作1′,即 1°= 60′1′的 60 分之一为 1 秒,记作 1″,即 1′= 60″二、角的胸怀:已知∠ AOB,用量角度量出它的度数.用量角器胸怀角的方法:1. 对中——角的极点对量角器的中心;2. 重合——角的一边与量角器的零线重合;3. 读数——读出角的另一边所对的度数.如图,已知∠ AOB,画∠ EOF=∠AOB,你有什么方法?先量,再画 .三、小结:谈谈本节课你的收获. (据学生回答状况睁开回首)四、作业:习题 4.3 第 2,3, 14, 15 题4.3 角( 3)教课对象:七年级( 1)、( 6)班教课时间: 2017、 11、 25教课器具: PPT课件、教课设计、课本等教课目的 :1、知识与技术:理解角的大小、和差、角均分线的几何意义及数目关系,并会用文字语言、图形语言、符号语言进行综合描绘.2、过程与方法:经历类比线段的长短、和差、中点学习角的大小、和差、角均分线等过程,领会类比思想.3、感情态度与价值观:感觉学习过程中的类比思想.教课要点:角的大小、和差、角均分线的几何意义及数目关系.教课难点:角的比较,角的和差,角均分线.教课过程:十三、导入:1.角是如何形成的图形?2.请同学们回想一下,前方我们学习了线段的哪些内容?3.如图,已知线段 AB、 CD,你有哪些方法比较它们的大小?A B C D二、角的比较:类比线段大小的比较,你以为该如何比较两个角的大小?试着绘图来解决。
第四章几何图形初步几何是研究图形的形状、大小和位置关系的学科.本章我们将学习几何的一些基本知识.本章是初中阶段“图形与几何”领域的第一章,介绍一些最基本的概念和图形.点、线、面、体要在本章中从现实物体中抽象、归纳出来,直线、线段、射线、角及有关的概念将在本章中得到比较详细的介绍,并被广泛应用于后续的教学中.本章的教学属于初中几何图形知识学习的起始阶段,对于后续相关知识的学习影响深远.本章研究的内容是几何图形.点、线、面、体既是组成几何图形的元素,本身又是基本的几何图形,而直线、射线、线段是研究数轴、函数图象的基础.本章中渗透了数形结合、分类讨论、几何变换等重要的数学思想和方法,并开始学习图形语言、符号语言,为学习相关的内容打好基础.【本章重点】1.平面图形和立体图形的认识.2.理解和掌握直线、射线、线段的特征和一些性质.3.掌握角的比较、度量,能判断互为余角和互为补角,并能正确地加以运用.【本章难点】1.直线、射线、线段的相关知识.2.角的有关计算.3.图形的表示和作图,对几何语言的学习、运用.【本章思想方法】1.体会类比思想.在研究几何图形的过程中,我们常常采用类比的方法.例如,类比线段的大小比较、线段中点研究角的大小比较、角平分线等.类比的方法即引导我们发现问题,也帮助我们找到解决问题的途径.2.体会转化思想.解决一个问题,往往是由未知向已知转化,由陌生向熟悉转化,由复杂向简单转化,转化思想贯穿在整个数学学习的过程中.由立体图形展开成平面图形,由平面图折叠成立体图形,都是转化思想的应用.3.体会方程思想.在求线段的长度和角的度数问题时,通常把线段的长度或角的度数设为未知数,并根据所求的线段或角与其他线段或角之间的关系列方程求解.用方程来表示出几何图形中的数量关系,是解决几何计算题的一种重要方法.4.1几何图形3课时4.2直线、射线、线段2课时4.3角3课时4.4课题学习设计制作长方体形状的包装纸盒1课时4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形一、基本目标【知识与技能】1.通过实物和具体模型,了解从物体外形抽象出来的几何体、平面、直线和点的概念.2.初步了解立体图形和平面图形的概念.【过程与方法】经历从实物中抽象出几何图形的过程,体会空间构成.【情感态度与价值观】激发学生对“空间与图形”的探究欲望,唤起学生爱生活、爱数学的热情.二、重难点目标【教学重点】识别一些基本几何体.【教学难点】理解从物体外形抽象出的几何体、平面、直线和点的概念.环节1自学提纲,生成问题【5 min阅读】阅读教材P114~P116的内容,完成下面练习.【3 min反馈】1.对于各种各样的物体,数学关注的是它们的形状、大小、位置关系.2.几何图形:如长方体、圆柱、球、正方形、圆等.从实物中抽象出的图形统称几何图形.3.立体图形:如长方体、正方体、圆柱、圆锥、球等几何图形的各部分不都在同一平面内,它们是立体图形.4.平面图形:长方形、正方形、三角形、圆、线段等几何图形的各部分都在同一平面内,它们是平面图形.5.立体图形某些部分是平面图形,例如长方体的侧面是长方形.6.如图所示为8个立体图形.其中,是柱体的序号为①②⑤⑦⑧,是锥体的序号为④⑥,是球体的序号为③.环节2合作探究,解决问题活动1小组讨论(师生互学)【例题】有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为()A.5个B.4个C.3个D.2个【互动探索】(引发学生思考)根据平面图形的定义:一个图形的各部分都在同一个平面内,可判断①②③⑦是平面图形.【答案】B【互动总结】(学生总结,老师点评)区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内.活动2巩固练习(学生独学)1.下列图形不是立体图形的是(D)A.球B.圆柱C.圆锥D.圆2.下列图形中,属于棱柱的是(C)3.给出以下四个结论,其中正确的个数为(B)(1)圆柱的上、下两个圆一样大;(2)圆柱、圆锥的底面都是圆;(3)圆柱是由两个面围成的;(4)长方体的表面不可能有正方形.A .1个B .2个C .3个D .4个4.与如图相对应的几何图形的名称为( D )A .四棱锥B .三棱锥C .四棱柱D .