当前位置:文档之家› 高纯纳米氢氧化镁制备工艺_王相田

高纯纳米氢氧化镁制备工艺_王相田

高纯纳米氢氧化镁制备工艺_王相田
高纯纳米氢氧化镁制备工艺_王相田

第56卷 第7期 化 工 学 报 V ol 156 N o 17

2005年7月 Jo urnal o f Chemical Indust ry and Eng ineering (China) July 2005

研究简报

高纯纳米氢氧化镁制备工艺

王相田,郑 乾,汪 瑾,宋兴福,于建国

(华东理工大学资源与环境工程学院,上海200237)

关键词:氢氧化镁;纳米;高纯;六氨氯化镁

中图分类号:T Q 115 文献标识码:A

文章编号:0438-1157(2005)07-1360-03

Preparation of high -pu rity n anosized magnesiu m hydroxide

WAN G Xiangtian ,ZHEN G Qian,WANG Jin,SON G Xin gfu ,YU Jianguo

(S chool of R esour se and Envir onmental Engineer ing ,East China Univer sity

of Science and T echnology ,Shang hai 200237,China)

Abstract :H igh -purity nano sized m ag nesium hydrox ide w as pr epar ed by the direct alkali hy droly sis method using hex amm oniated m ag nesium chlor ide as raw material.The o ptimum reactio n conditio n w as obtained thro ug h ex periment:the mixture of 10%sodium hy drox ide and hig hly concentrated hex ammo niated

magnesium chloride r eacted under a homog eneous m achine fo r 5h at roo m temperature,w as deposited,filtered and w ashed,and then dried.T he analysis o f chem ical com position and transmission electron micro scopy (T EM )show ed that the particle size w as smaller than 100nm,the co ntent of magnesium hy dro xide was about 9917%,and the co ntent of impurity w as lo w er than 013%.Key words :m ag nesium hydr oxide;nanometer;high -purity ;hex amm oniated m ag nesium chlor ide

2004-08-02收到初稿,2004-10-15收到修改稿.

联系人:于建国.第一作者:王相田(1968)),男,副教授.基金项目:上海市纳米科技与产业发展促进中心项目(025207009).

引 言

我国是镁资源大国,西部盐湖镁资源尤为丰富,主要以水氯镁石(Mg Cl 2#6H 2O)形式存在,成本十分低廉.我国镁资源利用处于较低水平,主要是以MgCl 2#6H 2O 形式直接出口,造成资源的浪费.

氢氧化镁具有分解温度高、热稳定性好、无毒、无烟及抑烟等特点,可作为高性能无机阻燃剂应用于高分子材料中.环境友好的阻燃剂氢氧化镁受到了各国重视,有关研究[1~3]、生产活动十分活跃,尤其是高纯、超细氢氧化镁阻燃剂已成为目前国内外开发与研究的热点.国内外超细Mg (OH )2粉体制备方法主要有沉淀合成法[4]、水热法[5]、反

向沉淀法[6]

、沉淀-共沸蒸馏法[7]

等,但仍存在着

许多问题,如所制产品粒径大、纯度不高,产品团聚严重、粒径分布不均匀以及设备要求高、操作复杂等缺点.

Received date:2004-08-02.

Correspon ding author:Prof.YU J iangu o.E -mail:xtw ang @ecust 1edu 1cn

将水氯镁石转化成六氨氯化镁可使原料中大部分杂质得以去除,本文以自制的六氨氯化镁[8]为原料,利用直接碱解法,经表面处理、过滤洗涤、干燥工艺制备高纯纳米氢氧化镁,是一条制备高纯纳米氢氧化镁的新工艺.

