当前位置:文档之家› 拉普拉斯方程的格林函数法

拉普拉斯方程的格林函数法

拉普拉斯方程的格林函数法

本次课主要内容

4.1 拉普拉斯方程边值问题的提法4.2 格林公式

4.1拉普拉斯方程边值问题的提法

狄氏问题

?在区域Ω内找一个调和函数,它在边界Γ上的值为已知。

3、内问题与外问题

以上两个边值问题都是在边界Γ上给定某些边界条件,在区域内部求拉普拉斯方程的解,这样的问题称为内问题。

重点讨论内问题

4.2 格林公式

二个格林公式

借助于二个格林公式,可以得到拉氏方程的狄氏问题与牛曼问题的解的积分表达式。

为何引入格林公式

积分公式的起点是通过直接积分或分部积分将未知函数从微分号下解脱出来

我们要求解的数值方程中均含有Δ,格林公式是将未知函数从微分算符Δ下解脱出来的工具。

而格林公式则是曲面积分中高斯公式的直接推论。

(Gauss 公式)

格林公式建立了区域Ω中的场与边界Γ上的场之间的关系。因此,利用格林公式可以将区域中场的求解问题转变为边界上场的求解问题。

格林公式说明了两种标量场之间应该满足的关系。因此,如果已知其中一种场的分布特性,即可利用格林公式求解另一种场的分布特性。

数学物理方程有感

书本个人总结: 由于物理学,力学和工程技术等方面的许多问题都可以归结为偏微分方程的定解问题,而在数学物理方程这门课上,我们的主要任务便是求解这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解。 而我们的常用的解决偏微分方程的方法的统一思路是将一个偏微分方程的求解设法转化成一个常微分方程问题的求解。 而我们在学习过程中接触到的常用方法有:分离变量法,行波法,积分变换法和拉普拉斯方程的格林函数法 第二章: 本章主要介绍了分离变量法,介绍了有界弦的自由振动,有限长杆上的热传导,圆域内的二维拉普拉斯方程的定解问题等泛定方程和边界条件都是齐次的偏微分方程的求解,还介绍了非齐次方程的解法,非齐次边界条件的处理等等。 A . 其中泛定方程和边界条件都是齐次的偏微分方程的求解步骤,取有界弦的自由振动的方程求解作为例子,定解问题为: 第一步:分离变量 目标:分离变量形式的非零解)()(),(t T x X t x u = 结果:函数)(x X 满足的常微分方程和边界条件以及)(t T 满足的常微分方程 条件:偏微分方程和边界条件都是齐次的 第二步:求解本征值问题 利用0)()(''=+x X x X λ和边界条件0)0(=X 和0)(=l X 求出本征值和本函数: 本征值: 本征函数: 第三步:求特解,并叠加出一般解 ? ??????====<<>??=??) ()0,(),()0,(,0),(),0(0 ,0 ,22222x x u x x u t L u t u L x t x u a t u t ψ?0 )(2 )(''=+t T a t T λ ,3,2,1 2)(==n l n n πλx l n πsin (x)X n =x l n at l n D at l n C t x u n n n πππsin )cos sin (),(1∑∞ =+=

数学物理方程-第五章格林函数法

第五章 格林函数法 在第二章中利用分离变量法求出了矩形区域和圆域上位势方程Dirichlet 问 题的解.本章利用Green 函数法求解一些平面或空间区域上位势方程Dirichlet 问题. 另外,也简单介绍利用Green 函数法求解一维热传导方程和波动方程半无界问题. 应指出的是:Green 函数法不仅可用于求解一些偏微分方程边值问题或初边值问题,特别重要的是,它在偏微分方程理论研究中起着非常重要的作用. §5?1 格林公式 在研究Laplace 方程或Poisson 方程边值问题时,要经常利用格林(Green )公式,它是高等数学中高斯(Gauss )公式的直接推广. 设Ω为3R 中的区域,?Ω充分光滑. 设k 为非负整数,以下用()k C Ω表示在 Ω上具有k 阶连续偏导的实函数全体,()k C Ω表示在Ω上具有k 阶连续偏导的实 函数全体. 如()10()()()()u C C C C ∈Ω?ΩΩ=Ω,表示(,,)u x y z 在Ω具有一阶连续偏导数而在Ω上连续. 另外,为书写简单起见,下面有时将函数的变量略去. 如将(,,)P x y z 简记为P ,(,,)P x y z x ??简记为P x ??或x P 等等. 设(,,)P x y z ,(,,)Q x y z 和(,,)R x y z 1()C ∈Ω,则成立如下的Gauss 公式 ( )P Q R dV Pdydz Qdydx Rdxdy x y z Ω ?Ω ???++=++???????? (1.1) 或者 ( )(cos cos cos )P Q R dV P Q R ds x y z αβγΩ ?Ω ???++=++???????? (1.2) 如果引入哈米尔顿(Hamilton )算子: ( ,,)x y z ??? ?=???,并记(,,)F P Q R = ,则Gauss 公式具有如下简洁形式 ???????=??Ω Ω ds n F dv F (1.3) 其中(cos ,cos ,cos )n αβγ= 为?Ω的单位外法向量. 注1 Hamilton 算子是一个向量性算子,它作用于向量函数(,,)F P Q R = 时,其运算定义为 (,,)(,,) , F P Q R x y z P Q R x y z ??? ??=???????=++???