三棱柱环节3 课堂小结,当堂达标 (学生总结,老师点评)几何图形⎩⎪⎨⎪⎧立体图形⎩⎪⎨⎪⎧ 柱体⎩⎪⎨⎪⎧ 圆柱棱柱球体锥体⎩⎪⎨⎪⎧ 圆锥棱锥平面图形请完成本课时对应练习!第2课时折叠与展开一、基本目标【知识与技能】1.能从不同角度观察一些几何体,以及它们的组合体,并画出平面图形.2.了解一些立体图形的表面展开图.3.能根据展开图想象相应的几何体.【过程与方法】认识可以用平面图形表示立体图形,以及立体图形与平面图形的联系.【情感态度与价值观】培养学生对学习几何图形的兴趣,激发学生热爱生活的情感.二、重难点目标【教学重点】了解一些简单立体图形的展开图.【教学难点】根据展开图想象几何体.环节1自学提纲,生成问题【5 min阅读】阅读教材P117~P118的内容,完成下面练习.【3 min反馈】1.有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图.2.物体的形状如图所示,则从上面看到的是(C)3.在下列立体图形中,侧面展开图是长方形的是(B)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下面的展开图能拼成如图所示的立体图形的是()【互动探索】(引发学生思考)立体图形是三棱柱,展开图应该是:三个长方形,两个三角形,两个三角形位于三个长方形两侧;A选项折叠后两个长方形重合,故排除;C、D选项折叠后三角形都在一侧,故排除.【答案】B【互动总结】(学生总结,老师点评)此题主要考查了展开图折叠成几何体.通过立体图形与平面图形的相互转化,理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.活动2巩固练习(学生独学)1.一个几何体从正面、左面、上面看得到的图形如图所示,那么这个几何体是下列选项中的(D)2.指出下面的三个图形分别是上面这个物体从哪个方向看到的图形.3.如图为一个多面体的表面展开图,每个面内都标注了数字.若数字为1的面是底面,则朝上一面所标注的数字为(B)A.5B.4C.3D.2活动3拓展延伸(学生对学)【例2】过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为()【互动探索】选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去的三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去的三角形交于一个顶点符合.【答案】B【互动总结】(学生总结,老师点评)本题考查几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.环节3课堂小结,当堂达标(学生总结,老师点评)1.从不同的方向观察立体图形(1)判断从不同的方向看到的图形(2)根据从不同的方向看到的图形判断几何体2.立体图形的展开图(1)几何体的展开图(2)由展开图判断几何体请完成本课时对应练习!4.1.2点、线、面、体(第3课时)一、基本目标【知识与技能】了解点、线、面、体之间的关系.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换等思想.【情感态度与价值观】使学生养成积极主动的学习态度和自主学习的方式.二、重难点目标【教学重点】认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】理解点动成线、线动成面、面动成体的联系.环节1自学提纲,生成问题【5 min阅读】阅读教材P119~P121的内容,完成下面练习.【3 min反馈】1.几何体简称体,包围着体的是面,面分为平面和曲面.2.面与面相交的地方成线.线有直线和曲线.线与线相交的地方是点.3.几何图形都是由点、线、面、体组成的,其中点是基本元素.4.笔尖在纸上快速滑动写出了一个又一个字,这说明了点动成线;车轮旋转时,车轮上的辐条会形成一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一个圆锥体,这说明了面动成体.5.如图,各图中的阴影图形绕着直线l旋转360°,各自能形成怎样的立体图形?解:圆柱,圆锥,球.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是()【互动探索】(引发学生思考)由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.【答案】D【互动总结】(学生总结,老师点评)此题考查了点、线、面、体,重在体现面动成体,需要发挥立体图形的空间想象能力及提高分析问题、解决问题的能力.活动2巩固练习(学生独学)1.如图,圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,下列选项中四个平面图形绕着直线旋转一周可以得到该图的是(A)2.小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的4个图案中,符合图示滚涂出的图案是(A)3.如图所示,正方形ABCD 的边长为3 cm ,以边AB 所在直线为轴,将正方形旋转一周,所得几何体从正面看得到的图形的面积是18 cm 2.活动3 拓展延伸(学生对学)【例2】已知柱体的体积V =S ·h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .πr 2hB .2πr 2hC .3πr 2hD .4πr 2h【互动探索】现将矩形ABCD 绕轴l 旋转一周,柱体的底面圆环面积为π(2r )2-πr 2=3πr 2,形成的几何体的体积等于3πr 2h .