1 实验部分

111 氢氧化镁制备工艺(图1)

以分析纯的氢氧化钠、氢氧化钾为原料,配制

Fig 11 Flow chat o f prepa ratio n o f nanosized magnesium hy dr ox ide

不同浓度的稀碱溶液;称取一定量自制的六氨氯化镁[8]

,是以醇溶液同水氯镁石反应制备而得,其纯度可达9918%以上.在均质机搅拌条件下加入到一定体积的稀碱溶液中水解2~5h;陈化24h 后,采用水或甲醇、乙醇将得到的悬浮液进行过滤洗涤至氯离子不能检出.洗净的滤饼在120e 下干燥2~3h,得到的氢氧化镁进行化学组成分析并通过透射电镜观察粒子大小和形貌.

实验中所用的其他试剂或原料均为分析纯.所用均质机为上海威宇机电制造有限公司生产,型号为BM E100LX.112 样品分析和表征

本实验采用日本JEOL 公司的JEM -1200EX Ⅱ型透射电镜观察晶粒尺寸和形貌.采用EDTA 络合滴定法测定钙、镁离子的含量,采用凯氏定氮法分析氮含量,以Ag NO 3检验氯离子.

2 结果与讨论

211 不同碱种对氢氧化镁粒径、形貌的影响在室温条件下,将100g 六氨氯化镁分别与2L 10%NaOH 和10%KOH 水溶液(过量)在均质机搅拌条件下反应5h,陈化24h 以上,经水与乙醇洗涤、过滤,至氯离子(以011mol #L

-1

AgNO 3)水溶液无法检出.将得到的滤饼干燥2~3h,取样分析.透射电镜照片如图2、图3所示.结果表明,室温条件下,以10%N aOH 为反应液的纳米氢氧化镁呈片状晶型,粒度较小,平均粒径在100nm 以下,且分散性好.

212 水解温度对氢氧化镁粒径、形貌的影响

分别在30、50e 下,将100g 六氨氯化镁加入到2L 10%NaOH 水溶液中,在均质机搅拌条件下反应5h,陈化24h 以上,经水与乙醇洗涤、过滤,至氯离子(以011mol #L -1

A gNO 3)水溶液无法检出.得到的滤饼在120e 下干燥2~3h,取样分析.

透射电镜照片结果表明,

两种温度条件下所得

Fig 12 T EM photo o f sample (10%NaO H)

F ig 13 T EM pho to of sample (10%K OH )

的纳米氢氧化镁粒径大小差异性不大,均达到100nm 以下,但低温的结果稍好.因此,该工艺条件下温度条件影响不大.

213 碱液浓度对氢氧化镁粒径、形貌的影响

30e 条件下,将100g 六氨氯化镁加入到2L 10%NaOH 、20%NaOH 水溶液中,在均质机搅拌条件下反应5h,陈化24h 以上,经水与乙醇洗涤、过滤,至氯离子(以011m ol #L -1A gNO 3)水溶液无法检出.得到的滤饼在120e 下干燥2~3h,取样分析.

从透射电镜照片可看出,在10%NaOH 碱液浓度条件下,所得的纳米氢氧化镁粒径更加均匀,约50nm,分散性较好.

#

1361# 第7期 王相田等:高纯纳米氢氧化镁制备工艺

214六氨氯化镁浓度对氢氧化镁粒径、形貌的影响

室温条件下,分别将100、50g六氨氯化镁加入到2L10%NaOH水溶液中,在均质机搅拌条件下反应5h,陈化24h以上,经水与乙醇洗涤、过滤,至氯离子(以011mol#L-1AgNO3)水溶液无法检出.洗净的滤饼在120e下干燥2~3h,取样分析.

六氨氯化镁浓度会影响纳米氢氧化镁的粒径大小及分布,高浓度六氨氯化镁(100g)使氢氧化镁粒径小且分散更加均匀,粒度小于100nm.

215氢氧化镁纯度分析

在室温条件下,将10%NaOH水溶液与高浓度的六氨氯化镁在均质机搅拌条件下反应5h,陈化,过滤洗涤,干燥.对得到的氢氧化镁进行化学组成分析,结果如表1所示.

