当前位置:文档之家› 变压器油中溶解气体分析的原理及方法

变压器油中溶解气体分析的原理及方法

变压器油中溶解气体分析的原理及方法
变压器油中溶解气体分析的原理及方法

变压器油中溶解气体分析的原理及方法

充油电力变压器在正常运行过程中受到热、电和机械方面力的作用下逐渐老化,产生某些可燃性气体,当变压器存在潜伏性故障时,其气体产生量和气体产生速率将逐渐明显,人们取变压器油样使用气相色谱方法获得油中溶解的特征气体浓度后,就可以对变压器的故障情况进行分析。由于大型充油电力变压器是一个非常复杂的电气设备,变压器存在潜伏性故障时与多种因素存在耦合,特征气体形成涉及的机理十分复杂,这些机理及由这些机理导出的诊断方法对智能诊断方法有很好的借鉴意义。

1 变压器油及固体绝缘的成份及气体产生机理分析

气体绝缘、蒸发冷却式气体绝缘变压器和干式变压器、交联聚虽然SF

6

乙烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能力是它们所不能替代的,目前高电压、大容量的电力变压器仍然普遍采用充油式。充油电力变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A 级绝缘材料,当运行年限为20年左右时,最高允许的温度为105℃左右。变压器油中特征气体是由变压器油及固体绝缘产生的,与它们的性能存在着密切的关系。

1 变压器油的成份及气体产生机理

变压器油是由天然石油经过蒸馏、精炼而获得的一种矿物油。它是由各种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%~99%。主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%~40%)和芳香烃(5%~15%)组成[9]。不同变压器油各种成份的含量有些不同。

变压器油中不同烃类气体的性能是不同的。环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很小。芳香烃化学稳定性和介电稳定性也较好,在电场作用下不析出气体,而且能吸收气体;但芳香烃易燃、黏度大、凝固点高,且在电弧的作用下生成的碳粒较多,会降低油的电气性能。环烷烃中的石蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作用下易发生电离而析出气体,并形成树枝状的X蜡,影响油的导热性。

变压器油在运行中受到温度、电场、氧气及水分和铜、铁等材料的催化

作用会形成某些氧化物及其油泥、氢、低分子烃类气体和固体X蜡等,这就是绝缘油的老化和劣化作用。正常的老化和劣化情况下,变压器油中仅能产生少量的气体,通常它们的含量在临界值之下。

但存在潜伏性故障时情况就不同了,当变压器油受到高电场的作用时,即使温度较低也会分解产生气体。

变压器油是由许多不同分子量的碳烃化合物分子组成的混合物,分子中

存在着CH

3*、CH

2

*和CH*等化学基团,含有C-C键和C-H键。在电或热的作用

下使某些C-C键和C-H键断裂,形成了不稳定的氢原子和碳氢化合物的自由基,这些氢原子、自由基迅速重新化合生成氢气和低分子烃类气体。不同的键断裂需要不同的能量,C-H键(338kJ/mol)断裂生成氢气,这在局部放电的情况下就能达到。对C-C键需要较多的能量,然后迅速以C-C键(607kJ/mol)、C=C键(720kJ/mol)和C C键(960kJ/mol)化合分别生成相应的乙烷、乙烯和乙炔,需要的能量越来越高。乙炔仅在接近1000℃的时候才产生,满足这种条件的只有高温过热和放电;甲烷在低温下产生较多,主要是在低温过热和局部放电,随着温度的升高气体的产生速率反而下降了;乙烷始终未能成为主要的气体成份;乙烯在低温下产生很少,但随着温度升高到中高温过热时气体产生速率大大提高了。

2 变压器典型的内部故障

充油电力变压器内部的故障模式主要是机械、热和电三种类型,其中以后两者为主,并且机械性故障常以热或电故障的形式表现出来。人们对359台故障变压器实例统计得知过热性故障和高能放电故障是变压器故障的主要类型,分别占总数的53%和%,其次分别是过热兼高能放电故障、火花放电故障和受潮或局部放电故障。人们根据故障的原因及严重程度将变压器的典型故障分为6种,各种故障类型及其可能的原因列于表1-1。

根据大量的试验和故障变压器实例可知,高能的电弧放电变压器油主要分解出乙炔、氢气及少量的甲烷;局部放电变压器油主要分解出氢气和甲烷;过热时变压器油主要分解出氢气、甲烷、乙烯等;固体绝缘在过热时主要分解出一氧化碳和二氧化碳等。不同故障类型所产生的主要特征气体和次要特征气体归纳于表1-2中。

3 基于油中溶解气体分析的故障诊断方法

充油电力变压器在长期的运行过程中受到电或热的作用会老化和劣化,产生少量的气体。当变压器存在热或电故障时,产生气体的速度要加快,如果产生的气体导致油中溶解气体饱和,气体就会进入气体继电器,导致变压器报警。人们将变压器油中溶解气体中对判断变压器故障有价值的7种气体

即氢气(H

2)、甲烷(CH

4

)、乙烷(C

2

H

6

)、乙烯(C

2

H

4

)、乙炔(C

2

H

2

)、一氧化碳(CO)、

二氧化碳(CO

2)称为特征气体,把甲烷、乙烷、乙烯、乙炔的总和称为总烃。

判断变压器是否有故障的方法

判断变压器是否有故障的方法有根据气体浓度判断变压器是否故障的方法、根据绝对产气速率判断变压器是否故障的方法和根据相对产气速率判断变压器是否故障的方法。

(1)根据气体浓度判断变压器是否故障的方法

正常运行情况下,充油电力变压器在受到电和热的作用会产生一些氢气、低分子烃类气体及碳的化合物。当变压器发生故障时气体产生速度要加快,所以根据气体的浓度可以在一定程度上判断变压器是否发生故障,人们总结的变压器运行过程中气体浓度的注意值如表1-3所示。

表1-3 变压器投运前后气体浓度的注意值(μL/L)

(2)根据产气速率判断变压器是否故障的方法

因为有的故障是从潜伏性故障开始的,此时油中溶解气体的含量较小但产气速率较快,所以应该考虑用产气速率来判断变压器是否处于故障状态。产气速率分为绝对产气速率和相对产气速率。绝对产气速率是每运行日产生某种气体的平均值,即

p

m t C C v ei li a ??-= (2-1) 式中,a v 是绝对产气速率,单位为mL/d ;li C 是第二次取样测得油中某种气体浓度,单位为μL/L ;ei C 是第一次取样测得油中某种气体浓度,单位为μL/L ;t ?是取样间隔中实际的运行时间,单位为d ;m 是变压器总油重,单位为t ;p 是油的密度,单位为t/m