【答案】C【互动总结】(学生总结,老师点评)先判断旋转后的立体图形的形状,然后利用相应的计算公式进行解答.环节3 课堂小结,当堂达标 (学生总结,老师点评)体由面组成,面与面相交成线,线与线相交成点. 点的形成:线与线相交成点,点无大小.线的形成⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫点动成线面和面相交成线线无粗细面的形成:线动成面⎩⎪⎨⎪⎧平面曲面体的形成⎩⎪⎨⎪⎧面动成体由面转成请完成本课时对应练习!4.2直线、射线、线段第1课时直线、射线、线段一、基本目标【知识与技能】1.了解直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解“两点确定一条直线”的性质,并能初步应用.3.能根据语句画出相应的图形,会用语句描述简单的图形,在图形的基础上发展数学语言.【过程与方法】1.初步体验图形是有效描述现实世界的重要手段.2.初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.【情感态度与价值观】培养学生热爱数学、勤于思考的品质.二、重难点目标【教学重点】1.了解直线、射线、线段的联系与区别.2.能正确表示直线、射线、线段.【教学难点】能够把几何图形与语言表示、符号书写很好地联系起来.环节1自学提纲,生成问题【5 min阅读】阅读教材P125~P126的内容,完成下面练习.【3 min反馈】1.经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.2.如图,当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做他们的交点.3.射线可以看做由线段向一方延伸形成的,直线可以看做由线段向两方延伸形成的. 4.判断下列说法是否正确. (1)直线比射线长.()(2)直线AB 大于直线CD .()(3)方向相反的两条射线是一条直线.( )(4)延长直线AB ()(5)直线AB 与直线BA 不是同一条直线( )(6)直线AB 上有A 点()(7)直线AB 与直线l 不可能是同一条直线( )环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图所示,A 、B 、C 、D 四个选项中各有一条射线和一条线段,它们能相交的是( )【互动探索】(引发学生思考)线段是不延伸的,而射线只向一个方向延伸. 【答案】C【互动总结】(学生总结,老师点评)本题主要考查了线段、射线的延伸性,特别要注意射线是向一个方向无限延伸的,我们作图时只是作出了其中的一部分.【例2】如图所示,图中共有几条线段?【互动探索】(引发学生思考)如何数才能做到不重不漏?可以根据线段的定义写出所有的线段即可得解;也可以先找出端点的个数,然后利用公式n ×(n -1)2进行计算.【解答】(方法一)图中线段有:AB 、AC 、AD 、AE ;BC 、BD 、BE ;CD 、CE ;DE ;共4+3+2+1=10(条).(方法二)共有A 、B 、C 、D 、E 五个端点,则线段的条数为5×(5-1)2=10(条).【互动总结】(学生总结,老师点评)找线段时要按照一定的顺序,做到不重不漏,如果记住公式会更加简便准确.活动2 巩固练习(学生独学)1.如图,若射线AB 上有一点C ,下列与射线AB 是同一条射线的是( B )A .射线BAB .射线ACC .射线BCD .射线CB2.如图,下列语句表述错误的是( C )A .点A 在直线m 上B .直线l 经过点AC .点B 在直线l 上D .直线m 不经过B 点3.观察下列图形,并阅读图形下面的相关文字:两条直线相交,最多有一个交点 三条直线相交,最多有三个交点 四条直线相交,最多有六个交点 猜想:(1)5条直线相交最多有10个交点; (2)6条直线相交最多有15个交点; (3)n 条直线相交最多有n ×()n -12个交点.活动3 拓展延伸(学生对学)【例3】由郑州到北京的某一次往返列车,运行途中停靠的车站依次是:郑州——开封——商丘——菏泽——聊城——任丘——北京,那么要为这次列车制作的火车票有( )A .6种B .12种C .21种D .42种【互动探索】从郑州出发要经过6个车站,所以要制作6种车票,从开封出发要经过5个车站,所以要制作5种车票,从商丘出发要经过4个车站,所以要制作4种车票,从菏泽出发要经过3个车站,所以要制作3种车票,从聊城出发要经过2个车站,所以要制作2种车票,从任丘出发要经过1个车站,所以要制作1种车票,再考虑是往返列车,起点与终点不同,则车票不同,乘以2即可.即共需制作的车票数为:2×(6+5+4+3+2+1)=2×21=42种.【答案】D【互动总结】(学生总结,老师点评)可以结合线段条数的确定方法,也可以用公式n (n -1),将n =7代入即可.环节3课堂小结,当堂达标(学生总结,老师点评)1.线段、射线、直线的表示:(1)线段:两端点,有长度.(2)射线:一端点,无长度.(3)直线:无端点,无长度.2.直线的性质:(1)两点确定一条直线.(2)两条直线相交只有一个交点.请完成本课时对应练习!第2课时比较线段的长短一、基本目标【知识与技能】1.理解线段中点的含义,会比较线段的长短.2.掌握“两点之间线段最短”的性质,知道两点间的距离的含义.【过程与方法】通过现实情境的引入及圆规作图,理解线段有长短,且能掌握比较线段长短的方法.【情感态度与价值观】1.利用丰富的活动情境,体验线段的比较方法,并能初步应用.2.让学生体验到两点之间线段最短的性质,感受数学与生活的联系.二、重难点目标【教学重点】线段的大小比较.【教学难点】线段中点的应用及两点之间的距离.