Table1C omposition analysis of

magnesium hydroxide

Com pon ent Content/%

M g(OH)29917

Cl-0110

H2O0103

CaO0105

纯度分析结果表明,制备的纳米M g(OH)2纯度可达9917%(换算成M gO纯度为6819%),高于我国工业氢氧化镁的行业标准[9],其杂质含量低于世界主要阻燃剂级氢氧化镁的杂质含量.

3结论

制备高纯纳米氢氧化镁的工艺条件为:室温条件下,将10%NaOH与自制六氨氯化镁在均质机搅拌条件下反应5h,陈化24h,经水与乙醇洗涤、过滤,至氯离子(以011m ol#L-1A gNO3)水溶液无法检出,洗净的滤饼在120e下干燥2~ 3h.对得到的氢氧化镁进行化学组成分析和透射电镜分析,结果表明颗粒粒径在100nm以下,氢氧化镁含量在9917%左右,杂质含量低于013%.

References

[1]Guo Ruxin(郭如新).Environmentally friendly flame

retardant-magnesium hydroxide.Chemical Te chnolog y

M ar ket,2000(6):10)13

[2]Guo Ruxin(郭如新).Products application and research of

magnes ia and m agnesium hydroxide in America.Jiang su

P rov inc e S alt S cience&T echnolog y,2002,12(4):3)6 [3]Guo Ruxin(郭如新).Application and research of

magnes ium hydroxide in Japan.J iang su Pr ovince S alt

S cience&T echnolog y,2001,2(2):12)15

[4]Wang Zh iqiang(王志强),L?Bingling(吕秉玲),Liu

Jianping(刘建平).S tu dy on precipitation meth od for

preparin g high-pu rity u ltrafine magn esium hydroxide.

I nor ganic S alt Ind ustry,2001,33(4):3)4

[5]Li Yadong,Sui M eng,Ding Yi,Zhang Gu ohui,Zh uan g

Jing,Wang Chen g.Preparation of M g(OH)2nan or ods.

A dv ance d M aterials,2000,12(11):818)821

[6]Yi Qiu shi(易求实).Study on reversed precipitation method

for preparing n anometer M g(OH)2based flame-retarded

materials.H u axue Shij i,2002,23(4):197)199,228 [7]Dai Yanlin(戴焰林),H ong Ling(洪玲),Sh i Liyi(施利

毅).Preparation of nanometer sized magn esium hydroxide

usin g precipitation-azeotropic distillation method.Journal of

S hangh ai Univ er sity(N atural S cience),2003,9(5):

402)404,409

[8]Yu Jian guo,Lu Qiang1C N011264951012001

[9]H G/T3607)2000.Industry S tandard of M agnesium

H ydroxide in Chem ical Indu stry

#

1362

#化工学报第56卷

第56卷 第7期 化 工 学 报 V ol 156 N o 17

2005年7月 Jo urnal o f Chemical Indust ry and Eng ineering (China) July 2005

研究简报

正十二烷基硫醇对铜在酸性介质中的缓蚀行为

闻荻江1,冯 芳2

(1苏州大学材料工程学院,江苏苏州215021;

2

苏州科技学院化学化工系,江苏苏州215011)

关键词:铜;正十二烷基硫醇;缓蚀;电化学行为;表面形态

中图分类号:T G 172 文献标识码:A

文章编号:0438-1157(2005)07-1363-05

Corrosion inhibition behavior of 1-dodecanethiol on copper in acid media

WEN Dijiang,FE NG Fang

(1S chool of Material Engineer ing ,S uz hou Univ er sity ,S uz ho u 215021,J iangsu,China;

2

Dep ar tment of Chemistr y and Chemical Engineer ing ,Suz hou Science and

T echnology Univer sity ,Suz hou 215011,J iang su,China)

Abstract :Electrochemical polarization measurem ent and electr ochemical impedance spectr oscopy (EIS)w ere used to study the corro sion inhibitio n effect of 1-do decanethiol o n co pper in 3%NaCl solutio n.The results show ed 1-do decanethiol had better cor rosion inhibition effect on co pper.T he corro sion inhibition ability of 1-do decanethiol w as decr eased w ith the adding of benzotrizo le,w hile the same degree of corro sion happened w itho ut benzotrizole w hen pH value of the media decreased to about 110.The abov e corro sion inhibition behavior w as supported by SEM.