3。变压器的绝对产气速率的注意值如表1-4所示。

表1-4 绝对产气速率注意值(mL/d)

相对产气速率是折算到月的某种气体浓度增加量占原有值百分数的平均值,按下式计算。

1001???-=t

C C C v ei ei li r (2-2) 式中,r v 是相对产气速率,单位为%/m ;li C 是第二次取样测得油中某气体浓度,单位为μL/L ;ei C 是第一次取样测得油中某气体浓度,单位为μL/L ;t ?是取样间隔中实际的运行时间,单位为m 。当总烃的相对产气速率大于10%时就应该引起注意,对总烃起始值很低的变压器不宜采用此判据。

产气速率在很大程度上依赖于设备的类型、负荷情况、故障类型和所用绝缘材料的体积及其老化程度,应结合这些情况进行综合分析。判断设备状况时,还应该考虑到呼吸系统对气体的逸散作用。

判断变压器故障类型的方法

在判断变压器是故障后,就可以利用判断变压器故障类型的方法判断变压器所属的故障类型了。判断变压器故障类型的方法主要有特征气体法和比值法,比值法又包括有编码的比值法和无编码的比值法,有编码的比值法包括IEC 三比值法等。

(1)特征气体法

变压器油中溶解的特征气体随着故障类型及严重程度的变化而变化,特征气体法就是根据油中各种特征气体浓度来判断变压器故障类型的一种方法,特征气体法对故障性质有较强的针对性,比较直观、方便,缺点是没有量化。表1-5描述了特征气体与变压器内部故障的关系。

(2)IEC 三比值法

IEC三比值法最早是由国际电工委员会(IEC)在热力动力学原理和实践的基础上推荐的。我国现行的DL/T722-2000《变压器油中溶解气体分析和判断导则》推荐的就是改良的三比值法。其原理是根据充油电气设备内油、纸绝缘在故障下裂解产生气体组分含量的相对浓度与温度的相互依赖关系,从5种气体中选择两种溶解度和扩散系数相近的气体组分组成三对比值,以不同的编码表示,根据比值的编码判断变压器所属的故障类型。表1-9和表1-10是我国DL/T722-2000推荐的改良三比值法的编码规则和故障类型判断方法。

三比值法原理简单、计算简便且有较高的准确率,在现场有着广泛的应用。三比值法中各种气体针对的是变压器本体内的油样,对气体继电器中的油样无效,只有根据气体各组分含量的注意值或气体增长率的注意值有理由判断变压器存在故障时,气体比值才是有效的,对于正常的变压器比值没有意义。同时三比值法还存在一些不足,比如实际情况中可能出现没有对应比值编码的情况、对多故障并发的情况判断能力有限、不能给出多种故障的隶属度、对故障状态反映不全面。

表1-6 三比值法的编码规则

(3)无编码的比值法

三比值方法存在着找不到对应故障类型的情况,而且判断方法相对复

杂。学者杜样在10年中通过对国内外大量变压器故障实例的分析和研究,提出了一种“无编码比值法”,该方法在一定程度上解决了三比值法故障编码缺少,有的故障用三比值法无法诊断的问题。无编码比值法故障诊断方法如表1-8所示。

(4)油中微水测试

变压器进水时,溶解在油中的水受到铁、氧等作用会分解出氢气,此时油中的气体产物与变压器发生局部放电时的产物是很接近的,同时溶解于油中的水可能会产生局部放电,所以变压器进水与发生局部放电很难区分。可以通过油中微水测试来判别,当使用特征气体法或比值法判断变压器属于局部放电,且变压器油中微水含量很高,就有理由怀疑变压器进水受潮了。

4 具体事例

2001年我们在对变压器进行周期试验时发现我局的古城变电站2#主变乙炔超过注意值,现将统计结果列表如下:

两天后7月27日乙炔为L,8月13日乙炔为L,8月30日乙炔为 ul/L,10

月8日乙炔为 ul/L ,10月22日乙炔为 ul/L ,11月10日乙炔为18 ul/L ,到11月14日乙炔为20 ul/L 发现乙炔一直在增长。计算乙炔绝对产气速率p

m t C C v ei li a ??-= =( 20-18)/4×=超过隔膜式变压器乙炔绝对产气速率注意值,判断变压器内部存有故障。

11月15日开始停运检修,发现有载调压开关的油泄漏到变压器本体里,经过滤油处理重新运行,截至目前为止变压器运行正常,乙炔无明显变化。 5小结

分析了变压器油和固体绝缘的成份以及气体产生的机理,给出了变压器内部典型的6种故障及其对应的产气特征,介绍了变压器是否故障的判断方法以及变压器故障类型的判断方法,同时给出了辅助的故障判断方法,为专家系统中的故障诊断、人工智能方法的应用建立了坚实的基础。

变压器油中溶解气体在线监测概要

变压器油中溶解气体在线监测方法研究

摘要 (3) 1. 导言 (4) 2. 国内外发展现状及发展趋势 (6) 3. 变压器油中溶解气体在线监测方法的基本原理 (9) 3.1.变压器常见故障类型 (9) 3.2.变压器内部故障类型与油中溶解特征气体含量的关系 (10) 4. 基于油中特征气体组分的故障诊断方法 (14) 4.1.特征气体法 (14) 4.2.三比值法 (15) 4.3.与三比值法配合使用的其它方法 (17)

摘要 电力变压器是电力系统中最主要的设备,同时也是电力系统中发生事故最多的设备之一,对其运行状况实时监测,保证其安全可靠运行,具有十分重要的意义。变压器油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映设备异常的特征量。如何以变压器油中溶解气体在线监测为手段,实现对运行变压器潜伏性故障的诊断和预测,是本文的出发点。 本文的目标是研究基于油中溶解气体分析(DGA)的电力变压器状态监测与故障分析方法,通过气体色谱分析方法实现对变压器油中溶解的七种特征气体(氢气H2、甲烷CH4、乙炔C2H2、乙烯C2H4、乙烷C2H6、一氧化碳CO、二氧化碳CO2)组分含量在线实时监测,从而达到对电力变压器工作状态的诊断分析。