环节1自学提纲,生成问题【5 min阅读】阅读教材P126~P129的内容,完成下面练习.【3 min反馈】1.比较两条线段的长短的方法有度量法和叠合法.2.把一条线段分成相等的两条线段的点叫做线段的中点.3.连接两点间的线段的长度叫做两点的距离,线段的基本性质:两点之间,线段最短.4.如图,点C是线段AB的中点,AC=8 cm,则BC=8 cm,AB=16 cm.5.线段AB=6 cm,延长线段AB到C,使BC=3 cm,则AC是BC的3倍.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长2 cm,AC比BC长多少?【互动探索】(引发学生思考)根据线段中点的性质及已知条件,找到线段间的数量关系,从而解决问题.【解答】因为点M 是AC 的中点,点N 是BC 的中点, 所以AC =2MC ,BC =2NC ,所以AC -BC =(MC -NC )×2=4 cm , 即AC 比BC 长4 cm.【互动总结】(学生总结,老师点评)根据线段的中点表示出线段的长,再根据线段的和、差求未知线段的长度.【例2】如图,B 、C 两点把线段AD 分成2∶3∶4的三部分,点E 是线段AD 的中点,EC =2,求:(1)AD 的长; (2)AB ∶BE .【互动探索】(引发学生思考)(1)根据线段的比及中点的性质,可设出未知数,列出方程,解方程可得AD 的长度;(2)要求比值,先求两条线段的长.【解答】(1)设AB =2x ,则BC =3x ,CD =4x ,AD =AB +BC +CD =9x . 由E 为AD 的中点,得ED =12AD =92x ,所以CE =DE -CD =92x -4x =x2=2.解得x =4, 所以AD =9x =36.(2)由AB =2x =8,BC =3x =12, 则BE =BC -CE =12-2=10. 所以AB ∶BE =8∶10=4∶5.【互动总结】(学生总结,老师点评)在遇到线段之间比的问题时,往往设出未知数,列方程解答.活动2 巩固练习(学生独学)1.如图所示,从A 地到B 地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路线,这是因为( A )A .两点之间线段最短B .两直线相交只有一个交点C .两点确定一条直线D .垂线段最短2.如图,点C 为AB 的中点,点D 是BC 的中点,则下列说法错误的是( C )A .CD =AC -BDB .CD =12AB -BDC .CD =23BCD .AD =BC +CD3.如图,B ,C 是线段AD 上的两点,若AD =18 cm ,BC =5 cm ,且M ,N 分别为AB ,CD 的中点.求AB +CD 的长度.解:因为AB +CD =AD -BC ,AD =18 cm ,BC =5 cm ,所以AB +CD =18 cm -5 cm =13 cm.活动3 拓展延伸(学生对学)【例3】如果线段AB =6,点C 在直线AB 上,BC =4,D 是AC 的中点,那么A 、D 两点间的距离是( )A .5B .2.5C .5或2.5D .5或1【互动探索】本题有两种情形:(1)当点C 在线段AB 上时,如图,AC =AB -BC .又AB =6,BC =4,所以AC =6-4=2.因为D 是AC 的中点,所以AD =1.(2)当点C 在线段AB 的延长线上时,如图,AC =AB +BC .又AB =6,BC =4,所以AC =6+4=10.因为D 是AC 的中点,所以AD =5.【答案】D【互动总结】(学生总结,老师点评)解答本题关键是正确画图,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.线段的比较与性质(1)比较线段:度量法和叠合法. (2)两点之间线段最短.2.线段长度的计算(1)中点:把线段AB分成两条相等线段的点.(2)两点间的距离:两点间线段的长度.请完成本课时对应练习!4.3 角4.3.1角(第1课时)一、基本目标【知识与技能】1.掌握角的两种定义形式和四种表示方法.2.掌握角的度量单位及换算.【过程与方法】通过在图片、实例中找角,培养学生观察、探究、概括的能力,以及把实际问题转化为数学问题的能力.【情感态度与价值观】通过实际操作,体会角在实际生活中的应用,培养学生参与数学学习活动的热情和对数学的好奇心.二、重难点目标【教学重点】角的概念与角的表示方法.【教学难点】角的度、分、秒之间的换算.环节1自学提纲,生成问题【5 min阅读】阅读教材P132~P133的内容,完成下面练习.【3 min反馈】1.角的概念:(1)有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.(2)角也可以看作由一条射线绕它的端点旋转而形成的图形,旋转开始时的射线叫做角的始边,旋转终止时的射线叫做角的终边.2.角的表示:如图所示,把图中用数字表示的角,改用三个大写字母表示分别是∠1=∠ADE,∠2=∠EDB,∠3=∠CED,∠4=∠ABC,∠5=∠AED.可用一个大字写字母表示的角是∠A,∠B,∠C.3.角的度量:(1)常用的角的度量单位有度、分、秒;1°=60′,1′=60″.(2)1周角=2平角=4直角=360°.(3)把下列各题结果化成度.①72°36′=72.6°;②37°14′24″=37.24°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()【互动探索】(引发学生思考)在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误.【答案】B【互动总结】(学生总结,老师点评)角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.