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入, 设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出 其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分): ???? ???==??=??=+=-).()(002 22 22x u x u x u a t u at x at x ψ? ())0()0(ψ?=

6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

格林函数以及拉普拉斯方程

格林函数 格林函数的概念及其物理意义 格林函数法是求解导热问题的又一种分析解法。 从物理上看,一个数学物理方程是表示一种特定的"场"和产生这种场的"源"之间的关系。例如,热传导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等。这样,当源被分解成很多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场,这种求解数学物理方程的方法就叫格林函数法.而点源产生的场就叫做格林函数。 物体中的温度分布随时间的变化是由于热源、边界的热作用以及初始温度分布作用的结果。这些热作用都可以看做广义上的热源。从时间的概念上说,热源可以使连续作用的,如果作用的时间足够短,则可以抽象为瞬时作用的热源。同样的热源在空间上是有一定分布的,但如果热源作用的空间尺度足够小,也可以抽象为点热源、线热源和面热源。在各种不同种类的热源中,瞬时点热源虽然仅是一种数学上的抽象,却有着重要的意义,因为在其他的各种热源都可以看作是许多瞬时热源的集合,即把空间中的热源看成是在空间中依次排列着的许多点热源,在特定的几何条件的导热系统中,在齐次边界条件和零初始条件下单位强度的瞬时点热源所产生的温度场称为热源函数,或称格(Green)函数。对于二维和一维导热问题,也把由线热源和面热源引起的温度场称为相应的格林函数。对于线性的导热问题,由各种复杂的热源引起的温度场可以由许多这样的瞬时热源引起的温度场叠加得到,数学上即成为某种几分。这就是热源法,或称格林函数法,求解非稳态导热问题的基本思路。采用格林函数法可以求解带有随时间变化的热源项且具有非齐次边界条件的导热微分方程,对于一维、二维和三维问题的解在形式上都可以表示的非常紧凑,而且解的物理意义比较清楚。格林函数法可以来求解不同类型的偏微分方程,包括线性的椭圆形的偏微分方程(如带有热源项的稳态导热问题)以及双曲型偏微分方程(如力学中的震动问题)。在此仅讨论用格林函数法求解非稳态导热问题。 用格林函数法求解的困难在于找到格林函数,而格林函数的形式取决于特定问题的具体条件,包括几何条件(即有限大、半无限大或无限大)、边界条件和坐标系的选取。因此用格林函数法求解非稳态导热问题首先需要对特定定解条件的导热系统确定其格林函数。本方法的第二个要点是确定有热源和非齐次边界条件的一般导热问题的温度分布与格林函数的关系。本节从几个较简单的例子开始介绍格林函数法在解决稳态导热问题中的应用,再推广到更为一般的情况。 “瞬时”和“点”热源的概念在数学上都可用狄克拉δ分布函数,简称δ函数,来表示。δ函数的定义为

第四章 Laplace方程的格林函数法

第四章 Laplace 方程的格林函数法 在第二、三两章,系统介绍了求解数学物理方程的三种常用方法—分离变量法、行波法与积分变换法,本章来介绍Laplace 方程的格林函数法。先讨论此方程解的一些重要性质,在建立格林函数的概念,然后通过格林函数建立Laplace 方程第一边值问题解的积分表达式。 §4.1 Laplace 方程边值问题的提法 在第一章,从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出了三维Laplace 方程 2 2 2 2 2 2 2 u u u u u x y z ????=?≡ + + =??? 作为描述稳定和平衡等物理现象的Laplace 方程,它不能提初始条件。至于边界条件,如第一章所述的三种类型,应用得较多的是如下两种边值问题。 (1)第一边值问题 在空间(,,)x y z 中某一个区域Ω的边界Γ上给定了连续函数f ,要求这样一个函数(,,)u x y z ,它在闭域Ω+Γ(或记作Ω)上连续,在Ω内有二阶连续偏导数且满足Laplace 方程,在Γ上与已知函数f 相重合,即 u f Γ = (4.1) 第一边值问题也称为狄利克莱(Dirichlet )问题,或简称狄氏问题,§2.3中所讨论过的问题就是圆域内的狄氏问题。