1.导言 现代社会对能源的巨大需求促进了电力工业的飞速发展。一方面是单台电力的容量越来越大;另一方面是电力网向着超高压的方向发展,并正组织成庞大的区域性甚至跨区域的大电网。然而,随着电力设备容量的增大和电力网规模的扩大,电力设备故障给人们的生产和现代生活所带来的影响也就越来越大。这就要求供电部门在不断提高供电质量的同时,要切实采取措施来保证电力设备的正常运行,以此来提高供电的可靠性。长期以来形成的定期检修已不能满足供电企业生产目标。激烈的市场竞争迫使电力企业面临着多种棘手的问题,例如如何提高设备运行可靠性、如何有效控制检修成本、合理延长设备使用寿命等。因此,状态检修已成为必然。而状态检修的实现,必须建立在对主要电气设备有效地进行在线监测的基础上,通过实时监测高压设备的实际运行情况,提高电气设备的诊断水平,做到有针对性的检修维护,才能达到早期预报故障、避免恶性事故发生的目的。由此可见,以变压器状态监测为手段,随时对其潜伏性故障进行诊断和预测以及跟踪发展趋势是十分必要的。 对于大型电力变压器,目前几乎大多是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成气泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体量随故障的严重程度而异。由此可见,油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备电气异常的特征量。 溶解气体分析(Dissolved Gas Analysis简称DGA)是诊断变压器内部故障的最主要技术手段之一。根据GB/T7252-2001《变压器油中溶解气体分析和判断导则》,可以通过分析油中7种分析组分H2、C2H2、C2H4、C2H6、CH4、CO和CO2的含量来判断并分析故障。通过从油样中分离出这些溶解气体,并利用色谱技术对其进行定量分析。变压器油中溶解的各种气体成分的相对数量和形成速度主要取决于故障点能量的释放形式及故障的严重程度,所以根据色谱分析结果可以进

变压器油色谱分析

方法概述 用气相色谱法测定绝缘油中溶解气体的组分含量,是发供电企业判断运行中的充油电力设备是否存在潜伏性的过热、放电等故障,以保障电网安全有效运行的有效手段。也是充油电气设备制造厂家对其设备进行出厂检验的必要手段。 GC-9310SD变压器油色谱分析系统采用一次进样、双柱并联、一次分流的三检测器流程,配TCD检测器和两个FID检测器,其中H2和O2通过TCD检测;烃类气体(甲烷、乙烯、乙烷、乙炔)通过FID1检测,CO、CO2通过FID2检测,克服了大量CO、CO2对烃类气体的影响,特别是乙炔的影响。 执行标准: GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》 GB/T 7252-2001《变压器油中溶解气体分析和判断导则》 DL/T 722-2000《变压器油中溶解气体分析和判断导则》 气路系统流程图: 性能指标: (1)最小检测量:一次进样,进样量为1mL时的最小检测浓度: 溶解气体的分析(uL/L) H2 CO CO2 CH4 C2H4 C2H6 C2H2 2 2 2 0.1 0.1 0.1 0.1 (2)定性重复性:偏差≤1% (3)定量重复性:偏差≤3% (2)热导检测器(TCD) ◎采用半扩散式结构 ◎电源采用恒流控制方式 ◎敏感度:S≥3000mv.ml/mg(正十六烷/异幸烷) ◎基线噪音:≤20μv ◎基线漂移:≤50μv/30min ◎线性:≥105 ◎载气流速稳定性:≤1%。 (3)火焰离子化检测器(FID) ◎收集极采用圆筒型结构,石英喷口 ◎检测限:≤8×10-12g/s(正十六烷/异幸烷) ◎基线噪声:5×10-14A ◎基线漂移:≤2×10-13A/30min ◎线性:≥107 ◎自动点火 ◎稳定时间10min 主要特点 主机介绍 GC-9310SD变压器油色谱分析系统是上海荆和分析仪器有限公司最新推出的一款新型全微机控制气相色谱仪。仪器充分吸收了国外同类产品的先进技术,大量采用进口元件,使GC-9310的稳定性、可靠性以及灵敏度和重复性蓖美进口同类型产品;并且在结构上更加简洁合理;人性化的中文菜单式操作,精美的外观设计,让色谱分析工作者使用的更加自信。

变压器油中溶解气体的成分和含量

变压器油中溶解气体的成分和含量 与充油电力设备绝缘故障诊断的关系 摘要:介绍了通过分析变压器油中溶解气体的成分和含量以判断充油电力设备故障的机理和方法。 关键词:变压器;变压器油;气相色谱法;比值法 1 前言 气相色谱法一直是国内外许多电力设备制造厂作为检验质量、开发新产品的有力工具。实践证明,用气相色谱法能有效地发现充油电力设备内部的潜伏性故障及其发展程度,而利用其他电气试验方法很难发现某些局部发热和局部放电等缺陷。故在1999年颁布执行的电力设备预防性试验规程中,把油中气体色谱分析放在“电力变压器及电抗器”试验的首位。某些变压器厂家在其产品中还装设了DGA(dissolved gas analysis,即溶解气体分析)自动检测报警系统。 2 故障分析的机理 充油的电力设备(如变压器、电抗器、电流互感器、充油套管和充油电缆等)的绝缘主要是由矿物绝缘油和浸在油中的有机绝缘材料(如电缆纸、绝缘纸板等)所组成。其中 矿物绝缘油即变压器油,是石油的一种分镏产物,其主要成分是烷烃(C n H 2n+2 )、环烷族饱 和烃(C n H 2n )、芳香族不饱和烃(C n H 2n-2 )等化合物。有机绝缘材料主要是由纤维素(C 6 H 10 O 5 ) n 构成。在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,会分解出极少量的气 体(主要有氢H 2、甲烷CH 4 、乙烷C 2 H 6 、乙烯C 2 H 4 、乙炔C 2 H 2 、一氧化碳CO、二氧化碳CO 2 等7种)。当电力设备内部发生过热性故障、放电性故障或受潮情况时,这些气体的产

量会迅速增加。表1列出气体的种类与外施能量的关系。 这些气体大部分溶解在绝缘油中,少部分上升在绝缘油的面上,例如变压器有一部分气体从油中逸出进入气体继电器(瓦斯继电器)。经验证明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。因此在设备运行过程中,定期测量溶解于油中的气体组织成分和含量,对于及早发现充油电力设备内部存在的潜伏性故障有非常重要的意义。 表1 气体种类与外施能量的关系 气体CO CO2H2CH4C2H6C2H4C2H2 能量/J 3特征气体色谱的分析和判断 判断有无故障的两种方法 与油中溶解气体的正常值作比较判定有无故障 若氢和烃类气体不超过表2所列的含量,则认为电力设备运行正常。 表2 油中溶解气体的正常值 气体成分H2CH4C2H6C2H4C2H2总烃(C1+C2) 正常极限值/μ1004535555100 根据总烃产气速率判定有无故障 当总烃含量超过正常值时,应考虑采用产气速率判断有无故障。绝对产气速率V:

变压器市场情况分析

变压器市场情况分析(常规变压器) 我国电力工业已经进入“大电网、大机组、西电东送、南北互济、全国联网”的新时代,并正向高效、环保、安全、经济的更高目标迈进。“十五”期间,我国电力工业发展迅速,基本满足了国民经济和社会发展对电力的需求。电力装备水平有了很大的提高,大容量、高参数、环保型机组快速增长,电网覆盖面和现代化程度不断提高。 2006年电力供需形势: 2006年国民经济仍将以平稳较快速度发展,对电力的需求仍然强劲,各行业用电将持续快速增长,虽然高耗能行业受国家宏观调控但增速会有所放慢,但是对电力的需求仍会以较快的速度增长。预计2006年全社会用电量增长率将在12%左右,电力供应能力将进一步增强,发电装机投产规模较大。据初步调查,2006年新增发电装机将在7500万千瓦左右,是建国以来发电机组投产最多的一年,如此大的机组投产规模将决定着全国及各地区电力供应形势的变化。随着西北-华中电网的联网成功,全国除新疆、西藏和海南外,其它省区电网实际上已经联成一个全国性的大电网,电网联系将更加紧密,互供、保障及相互支援的能力将进一步增强。虽然全国电力供需矛盾依然存在,但缺电程度和缺电范围将大大降低。 我国目前电力变压器市场的供需情况:

根据国家电网公司“十一五”电网规划及2020年远景目标报告,“十一五"期间,国家电网公司将新增330千伏及以上输电线路6万千米、变电容量3亿千伏安,投资9000亿元左右;电力供应紧张问题刺激了电力投资热潮,带动输变电设备行业增长可能会持续到2008年,预计变压器行业的年需求量为3.6亿~4亿千伏安。到2010年,跨区输电能力将达到4000多万千瓦、输送电量1800多亿千瓦时。国家电网公司“十一五”期间平均每年投资1800亿元,考虑到南方电网公司投资一般为国家电网公司的1/3~1/4,国家电网跟南方电网的投资总和将可能达到2250亿元,和“十五”相比增幅达到了90%。据专家分析,2020年全社会用电将达到39400亿~43200亿千瓦时,需要装机8.2亿~9.0亿千瓦;2011~2020年年均净增电量1400亿~1660亿千瓦时,年均需净增装机2600万~3200万千瓦。变压器需求与发电设备相关,其配比按1:11测算,变压器的需求量非常可观,电气设备和输变电设备行业面临着比较光明的发展前景。 电力变压器品种: 1、配电变压器 我国中小型配电变压器最初是以绝缘油为绝缘介质发展起来的;进入20世纪90年代,干式变压器在我国才有了很快的发展。 (1)油浸式配电变压器 主要品种有S9系列配电变压器,S11系列配电变压器,卷铁心配电变压器,非晶合金铁心变压器。为了使变压器的运行更加完全、可靠,维护更加简单,更广泛地满足用户的需要,近年来油浸式变压

变压器油的气相色谱分析浅析

变压器油的气相色谱分析浅析 【摘要】本文主要对变压器油的气相色谱分析的特征气体、产气原理以及气相色谱分析的取样方法和一些常用的便携式检测仪器做一说明。 【关键词】变压器绝缘油色谱分析 一、气相色谱分析的意义 变压器油是指用于变压器、电抗器、互感器、套管、油断路器等输变电设备的矿物型绝缘油。一般有25#和45#两种变压器油。运行中的电力设备一般只能按周期停电进行预试检查,而且变压器等密封设备根本看不到内部情况。电力变压器的绝缘油气相色谱分析可以很好的补充这一缺陷,而且经过精密的计算和分析可以大概判断出设备内部的情况。气相色谱分析是对设备内的油进行的分析,从分析溶解于变压器中气体来诊断内部存在的故障。 二、气相色谱分析的特征气体及产生的原理 体征气体:气相色谱分析的特征气体主要有氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。在对所做油样的品质进行判定时,还要对总烃含量做判断。总烃即甲烷、乙烷、乙烯、乙炔四种烃类气体的总和。在对油品检验之后,我们需要对不合格的油品分析其不合格的原因。那么,就需要我们

大概清楚在什么情况下会分解出什么气体。

产气原理:运行中的变压器油在进行气相色谱分析的时候一般会检测出特征气体和总烃。那么这些气体又是从哪里来的呢?首先,绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C-C键键合在一起。由电或热故障可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,它们通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体。在低能量故障时,如局部放电。通过离子反应促使最弱的C-H键断裂,主要重新化合成H2而积累。对C-C键的断裂需要较高的温度,然后逊色以C-C 键、C=C键和C三C键的形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。其次,固体绝缘材料的分解也会产生部分特征气体。纸、层压板或木块等固体绝缘材料分子内含有大量的无水右旋糖环和弱的C-O键,它的热稳定性比油中的碳氢键要软,并能在较低的温度下重新化合。在生成水的同时生成大量的CO和CO2及少量的烃类气体,同时油被氧化。 三、气相色谱分析油样的取样方法 气相色谱分析的取样部位应注意,所取油样应能代表油箱本体的油。一般应在设备下部的取样阀门取油样,在特殊情况下,可在不同的取样部位取样。取样量,对大油量的变压器、电抗器等均可为50-80mL,对少油量的设备要尽量少

变压器油中气体分析

变压器油中气体分析 通过培训掌握绝缘油中气体含量分析,气相色谱技术是近年来兴起的一项新技术,能够对运行中的变压器进行实时监测,通过采集变压器箱体内的少量油样,分析油中气体的组分及其含量,就可以判断变压器是否存在故障、故障的性质以及故障的大致部位。 油浸式变压器一旦出现故障,将造成影响现场生产,甚至造成机组停机,损失巨大。及时了解油浸变压器内部运行情况并发现故障苗头,对保证变压器安全、可靠、优质运行有十分重要的意义。 一、气相色谱法的原理和意义 色谱法它是一种物理分离技术。它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。当流动相中所含的混合物经过固定相时,就会与固定相发生相互作用。由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组分获得分离的技术,称为色谱法。当用液体作为流动相时,称为液相色谱,当用气体作为流动相时,称为气相色谱。 气相色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。 当载气携带着不同物质的混合样品通过色谱柱时,气相中的物质一部分就要溶解或吸附到固定相内,随着固定相中物质分子的增加,从固定相挥发到气相中的试样物质分子也逐渐增加,也就是说,试样中各物质分子在两相中进行分