解题时要善于排除一些似是而非的说法的干扰,选出能准确描述“角”的说法.用三个大写字母表示角,表示角顶点的字母在中间.【例2】(1)用度、分、秒表示48.26°;(2)用度表示37°24′36″.【互动探索】(引发学生思考)度、分、秒之间的进率是多少?大单位化小单位,乘进率,小单位化大单位除以进率.【解答】(1)48.26°=48°+0.26×60′=48°15′+0.6×60″=48°15′36″.(2)根据1°=60′,1′=60″得36″÷60=0.6′,24.6′÷60=0.41°,所以37°24′36″用度来表示为37.41°.【互动总结】(学生总结,老师点评)用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率.活动2巩固练习(学生独学)1.下列说法中正确的有(B)①由两条射线组成的图形叫做角;②角的大小与边的长短无关,只与两条边张开的角度有关;③角的两边是两条射线;④把一个角放到一个放大10倍的放大镜下观看,角的度数也扩大10倍.A.1个B.2个C.3个D.4个2.如图所示,下列说法正确的是(C)A.∠1与∠OAB表示同一个角B.∠AOC也可以用∠O表示C.图中共有三个角:∠AOB,∠AOC和∠BOCD.∠β表示的是∠COA3.计算:(1)57.18°=57度10分48秒;(2)360″=0.1°或6′;(3)12′=0.2°或720″.4.写出图中符合下列条件的角.(图中所有的角均指小于平角的角)(1)能用一个大写字母表示的角;(2)以点A为顶点的角;(3)图中所有的角(用简便方法表示).解:(1)能用一个大写字母表示的角有∠B,∠C.(2)以点A为顶点的角有∠CAD,∠BAD,∠BAC.(3)∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.活动3拓展延伸(学生对学)【例3】观察下图,回答下列问题:(1)在图1中有1个角;(2)在图2中有3个角;(3)在图3中有6个角.(4)以此类推,如图4所示,若一个角内有n 条射线,此时共有多少个角?图1图 2图3图4【互动探索】解答此题首先要弄清楚题目的规律:当图中有n 条射线时,每条射线都与(n -1)条射线构成了(n -1)个角,则共有n (n -1)个角,由于两条射线构成一个角,因此角的总数为n (n -1)2,可根据这个规律,直接求出(1)(2)(3)的结论;在解答(4)题时,首先要弄清图中共有多少条射线,已知角内共n 条射线,那么图中共有(n +2)条射线,代入上面的规律,即可得到所求的结论.【解答】(1)1 (2)3 (3)6 (4)角内有n 条射线时,图中共有(n +2)条射线,则角的个数为(n +1)(n +2)2个.【互动总结】(学生总结,老师点评)解答此类规律型问题,一定要弄清题目的规律,可以从简单的图形入手进行总结,然后得到一般化结论再进行求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)角⎩⎪⎪⎨⎪⎪⎧定义⎩⎪⎨⎪⎧静态描述:有公共端点的两条射线组成的图形动态描述:由一条射线绕着它的端点旋转而形成的图形表示方法⎩⎪⎨⎪⎧三个大写字母一个大写字母一个希腊字母一个阿拉伯数字角的度量⎩⎪⎨⎪⎧单位:度、分、秒1°=60′,1′=60″请完成本课时对应练习!4.3.2角的比较与运算(第2课时)一、基本目标【知识与技能】1.会比较角的大小,能估计一个角的大小.2.认识角的平分线.【过程与方法】类比线段长短的比较方法研究角的大小比较方法;类比线段中点的研究,类比角的平分线的研究,培养学生的知识迁移能力.【情感态度与价值观】在独立思考的基础上,积极参与对数学问题的讨论,敢于表达自己的观点,尊重和理解他人的见解,从而在交流中获益.二、重难点目标【教学重点】角的大小比较和角的平分线的定义.【教学难点】角的和差与画法.环节1自学提纲,生成问题【5 min阅读】阅读教材P134~P136的内容,完成下面练习.【3 min反馈】(一)角的大小比较1.角的比较方法有两种:度量法和叠合法.2.如图,比较图中四个角的大小,并用“<”连接∠A<∠B<∠D<∠C.(二)角平分线1.角的平分线:在角的内部,从角的顶点引一条射线把这个角分成两个相等的角,那么,这条射线叫做角的平分线.。
第四章几何图形初步4.1 几何图形4.1.2 点、线、面、体【知识与技能】(1)了解几何体、平面和曲面的意义,能正确判断围成几何体的面是平面还是曲面.(2)了解构成几何图形的基本元素是点、线、面,理解点、线、面经过运动变化形成的几何图形.【过程与方法】经历探索点、线、面、体的关系的数学活动,提高空间想象能力和抽象思维能力.【情感态度与价值观】经历本节课的数学活动,使学生养成主动探索、求知的学习态度,激发学生对数学的学习兴趣,并让学生体验数学活动中小组合作的重要性.正确判断围成的立体图形的面是平面还是曲面,探索点、线、面、体之间的关系.理解点、线、面经过运动变化后形成的图形.多媒体课件,长方体模型、圆柱模型情境:多媒体演示西湖风光,垂柳、波澜不惊的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.一、思考探究,获取新知探究:教师出示一个长方体模型,请同学们认真观察.1.学生首先独立思考,然后小组讨论,最后得出结论.2.各小组公布讨论后的结论.在小组讨论过程中,教师巡视,及时给予指导,对小组公布的结论,教师给予鼓励性评价.3.教师总结:几何体的概念.长方体是一个几何体,还有我们学过的正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.几何体也简称体.