Laplace 方程的连续解,也就是所,具有二阶连续偏导数并且满足Laplace 方程的连续函数,称为调和函数。所以,狄氏问题也可以换一种说法:在区域Ω内找一个调和函数,它在边界Γ上的值为已知。 (2)第二边值问题 在某光滑的闭曲面Γ上给出连续函数f ,要求寻找这样一个函数(,,)u x y z ,它在Γ内部的区域Ω中是调和函数,在 Ω+Γ 上连续,在Γ上任一点处法向导数 u n ??存在,并且等于已知函数f 在该点的值: u f n Γ ?=? (4.2) 这里n 是Γ的外法向矢量。 第二边值问题也称纽曼(Neumann )问题。 以上两个问题都是在边界Γ上给定某些边界条件,在区域内部要求满足Laplace 方程的解,这样的问题称为内问题。 在应用中我们还会遇到Dirichlet 问题和Neumann 问题的另一种提法。例如,当确定某物体外部的稳恒温度场时,就归结为在区域Ω的外部求调和函数u ,使满足边界条件u f Γ =,这里Γ是Ω的边界,f 表示物体表面的温度分布。像这样的定解问题称为Laplace 方程的外问题。 由于Laplace 方程的外问题是在无穷区域上给出的,定解问题的解是否应加以一定的限制?基于电学上总是假定无穷远处的电位为零,所以在外问题中常常要求附加如下条件: lim (,,)0(r u x y z r →∞ == (4.3) (3)狄氏外问题 在空间(,,)x y z 的某一闭曲面Γ上给定连续函数

数学物理方程课程

《数学物理方程》课程 教学大纲 课程代码:B0110040 课程名称:数学物理方程/equation of mathematic physics 课程类型:学科基础课 学时学分:64学时/4学分 适用专业:地球物理学 开课部门:基础课教学部 一、课程的地位、目的和任务 课程的地位:数学物理方程是地球物理学专业的一门重要的专业(或技术)基础课。数学物理方程是反应自然中物理现象的基本模型,也是一种基本的数学工具,与数学其他学科和其他科学技术领域诸如数值分析、优化理论、系统工程、物理、化学、生物等学科都有广泛联系。对于将来从事工程地震技术工作及自然科学研究的学生来说是必不可少的。期望学生通过该门课程的学习,能深刻地理解数学物理方程的不同定解问题所反应的物理背景。 课程的目的与任务:使学生了解数学物理方程建立的依据和过程,认识这门学科与物理学、力学、化学、生物学等自然科学和社会科学以及工程技术的极密切的广泛的联系。掌握经典数学物理方程基本定解问题的提法和相关的基本概念和原理,重点掌握求解基本线性偏微分方程定解问题的方法和技巧。使学生掌握与本课程相关的重要理论的同时,注意启发和训练学生联系自己的专业,应用所学知识来处理和解决实际问题的能力。 二、课程与相关课程的联系与分工 学生在进入本课程学习之前,应修课程包括:大学物理、高等数学、线性代数、复变函数、场论与向量代数。这些课程的学习,为本课程奠定了良好的数学基础。本课程学习结束后,可进入下列课程的学习:四大力学、电磁场与微波技术、近代物理实验等。且为进一步选修偏微分方程理论、数值计算、控制理论与几何分析等课程打下基础。