配,最后达到平衡。这种物质在两相之间发生的溶解和挥发的过程,称分配过程。分配达到平衡时,物质在两相中的浓度比称分配系数,也叫平衡常数,以K表示,K=物质在固定相中的浓度/物质在流动相中的浓度,在恒定的温度下,分配系数K是个常数。 由此可见,气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。然后再进入检测器对各组分进行鉴定。 不同的故障会产生不同的主要特征气体和次要特征气体,这些故障气体的组成和含量与故障类型及严重程度有密切关系。分析溶解于油中的气体,就能尽早发现设备内部存在的潜伏性故障,并可随时监视故障的发展状况。因此,国家规程对于变压器油中各种气体的含量有着明确而严格的要求。特别是对于乙炔,它是反映故障放电的主要指标,一旦出现,就可能是变压器内部严重故障的反应。因此对于变压器油中乙炔的含量应严格要求和追踪。对于出现含乙炔的变压器油的变压器,应严格按规定进行追踪分析判断,并结合电气试验,对变压器内部运行做出正确的分析判断。当变压器油中的油气组分超标时,我们可以认为其设备内部就可能存在故障。气相色谱技术的运用充分解决了这一难题。变压器油气的色谱分析及色谱追踪试验,能够真实有效的反映设备的运行情况,对于尽早发现设备内部过热或放电性故障,及早预防保证设备的正常运行,有着重要的作用。 二、绝缘油气体在线装置工作原理 变压器在发生故障前,在电、热效应的作用下,其内部会析出以H2为主的

变压器产品价格分析报告

深圳中企智业投资咨询有限公司

产品价格分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.doczj.com/doc/9a8415311.html, 1

目录 产品价格分析 (3) 第一节一、变压器绝缘材料产品价格特征 (3) 第二节二、国内变压器绝缘材料产品当前市场价格评述 (3) 第三节三、影响国内市场变压器绝缘材料产品价格的因素 (4) 第四节四、主流厂商变压器绝缘材料产品价位及价格策略 (4) 第五节五、变压器绝缘材料产品未来价格变化趋势 (5) 2

产品价格分析 第一节一、变压器绝缘材料产品价格特征 我国变压器绝缘材料生产企业上百家,大部分企业规模较小。国内变压器绝缘材料产品市场上进出口品牌并存,价格不一。变压器绝缘材料不同品牌价格差别较大。一方面进口产品过高的价格令普通消费者望而却步,一方面质低价廉的产品又不能适应中层消费者的需求。消费者呼唤适合中国市场的品牌引领消费。 变压器绝缘材料行业上游原材料主要是纸浆、石油、化工、纺织等,原材料在整个生产成本中占比较大。部分原材料价格波动较大,多数公司直接原材料占生产成本的比例超过70%,原材料价格的波动将影响变压器绝缘材料公司生产成本进而影响变压器绝缘材料公司的盈利水平。 近几年来,国内变压器绝缘材料行业生产成本不断上涨,造成部分中小企业经营困难,国内生产成本提高主要有四个方面的原因:一是原材料价格上涨比较明显,媒体报道得也比较多;二是企业用工成本的上涨,可以说全国不少地方劳动力成本都在上升;三是像能源比如煤、电等资源价格上涨,影响企业生产经营;四是企业融资成本上升,比如由于利率上调,中小企业贷款利率上浮提高,中小企业通过民间借贷的利率也在上升,所以整个融资成本是上升的。 原材料价格上涨、能源和资源成本的大幅上涨、用工成本的增加,以及企业管理费用的提高等是变压器绝缘材料产品价格上涨的主要原因。也就是说产品价格的上涨很大部分原因是由成本推动的,假如变压器绝缘材料产品价格上涨,只是原材料价格上涨在产业链上的传导。 通常原材料涨价的成本应该通过产业链向下传导,这支持了变压器绝缘材料产品价格上涨,但最终决定价格涨跌的关键是供求关系。一些本来应该提价的产品价格提不上去,正是因为这些产品本身产能增加,竞争很激烈,价格上涨乏力。 第二节二、国内变压器绝缘材料产品当前市场价格评述图表1:2011-2014年我国变压器绝缘材料市场价格指数分析 3

应用油中溶解气体分析法判断变压器故障

编号:AQ-JS-03420 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 应用油中溶解气体分析法判断 变压器故障 Application of dissolved gas analysis in oil to judge transformer fault

应用油中溶解气体分析法判断变压 器故障 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1根据油中溶解气体进行变压器故障诊断 变压器油是由具有不同键能的化学键键合在一起的碳氢化合物分子组成的。它作为良好的介质材料在变压器中起绝缘、散热、灭弧等作用,并有其特殊的性能。 在正常运行条件下,变压器油和固体绝缘材料由于受到电场、热、水分、氧的作用,随时间而发生速度缓慢的老化现象,产生少量的氢、低分子烃类气体和碳的氧化物等。 当变压器在故障状态下运行时,故障点周围的变压器油温度升高,其化学键断裂,形成多种特征气体。因不同键能的化学键在高温下有不同的稳定性,根据热力动力学原理,油裂解时生成的任何一种气体,其产气速率都随温度而变化,在一特定温度下达到最大

值。随着温度的上升,最大值出现的顺序是:甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)。在温度高于1000℃时,还有可能形成碳的固体颗粒及碳氢聚合物。故障下产生的气体通过运动、扩散、溶解和交换,将热解气体分子传递到变压器油的各部分。 油中溶解气体分析法就是根据故障下产气的累计性、故障下的产气速率和故障下产气的特性来检测与诊断变压器等充油电气设备内部的潜伏性故障的。 2采用色谱法分析变压器故障的注意事项 (1)发现特征气体组分含量增长时,应缩短跟踪分析周期,并结合历史数据、产气速率、负荷情况、电气试验、新投运设备出厂前的状况、检修工艺流程等,确定故障是由于电路还是磁路或是其它原因,如辅助设备、设备材料、检修工艺等引起的,以缩小检修时的故障查找范围。 (2)由于取样阀中某些特殊的材料(如含镍不锈钢合金等)的催化作用,生成大量的氢气聚集在取样阀周围;取样阀在进行焊接后,大量在高温下产生的特征气体同样会聚集在取样阀的周围,此时取