教师提问:观察长方体和圆柱,说出围成这两个几何体的面有哪些?这些面有什么区别?4.教师给出面的分类.通过对上面问题的解决,给出面的分类:平面和曲面.5.教师用多媒体放映生活中一些常见的“点动成线,线动成面,面动成体”的例子,让学生观察.(1)通过观察,你能得出什么结论?(2)小组讨论得出结论.(3)教师指导学生学习教材内容.师生互动,学生得出结论:点动成线,线动成面,面动成体.教师对学生的结论进行正面评价,并把学生的结论板书.二、典例精析,掌握新知例1(1)人在雪地上行走,他的脚印形成一条 ,这说明了的数学原理.(2)体是由围成的,面和面相交成 ,线和线相交成 .(3)点动成 ,线动成 ,面动成 .【解】(1)线点动成线(2)面线点(3)线面体本节课通过丰富的实例,认识点、线、面、体,并感受它们之间的关系:点动成线,线动成面,面动成体.教材P122习题4.1第5题。
人教版七年级数学上册第四章《几何图形初步》教学设计一. 教材分析人教版七年级数学上册第四章《几何图形初步》是学生学习几何的入门章节,主要内容包括:平面图形的性质、相交线、平行线、垂直、角的度量等。
本章节的目的是让学生掌握一些基本的几何图形和概念,培养学生观察、思考、动手操作的能力。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对平面图形有一定的认识。
但部分学生可能对一些几何概念和性质的理解还不够深入,因此在教学过程中需要注重引导学生从实际操作中理解和掌握知识。
三. 教学目标1.知识与技能:使学生掌握平面图形的性质,学会用直尺和圆规作图,理解相交线、平行线、垂直的概念。
2.过程与方法:培养学生观察、思考、动手操作的能力,提高空间想象能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.教学重点:平面图形的性质,相交线、平行线、垂直的概念及性质。
2.教学难点:相交线、平行线、垂直的判断和证明。
五. 教学方法1.情境教学法:通过实物、模型等引导学生直观地认识几何图形。
2.动手操作法:让学生通过实际操作,加深对几何概念和性质的理解。
3.讨论法:引导学生分组讨论,培养学生的合作精神和沟通能力。
4.讲解法:教师针对重难点进行讲解,帮助学生理解和掌握知识。
六. 教学准备1.教具:直尺、圆规、模型、实物等。
2.课件:制作与本章节内容相关的课件,以便进行直观教学。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的几何图形,如教室里的桌子、窗户等,引导学生关注平面图形,激发学生学习兴趣。
2.呈现(10分钟)教师通过课件展示平面图形的性质,如三角形、矩形的性质,引导学生直观地认识和理解。
3.操练(10分钟)教师布置一些实际操作题,如用直尺和圆规作图,让学生动手操作,加深对几何概念的理解。
4.巩固(10分钟)教师针对本节课的重点知识进行提问,检查学生对知识的理解和掌握程度。
人教版七年级上册第四章几何图形初步课程设计一、课程目标本课程旨在让学生在掌握平面图形的基础上,初步了解几何图形的种类和性质,能够正确地用名称和符号表示图形,并能够在实际问题中灵活地应用几何图形。
二、教学内容1.平面图形及其名称、符号的学习。
2.五种基本几何图形(三角形、四边形、圆、直线、点)的性质。
3.常见几何图形(如平行四边形、矩形、正方形等)的名称、符号、判定方法及应用。
4.几何图形的绘制方法。
三、教学重点和难点教学重点1.五种基本几何图形(三角形、四边形、圆、直线、点)的性质。
2.常见几何图形(如平行四边形、矩形、正方形等)的名称、符号、判定方法及应用。
教学难点1.完全理解五种基本几何图形的性质。
2.在讲解各种几何图形名称、符号及判定方法时,通过实例让学生理解并运用。
四、教学方法1.讲授法通过板书和PPT等形式,讲解各种几何图形的名称、符号、性质及应用。
并通过多组实例,帮助学生理解和掌握相关知识。
2.演示法在讲解几何图形的绘制方法时,通过教师与学生互动绘图的方式,让学生亲自动手绘制各种图形。
3.实践操作法布置一定数量的练习题,让学生通过实践操作,巩固所学知识点。
五、教具和课件1.教具:圆规、直尺、量角器、彩色绘图纸、彩笔、橡皮等。
2.课件:PPT。
六、教学流程时间(分钟)教学内容教学方法5 上课打卡、布置课程目标讲授法10 五种基本几何图形的名称、符号及性质讲授法15 常见几何图形(如平行四边形、矩形、正方形等)的名称、符号、判定方法及应用讲授法20 几何图形的绘制方法演示演示法时间(分钟)教学内容教学方法20 学生自己绘制各种图形实践操作法10 课堂小结、布置练习题讲授法七、教学评价1.练习题考试:通过布置一定数量的练习题,检验学生是否掌握了课堂所学内容。
2.课堂表现评价:通过观察和点名,发现学生课堂是否能积极参与、认真听讲、配合教师操作等,评估学生的综合表现。
八、教学反思1.教师应该注重让学生通过实例运用所学知识,更好地理解和掌握几何图形的相关知识点。
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。