三、教学内容与基本要求 第一章绪论 1.教学内容 第一节偏微分方程的基本概念 第二节弦振动方程及定解条件 第三节热传导方程及定解条件 第四节拉普拉斯方程及定解条件 第五节二阶线性偏微分方程的分类 第六节线性算子 2.重点难点 重点:物理规律“翻译”成数学物理方程的思路和步骤,实际问题近似于抽象为理想问题 难点:数学物理方程的数学模型建立及数学物理方程的解空间是无限维的函数空间 3.基本要求 (1)了解数学物理方程研究的基本内容,偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念;了解算子的定义。了解三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 (2)掌握微分算子的运算规律,理解线性问题的叠加原理 (3)了解二阶线性方程的特征理论 (4)掌握两个变量二阶线性偏微分方程分类方法及化简方法 (5)掌握三类方程的标准形式及其化简过程,会三类方程的比较,并能通过标准形式求得某些方程的通解。 第二章分离变量法 1.教学内容 第一节有界弦的自由振动。 第二节有界长杆的热传导问题。 第三节二维拉普拉斯方程的边值问题。 第四节非齐次方程得求解问题。

数学物理方程学习指导书第6章拉普拉斯方程的格林函数法剖析

第6章 拉普拉斯方程的格林函数法 在第4、5两章,我们较系统地介绍了求解数学物理方程的三种常用方法——分离变量法、行波法与积分变换法.本章我们来介绍拉普拉斯方程的格林函数法.先讨论此方程解的一些重要性质,再建立格林函数的概念,然后通过格林函数建立拉普拉斯方程第一边值问题解的积分表达式. 6.1 拉普拉斯方程边值问题的提法 在第3章,我们已从无源静电场的电位分布及稳恒温度场的温度分布两个问题推导出了三维拉普拉斯方程 2222 2220.u u u u x y z ????≡++=??? 作为描述稳定和平衡等物理现象的拉普拉斯方程,它不能提初始条件.至于边界条件,如第 一章所述有三种类型,应用得较多的是如下两种边值问题. (1)第一边值问题 在空间(,,)x y z 中某一区域Ω的边界Γ上给定了连续函数f ,要求这样一个函数(,,)u x y z ,它在闭域Ω+Γ (或记作Ω)上连续,在Ω内存在二阶偏导数且满足拉普拉斯方程,在Γ上与已知函数f 相重合,即 .u f Γ= (6.1) 第一边值问题也称为狄利克莱(Dirichlet)问题,或简称狄氏问题.4.3中所讨论过的问题就是圆域内的狄氏问题. 拉普拉斯方程的连续解称为调和函数.所以,狄氏问题也可以换一种说法:在区域Ω内找一个调和函数,它在边界Γ上的值为已知. (2)第二边值问题 在某光滑的闭曲面Γ上给出连续函数f ,要求寻找这样一个函数 (,,)u x y z ,它在Γ内部的区域Ω中是调和函数,在Ω+Γ上连续,在Γ上任一点处法向导 数 u n ??存在,并且等于已知函数f 在该点的值: .u f n Γ ?=? (6.2) 这里n 是Γ的外法向矢量. 第二边值值问题也称牛曼(Neumann )问题. 以上两个边值问题都是在边界Γ上给定某些边界条件,在区域内部求拉普拉斯方程的解.这样的问题称为内问题.

第5章格林函数法

第5章格林函数法

格林(Green)函数,又称为点源影响函数,是数学物理中 的一个重要概念.格林函数代表一个点源在一定的边界条件下和初始条件下所产生的场.知道了点源的场,就可以用叠加的方法计算出任意源所产生的场. 格林函数法是解数学物理方程的常用方法之一. 5.1 格林公式 T Σ 上具有连续一阶导数, 在区域及其边界 中具有连续二阶导数,应用矢量分析的高斯定理 d d T T div = ?∫∫∫ ∫∫∫ i A V = A V (5.1.1) 单位时间内流体流过边界闭曲面S 的流量 单位时间内V 内各源头产生的流体的总量

将对曲面 Σ 的积分化为体积分 d ()d d d T T T u u V u V u V Σ ?=??=Δ+??∫∫∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.2) ()uv u v u v ?=??+?以上用到公式称上式为第一格林公式.同理有 d ()d d d T T T u u V u V u V Σ ?=??=Δ+??∫∫ ∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.3) 上述两式相减得到 ()d ()d T u u u u V Σ ???=Δ?Δ∫∫ ∫∫∫i S v v v v

的外法向偏导数. 5.1.4)为第二格林公式. 进一步改写为 ()d ()d T u S u u V n Σ???=Δ?Δ??∫∫∫∫∫ v u v v v n (5.1.4)

5.2 泊松方程的格林函数法 讨论具有一定边界条件的泊松方程的定解问题.泊松方程()() u f Δ=?r r (5.2.1)(5.2.2) 是区域边界 Σ 上给定的函数. 是第一、第二、第三类边界条件的统一描述

相关主题
文本预览
相关文档 最新文档