变压器油色谱分析的基本原理及应用

变压器油色谱分析的基本原理及应用 字数:2509 字号:大中小 摘要:文中阐述了采用色谱分析判断变压器内部故障的意义、原理及方法,并列举了采用色谱分析判断变压器故障的实例。 关键词:变压器色谱分析潜伏性故障 概述 油色谱分析作为在线检测变压器运行的一项有效措施,由于它做到了监测时不需要将设备停电,而且灵敏度高,与其他试验配合能提高对设备故障分析准确性,而且不受外界因数的影响,可定期对运行设备内部绝缘状况进行监测。因此变压器油色谱分析已真正成为发现变压器等重要电气设备内部隐患、预防事故发生的有效途径,在严格色谱分析工作的开展下,使设备的潜伏性故障得到及时消除,确保变压器等设备安全稳定运行。 1.绝缘油色谱分析的基本原理 变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低于分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中,当充油电气设备内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。 2.绝缘油色谱分析的方法 2.1故障下产气的累计性 充油电力设备的潜伏性故障所产生的可燃性气体,大部分会溶解与油中,随着故障的持续,这些气体在油中不断积累,直至饱和甚至析出气泡。因此,油中故障气体的含量及其积累程度是诊断故障存在与发展的一个依据。 2.2故障下产气的速率 正常情况下充油电力设备在热和电场的作用下,同样老化分解出少量的可燃性气体,但产气速率应很慢。有的设备因某些原因使气体含量超过注意值,不能断定故障;有的设备虽低于注意值,如含量增长迅速,也应引起注意。产气速率对反映故障的存在、严重程度及其发展趋势更加直接和明显,可以进一步确定故障的有无及性质。因此,故障气体的产气速率,也是诊断故障的存在与发展程度的另一个依据。 2.3故障下产气的特征 变压器等电力设备内部不同故障下,产生的气体有不同的特征。如:局部放电时会有

变压器油中溶解气体分析与诊断

变压器油中溶解气体分析与诊断 摘要 变压器在线监测及故障诊断技术,对提高电力系统的安全稳定性具有十分重要的意义。其中基于油中溶解气体分析的在线监测技术是变压器在线监测中最普遍,也是最重要的技术。目前己投入使用的油中溶解气体在线监测系统普遍存在一些不足,如检测气体种类少、准确度及精确度不高、体积大、成本高等。 本文对变压器油色谱在线监测及故障诊断系统进行了研究,分析了其它色谱在线监测方法的种种不足,对其进行了改进,设计了一套变压器油在线监测系统,能够及时、准确地监测变压器油中溶解的各种特征气体,实时地反映设备的运行状态,并对故障诊断算法进行了仿真。在获得真实可靠的监测数据的基础上,建立了一个诊断模型,并对该模型进行了仿真,仿真结果表明三比值法、四比值法等故障诊断方法有一定的优越性,能够比较准确地定性和定量地对故障做出判断,为电力运营部门提供有用的决策依据。 分析了变压器油中溶解气体的发展变化规律,研究了变压器油中溶解气体和故障类型之间的关系。对常用的三比值模型进行深入研究,总结了各种模型的特点和适用范围。论述了用三比值进行变压器油中溶解气体分析,诊断和预测变压器故障的有效性和可行性。 关键词:变压器油中溶解气体在线监测故障诊断

目录 第一章绪论 (4) 1.1变压器 (4) 1.1.1变压器的分类 (4) 1.1.2电力变压器的选型原则 (6) 1.1.3变压器的作用及其意义 (13) 1.2变压器油 (14) 1.2.1变压器油简介 (14) 1.2.2变压器油国内外发展现状 (15) 第二章.变压器油中溶解气体分析与诊断 (17) 2.1.利用CO、CO2浓度及CO2/CO比值诊断固体绝缘老化 (17) 2.2.利用mL(CO2+CO)/g(纸)诊断变压器绝缘寿命 (19) 2.3利用油中糠醛分析诊断变压器绝缘老化 (20) 2.3.1概述 (20) 2.3.2.油中糠醛含量测试方法 (21) 2.3.4利用油中糠醛诊断变压器绝缘寿命 (23) 2.4固体绝缘老化的综合诊断 (29) 3 变压器油的运行维护 (30) 3.1变压器油的选择 (30) 3.1.1变压器油的质量标准 (30) 3.1.2变压器油在低温下的特性 (31) 3.2 混油、补油和换油 (33) 3.2.1 混油和补油 (33) 3.2.2换油 (34) 3.3 运行变压器油的防劣措施 (36) 3.3.1 隔膜密封装置 (36) 3.3.2 净油器 (37) 3.4 变压器油的金属减活(钝化)剂 (42)

变压器油中气体分析

变压器 TRANSFORMER 2000 变压器油中溶解气体的成分和含量 与充油电力设备绝缘故障诊断的关系 张利刚 摘要:介绍了通过分析变压器油中溶解气体的成分和含量以判断充油电力设备故障的机理和方法。 关键词:变压器;变压器油;气相色谱法;比值法 中图分类号:TM411;TM406 文献标识码:B 文章编号:1001-8425(2000)03-0039-04 Relation between the Composition & Contents of Dissolved Gases in Transformer Oil and Insulation Fault Diagnosis of Oil-Filled Power Equipment ZHANG Li-gang Abstract:The mechanism and method of estimating the oil-filled power equipment fault through analyzing the composition & contents of dissolved gases in transformer oil are introduced.

Key words:Transformer; Transformer oil; Gas Chromatography; Ratio method 1 前言 气相色谱法一直是国内外许多电力设备制造厂作为检验质量、开发新产品的有力工具。实践证明,用气相色谱法能有效地发现充油电力设备内部的潜伏性故障及其发展程度,而利用其他电气试验方法很难发现某些局部发热和局部放电等缺陷。故在1999年颁布执行的电力设备预防性试验规程中,把油中气体色谱分析放在“电力变压器及电抗器”试验的首位。某些变压器厂家在其产品中还装设了DGA(dissolved gas analysis,即溶解气体分析)自动检测报警系统。 2 故障分析的机理 充油的电力设备(如变压器、电抗器、电流互感器、充油套管和充油电缆等)的绝缘主要是由矿物绝缘油和浸在油中的有机绝缘材料(如电缆纸、绝缘纸板等)所组成。其中矿物绝缘油即变压器油,是石油的一种分 镏产物,其主要成分是烷烃(C n H 2n+2 )、环烷族饱和烃(C n H 2n )、芳香族不饱 和烃(C n H 2n-2 )等化合物。有机绝缘材料主要是由纤维素(C 6 H 10 O 5 ) n 构成。在 正常运行状态下,由于油和固体绝缘会逐渐老化、变质,会分解出极少 量的气体(主要有氢H 2、甲烷CH 4 、乙烷C 2 H 6 、乙烯C 2 H 4 、乙炔C 2 H 2 、一氧 化碳CO、二氧化碳CO 2 等7种)。当电力设备内部发生过热性故障、放电性故障或受潮情况时,这些气体的产量会迅速增加。表1列出气体的种类与外施能量的关系。 这些气体大部分溶解在绝缘油中,少部分上升在绝缘油的面上,例如变压器有一部分气体从油中逸出进入气体继电器(瓦斯继电器)。经验