第四章几何图形初步屯脚中学:李治民4.1 几何图形§ 4.1.1 立体图形与平面图形一、教学目标1、知识与技能(1)初步了解立体图形和平面图形的概念.(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.2、过程与方法(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.3、情感、态度、价值观:形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.二、教学重点、难点:教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.三、教学过程1.创设情境,导入新课.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)展示丰富多彩的图形世界.2直观感知,识别图形(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.(4)引导学生得出几何图形、立体图形、平面图形的概念.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.3. 实践探究.(1) 引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.(2)你能说说圆柱与棱柱,圆锥与棱锥的区别吗?(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(4)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来4.小结这节课你有什么收获?5.作业设计课本第123页习题4.1第1、2题;第125页习题4.1第7、8题。
§ 4.1.1 几何图形(二)一、教学目标知识与技能1.能识别简单几何体的三种视图.2.会画简单立体图形及其它们的简单组合的三种视图.3.进一步认识立体图形与平面图形之间的关系.4.引导学生把所学的数学知识应用到生活中去,解决身边的数学问题.5.过程与方法在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉.6.情感、态度、价值观1).通过活动,形成学生主动探究的意识,丰富学生数学活动的成功经验,激发学生对几何图形的好奇心和对学习的自信心.2).从实物出发,让学生感受到图形世界的无处不在,提高学生学习数学的热情.二、重点与难点重点:1.在观察的过程中初步体会从不同方向观察同一物体可能看到不同的结果.2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.难点:1.在面和体的转换中丰富几何直觉和数学活动经验,发展空间观念2.能识别简单物体的三视图,会画简单立体图形及其它们组合的三种视图.三、教学过程1.创设情景,引入新课(1)请欣赏漫画并思考:为什么会出现争执?(2)“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”中蕴含的数学道理吗?2.新课学习(1)不同角度看直棱柱、圆柱、圆锥、球让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,三棱镜,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、圆柱、圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体验,集体作出小结.(可以给出三个视图的名称)(2)猜一猜,看一看Ⅰ.左看右看上看下看一个物体都是圆?(猜一物体)Ⅱ.什么物体左看右看上看下看都是正方形?若是长方形呢?(各猜一物体) Ⅲ.桌上放着一个圆锥和圆柱,请说出下面三幅图是分别从哪个方向看到的.(3) 分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图形?你能一一画下来吗7(画出示意图即可)(4)(从不同角度看简单的组合图形,由少数组合逐步加多)如下图,画出下列几何体分别从正面、左面,上面看,得到的平面图形.(学生独立思考、合作交流,最后从模型上得到验证)3.实践与探究(1)上图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么图形?(2)再试一试,画出它的三视图.(3)怎样画得又快又准?(4)用6个相同的小方块搭成一个几何体,它的俯视图如图所示.则一共有几种不同形状的搭法(你可以用实物模型动手试一试)?4.参考练习(⒈)图,桌上放着一个球和一个圆柱,下面a、b、c、d、e这五幅图分别是从什么方向看到的?(⒉)一个正方体中,截去一个小正方体的立体图如图所示,从左面观察这个图形,得到的平面图形是()(3)一个由8个正方体组成的立体图形,从正面和上面观察这个图形时,得到的平面图形如图所示,那么从左面观察这个图形时,得到的平面图形可能是()● 蚊子壁虎 ●(4)如图分别是某立体图形三视图,请根据图说出立体图形的名称⑴正视图俯视图左视图⑵正视图俯视图右视图5.小结(1)你对本节内容有哪些认识?(2)你有什么收获?有什么感想?有什么困惑?6.作业设计课本第120页练习1 ,课本第124页习题4.1第3、4题§ 4.1.1 几何图形(三)一、教学目标知识与技能⒈了解直棱柱、圆锥等简单立体图形的侧面展开图。
⒉能根据展开图初步判断和制作立体模型。
⒊进一步认识立体图形与平面图形之间的关系。
⒋通过描述展开图,发展学生运用几何语言表述问题的能力。
过程与方法⒈在平面图形和立体图形互相转化的过程中,初步建立空间观念,发展几何直觉。
⒉通过动手观察、操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维。
⒊通过展开与折叠的活动,体会数学的应用价值。
情感、态度、价值观⒈通过学生之间的交流活动,培养主动与他人合作交流的意识。
⒉通过探讨现实生活中的实物制作,提高学生学习热情。
二、重点与难点重点:直棱柱的展开图。
难点:根据展开图判断和制作立体模型。