应用油中溶解气体分析法判断变压器故障参考文本

应用油中溶解气体分析法判断变压器故障参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

应用油中溶解气体分析法判断变压器故 障参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 根据油中溶解气体进行变压器故障诊断 变压器油是由具有不同键能的化学键键合在一起的碳 氢化合物分子组成的。它作为良好的介质材料在变压器中 起绝缘、散热、灭弧等作用,并有其特殊的性能。 在正常运行条件下,变压器油和固体绝缘材料由于受 到电场、热、水分、氧的作用,随时间而发生速度缓慢的 老化现象,产生少量的氢、低分子烃类气体和碳的氧化物 等。 当变压器在故障状态下运行时,故障点周围的变压器 油温度升高,其化学键断裂,形成多种特征气体。因不同 键能的化学键在高温下有不同的稳定性,根据热力动力学

原理,油裂解时生成的任何一种气体,其产气速率都随温度而变化,在一特定温度下达到最大值。随着温度的上升,最大值出现的顺序是:甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)。在温度高于1 000℃时,还有可能形成碳的固体颗粒及碳氢聚合物。故障下产生的气体通过运动、扩散、溶解和交换,将热解气体分子传递到变压器油的各部分。 油中溶解气体分析法就是根据故障下产气的累计性、故障下的产气速率和故障下产气的特性来检测与诊断变压器等充油电气设备内部的潜伏性故障的。 2 采用色谱法分析变压器故障的注意事项 (1) 发现特征气体组分含量增长时,应缩短跟踪分析周期,并结合历史数据、产气速率、负荷情况、电气试验、新投运设备出厂前的状况、检修工艺流程等,确定故障是由于电路还是磁路或是其它原因,如辅助设备、设备材

变压器油的气相色谱分析与研究

变压器油的气相色谱分析与研究 摘要】以某公司送来两台运行中变压器的油样,经 色谱分析,其中台有C2H2气体(4.9PPm)为例,以实例 分析说明:在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 关键词】压器油;色谱分析;气相色谱;误差分析 1. 色谱分析在绝缘监督中的作用在电气试验中,通过气相色谱 分析绝缘油中溶解气体, 能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 2. 实例 1)变压器内部放电性故障产生的特征气体主要是乙 炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中

变压器油中溶解气体的分析与故障判断

变压器油中溶解气体的分析与故障判断 随着变压器运行时间的延长,变压器可能产生初期故障,油中某些可燃性气体则是内部故障的先兆,这些可燃气体可降低变压器油的闪点,从而引起早期故障。 变压器油和纤维绝缘材料在运行中受到水分、氧气、热量以及铜和铁等材料催化作用的影响而老化和分解,产生的气体大部分溶于油中,但产生气体的速率是相当缓慢的。当变压器内部存在初期故障或形成新的故障条件时,其产气速率和产气量则十分明显,绝大多数的初期缺陷都会出现早期迹象,因此,对变压器产生气体进行适当分析即能检测出故障。 1、变压器油中的气体类别 气相色谱法正是对变压器油中可燃性气体进行分析的最切实可行的方法,该方法包括从油中脱气和测量两个过程。矿物油是由大约2871种液态碳氢化合物组成的,通常只鉴别绝缘油中的氢气(H2卜氧气(02)、氮气 (N2)、甲烷(CH4)、一氧化碳(C0)、乙烷(C2H6)、二氧化碳(C02)、乙烯(C2H4)、乙炔(C2H2)9种气体,将这些气体从油中脱出并经分析,证明它们的存在及含量,即可反映出产生这些气体的故障类型和严重程度。油在正常老化过程产生的气体主要是一氧化碳(C0)和二氧化碳(C02),油绝缘中存在局部放电时(如油中气泡击穿),油裂解 产生的气体主要是氢气(H2)和甲烷(CH4)。在故障温度高于正常运行温度不多时,产生的气体主要是甲烷 (CH4), 随故障温度的升高,乙烯(C2H2)和乙烷(C2H6)逐渐成为主要物征气体;当温度高于1000 C时(如在电弧弧道温度300 C以上),油裂解产生的气体中含有较多的乙炔(C2H2),如果故障涉及到固体绝缘材料时,会产生较多的一 氧化碳(CO)和二氧化碳(C02)。 2、如何判断电气设备的故障性质 运用五种特征气体的三对比值判断电气设备的故障性质: (1) C2H2/C2H4 < 0.1 0.1 v CH4/H2V 1 C2H4/C2H6 v 1时,属变压器已正常老化。 (2) C2H2/C2H4 < 0.1 CH4/H2 v 0.1 0.1v C2H4/C2H6v1 时,属低能量密度的局部放电,是含气空腔中的放电,这种空腔是由于不完全浸渍、气体饱和或高湿度等原因造成的。 (3) 0.1 v C2H2/C2H4v 1 CH4/H2v 0.1 0.1v C2H4/C2H6v1 时,属高能量密度的局部放电(除含气空腔的放电),导致固体绝缘的放电痕迹。 (4) 1 v C2H2/C2H4v 3 0.1 v CH4/H2v 1 C2H4/C2H6>3时,有工频续流的放电、线圈、线饼、线匝之间或线圈对地之间油的电弧击穿。

油中气体分析技术综述

变压器油色谱在线监测 目前110kV及以上等级的大型电力变压器及电抗器主要采用油纸绝缘结构。绝缘油同时承担着绝缘介质和冷却媒质两方面的作用。在热和电的作用下,绝缘油会逐渐老化、分解而产生各种低分子烃、氢气以及有机酸和石蜡等。而以纤维素为基础的固体绝缘材料(纸和纸板)发生劣化分解时,除释放出水、醛类、酮类和有机酸外,还会产生相当数量的一氧化碳和二氧化碳。 变压器油中溶解的各种气体分析的相对数量形成速度主要取决于故障能量的释放形式以及故障的严重程度,所以根据色谱分析结果可以进一步判断设备内部是否存在异常,推断故障类型及故障能量等。对变压器油中溶解气体的分析是变压器故障诊断采用的基本方法,通过对其的分析能够发现变压器的过热、局部放电等潜伏性故障。 气相色谱分析具有选择性好、分离性高、分离时间快(几分钟到几十分钟)、灵敏度高和适用范围广等优点。但常规的色谱分析是一套庞大、精密而复杂的检测装置。整个分析时间长,需熟练的试验人员,对环境的要求高,整套设备体积较大,只适用于在试验室内进行检测。且油样从现场采集后运送到试验室进行分析,不仅耗时而且采样、运输、保存过程中还会引起气体组份的变化,更不能做到实时在线监测。为了实现在线监测油中气体分析,需要简化色谱分析装置,使之适用于在线监测和现场检测[2]。 变压器油中溶解气体在线监测原理如图1-1-1所示[3]。 图1-1-1. 变压器油中溶解气体在线监测系统结构框图监测过程可分为以下4部分: a.进行油气分离,从油中分离出需要检测的混合气体; b.利用气体分离技术把几种气体分离,再用气体检测器把气体浓度信号转

换成电压或电流信号; c.数据采集系统进行A/D转换,将电压或电流信号转换成数字信号,并上 传到工作站; d.工作站软件根据各种气体的含量对变压器运行状态进行评估,预测变压 器潜伏性故障。 在变压器溶解多种气体检测中,油中汲取气体是一个重要环节。英国中央发电局(CEGB)认为产生测量误差的原因多半是在脱气阶段。实现变压器油中多种气体在线监测,油气分离模块必须能在线、自动分离出油中溶解多种(至少六种以上)气体,并且不对变压器油箱中的油形成污染,另外油气平衡时间相对较短,一般应小于24小时,对于一些变压器运行过程中出现“紧急情况”需在线监测系统来自动看护,如内部故障发展速度较为迅速,还需要在线监测系统油气分离时间达到2小时,甚至更短。另外,油气分离的关键元件使用寿命应能满足在线监测产品正常使用,一般情况下应大于六年。 1.1.1几种常用的油气分离方法 目前油气分离技术按其取气方法可分为高分子聚合物分离方法、真空泵法、油中吹气法等几大类,其中平板分离膜、毛细管、血液透析装置、中空纤维等都属于高分子聚合物分离方法的不同运用形式。美国Sevenron公司就采用医学上的血液透析装置,研制出TrueGas变压器油中溶解气体在线监测系统。该方法透气快,效果好,但此种装置价格昂贵,在我国使用较少。目前应用比较多的几种在线油气分离方法主要有平板高分子透气膜法、真空脱气法、载气脱气法、动态顶空平衡法、动态顶空脱气法和中空纤维脱气法几种。 1.平板高分子透气膜法 这种方法的原理是利用某些合成材料薄膜(如聚酰亚胺、聚四氟乙烯、氟硅橡胶等)的透气性,让油中所溶解的气体经薄膜透析到气室里。当渗透时间相当长后,透析到气室的气体浓度c将达到稳定,它与油中溶解气体的浓度v 之间的关系如图1-1-3所示。这样,测出气室中的各气体浓度就可以换算出油中气体的含量。

电力变压器的油色谱分析

电力变压器的油色谱分析 目前,在变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。 油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度的变化,在特定温度下,往往有某一种气体的产气率会出现最大值;随着温度的升高,产气率最大的气体依次为CH4、C2H6、C2H4、C2H2。这也证明在故障温度与溶解气体含量之间存在着对应的关系。而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。 变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。对应这些故障所增加含量的气体成分见表5-9。 表5-9 不同绝缘故障气体成分的变化 (1)分析气体产生的原因及变化。 (2)判断有无故障及故障类型。如过热、电弧放电、火花放电和局部放电等。 (3)判断故障的状况。如热点温度、故障回路严重程度及发展趋势等。 (4)提出相应的处理措施。如能否继续进行,以及运行期间的技术安全措施和监视手段,或是否需要吊心检修等。若需加强监视,则应缩短下次试验的周期。 这些气体大部分溶解在绝缘油中,少部分上升至绝缘油表面,并进入气体继电器。经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规程中,已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经验积累取得了

变压器油中溶解气体分析教(学)案

变压器油中溶解气体分析 一、产气原理 (一)绝缘油的分解 大约油温在150℃时,就能产生甲烷;150-500℃左右时产生乙烷;大约500℃时产生乙烯,随着温度的逐渐升高,乙烯占总烃的比例越来越大;800-1200℃左右时产生乙炔。生成碳粒的温度约在500-800℃左右。 变压器油主要是由碳氢化合物组成(烷烃C n H2n+2,环烷烃C n H2n或C n H2n-2 ,芳香烃C n H2n-6。绝缘纸的成分主要是碳水化合物(C6H10O6)n。由电和热故障的结果可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也能生成碳的固体颗粒及碳氢聚合物(X-石蜡)。故障初期,所形成的气体溶于油中;当故障能量较大时,也能聚集成游离气体。碳的固体颗粒及碳氢聚合物可沉积在设备部。 低能放电,如局部放电,能过离子反应促使最弱的键C-H键断裂,主要重新化合成氢气。随着放电能量越来越高,如火花放电、电弧放电,能使C-C断裂,然后迅速以C-C键、C=C键、C≡C键的形式重新化合成烃类气体。 (二)绝缘纸的分解 纸、层压板或木块等固体绝缘材料分解时,主要产生CO、CO2,当怀疑故障涉及固体绝缘时,一般CO2/C0〈3。

(三)气体的其它来源 如分接开关油室向主油箱渗漏(C2H2高);设备油箱带油补焊(C2H2高);潜油泵出故障(是高速泵,轴和轴瓦产生磨擦,C2H2高,应改为低速泵);变压器油中含水(H2高);本体受潮(H2高)等均可产生气体。 (三)变压器部故障的类型 变压器部故障分为热性故障和电性故障两种,热性故障按温度高低又分为低温过热、中温过热和高温过热三种故障,电性故障按放电的能量密度分为局部放电、火花放电和电弧放电三种故障,现分别叙述如下。 1、热性故障 热性故障是指变压器部的局部过热温度升高,而不是变压器正常运行时由铜损和铁损转化而来的热量,使上层油温升高。 (l)热性故障的分类。当变压器部发生局部过热时,人们可以按温度的升高围分为四种情况:150℃以下属于轻微过热故障,150~300℃属于低温过热,300~700℃属于中温过热,大于700 ℃属于高温过热。 (2)热性故障产生的气体。热性故障是因热效应造成绝缘物加速裂解,所产生的特征气体主要是甲烷和乙烯,两者总量约占总烃的80%,随着故障点温度的升高,乙烯在总烃中所占的比例增大,甲烷为次,乙烷和氢气更次。其中氢气的含量一般在27%以下。通常热性故障是不产生乙炔的,但是,严重过热也会产生少量乙炔,其最大含量不超过总烃量的6%,当过热涉及固体绝缘物时,除了产生上述气体外,也会产生大量的CO和CO2。 (3)热性故障产生的原因,可以分为下列三种情况:①接点接触不良,

相关主题
文本预览
相关文档 最新文档