三、教学过程1.创设情境,导入课题小壁虎的难题:如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径?学生各抒己见,提出路线方案。
教师总结:蚊子 ●● 壁虎 若在平面上,壁虎只要沿直线爬过去就可以了。
而在圆桶上,直线不太好找,那么把圆柱侧面展开,就可找出答案。
如图所示:圆柱侧面展开后是矩形,壁虎只要沿图中直线爬向蚊子即可。
若蚊子和壁虎在其他几何体上,如棱锥,正方体…… 它们展开后是什么图形呢?今天我们就来讨论它们的展开图。
2、新课探究: (1)正方体的表面展开图教师先演示正方体的展开过程,提醒沿着棱展开,且展开图必须是一个完整的图形。
然后让学生拿出学具正方体纸盒(或是课前准备好的正方体纸盒,或现成的正方体包装盒)进行动手操作,得到正方体展开图。
.教师再拿出如下图所示的两个纸片,提问:能否经过折叠围成一个正方体?若不能,如何改变其形状就能围成一个正方体?(要求学生仔细观察,思考,讨论,并动手操作验证猜想)(2)其他直棱柱的表面展开图学生从其他直棱柱中任选一种,得到它的展开图,相互交流。
教师指导总结。
(特别是圆柱体展开时,体会怎样展开会得到侧面是一个长方形)(3) 让学生分组研究观察三棱锥的展开图。
归纳:从刚才的实践过程中,大家可能已经感受到,同一个几何体,按不同的方式展开,得到的展开图也不同。
(4)你能想象出下面的平面图形可以折叠成什么多面体?动手做做看。
提问:通过实践,说说以上平面图形叠成什么多面体?上面的图〈1〉及图〈3〉可以折叠成正三棱锥,所以它们都是正三棱锥的表面展开图。
图〈2〉不可以折叠成正三棱锥,所以它不是正三棱锥的表面展开图。
归纳:一些平面图形也可以围成立体图形。
(5)提问:是所有的立体图形都能展开成平面图形吗?老师引导得出:是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
3.小结(1)一些立体图形是由平面图形围成的立体图形,沿着它们的一些棱将它剪开,可以把多面体展开成一个平面图形.体现了立体图形与平面图形之间的相互联系。
(2)对于一些立体图形的问题,常把它们转化为平面图形来研究和处理。
4.作业设计(1)课本第124页习题4.1第5题(2)课本第125-126页习题4.1第11、12、14题§ 4.1.2 点、线、面、体一、教学目标:知识技能:1、进一步认识点、线、面、体的概念.2、理解点、线、面、体之间的关系.过程与方法通过学习点、线、面、体之间的关系,进一步发展学生抽象概括能力和形象思维的能力.情感、态度、价值观通过联系现实世界中各种常见的几何体及情景,让学生认识数学与现实生活的密切联系.二、教学重、难点重点:点、线、面、体之间的关系.难点:体会点动成线、线动成面、面动成体三、教学过程:1.问题情境[问题1](1)举出一些你所熟悉的立体图形.(2)①你知道这些体是由什么围成的吗?它们有什么不同吗?②面与面相交的地方形成了什么?它们有什么不同呢?③线与线相交之处又得到了什么?(3)举出生活实际中分别给体、面、线、点的形象的例子学生先独立观察、思考,然后再讨论、交流得出以下结论:(1)体是由面围成的.面有两种,平面和曲面.(2)面与面相交的地方形成了线,线有直的也有曲的.(3)线与线相交的地方是点.教师对以上结论加以总结、完善.得出点、线、面、体之间的关系.即“体由面组成,面与面相交成线,线与线相交成点”.教师鼓励学生联想身边熟悉的情景,尽可能多的举出例子,并把课前准备的挂图和物品等展示出来和学生交流.[问题2](学生动手操作、思考并回答问题)(1)①笔尖可以看作是一个点,这个点在纸上运动时,形成了什么?②通过上述运动你得出了什么结论?③你能举出生活中的一些实例进一步说明这一结论吗?教师在学生回答问题的基础上总结得到“点动成线”的结论.学生在组内讨论、交流的基础上,举出更多实例.如:蚂蚁搬家;在一望无际的沙滩上;一个孤独的旅行者留下的一排长长的足迹……(2)①汽车雨刷可以看作是一条线,它在档风玻璃上运动时有什么现象?②通过对上面现象的分析你得出了什么结论?③你能举出生活中的一些实例进一步说明这一结论吗?①教师让学生拿笔或直尺当雨刷在纸上演示,启发学生类比上一个问题.并鼓励学生用自己的语言说出发现的结论.②学生通过仔细观察图片,动手实践,回答问题.得出“线动成面”的结论.③学生经讨论、交流后举例.如:夜晚街头闪烁的霓虹灯、利用竹条编织的凉席,用扫帚扫地、用刷子刷油、钟表盘上分针时针的运动……(3)①长方形纸片绕它的一边旋转,形成了什么图形?②通过对上面现象的分析你得出了什么结论?③你能再举出一些例子进一步说明这一结论吗?④你能找出它们之间的对应关系吗?教师演示旋转过程,让学生通过观察,大胆猜测,想象.学生在观察、猜测、想象之后独立思考得出结论,再通过动手实践加以验证;最后进行小组讨论、交流,回答问题.得出“面动成体”的结论.学生经小组交流,举出例子.如把三角尺绕其一边旋转形成几何体、一摞壹元硬币……[问题3](1)为什么在中国地图上,北京只是一个点,而在北京市地图上北京几乎占了整个版面?学生先独立思考后讨论、交流.回答问题,同学们之间可以相互补充、纠正.(2)观察下面的图片,你有什么发现?构成几何图形的基本元素是什么?学生观察图片.表述观点.教师参与学生的交流活动,总结出几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.2.小结.本节是从实际物体中抽象出几何图形、立体图形、平面图形,又进一步抽象出体、面、线、点等基本元素,研究了它们之间的关系之后,又由这些基本元素得到丰富多彩的图形世界.3.布置作业.课后收集能反映点、线、面、体之间关系的资料、图片及实物模型.§ 4.2 直线、射线、线段(一)教学目标知识与技能1、在现实情境中理解线段、直线、射线等简单的平面图形。