Key wo rds :copper;1-dodecanethiol;corrosion inhibition;electrochemistry behavior;surface appearance

2004-08-30收到初稿,2004-11-11收到修改稿.

联系人及第一作者:闻荻江(1945)),男,教授.

引 言

以往人们对铜在各类溶液、水和低电导率的介质中[1~4]的腐蚀行为进行了许多研究.

含有未配对的氮、硫和氧原子的立体环状有机化合物常用来防止铜的腐蚀[5,6],其中BTA H 应用最为广泛.但是,在介质处理系统中需要不断添加以维持其在铜表面的浓度.另外,这类缓蚀剂(如BT AH )大多具有一定的毒性[7],其使用受到越来越多的限制.

烷基硫醇类化合物(如C 12H 25SH ,C 18H 37SH )能通过较强的化学键与铜的表面结合,生成致密的单层膜,能有效抑制膜层下铜的腐蚀.目前较多集

中在硫醇类化合物自组装膜体系在中性NaCl 溶液中对铜的缓蚀效果的研究,而在酸性溶液中的缓蚀效果研究很少,在铜表面的吸附时间对缓蚀效果的

影响还未见报道.

Received date:2004-08-30.

Correspon ding author:Prof.WEN Dijiang.E -mail:w endj@pub 1sz 1jsin fo 1net

本文通过电化学极化曲线和交流阻抗谱分析技术,对初生铜表面吸附DT (正十二烷基硫醇)后,在3%的氯化钠溶液中的腐蚀行为进行了研究,并研究了pH 值的改变和铜对DT 的不同吸附时间对腐蚀行为的影响.

1 试 验

111 溶液及缓蚀剂制备

11111 原材料及试剂的配制 铜试样由江苏仓环

纳米氢氧化镁的制备

纳米氢氧化镁的制备 1 前言 氢氧化镁为新型镁质无机阻燃剂, 具有无毒、无烟、阻燃效果好等特点, 近年来已成为减烟、抑烟、阻燃等方面重要的无机阻燃剂。随着我国高分子合成材料工业快速发展及阻燃法规不断健全和完善, 对阻燃剂需求随之增加, 作为无毒、抑烟型的环保无机阻燃剂Mg( OH) 2 的需求更是十分迫切, 我国无机阻燃剂占整个阻燃剂用量的50% , 其中氢氧化镁阻燃剂 占无机阻燃剂30% 左右, 每年需要氢氧化镁阻燃剂9 万t, 但我国目前氢氧化镁阻燃剂年生产能力约为1. 3 万t , 故我国氢氧化镁发展潜力巨大[1~ 2] 。我国是镁矿资源大国, 具有得天独厚的资源优势和良好的市场前景。因此, 我国应改进Mg(OH) 2 现有生产工艺、规模化生产, 并加强Mg(OH) 2 应用研究, 以促进我国Mg ( OH) 2 阻燃剂的生产和发展。我国生产的氢氧化镁纯度低, 粒度分布较宽, 而目前国外都需要高纯微细氢氧化镁产品, 特别是 高纯纳米级的氢氧化镁产品, 用于各种高档复合材料的阻燃成分[ 3~ 4] 。纳米氢氧化镁是指颗粒粒度介于1~ 100 nm 的氢氧化镁, 作为一种纳米材料, 它具有纳米材料所具有的共性特点, 即小尺寸效应、量子尺寸效应、表面效应、宏观量子效应等, 用它充填于复合材料中能大大提高材料的阻燃性能、力学性能和其它性能。 2 氢氧化镁与其他碱类的比较 质言之,氢氧化镁毕竟是一种“碱”,与其他传统碱相比当然是一种弱碱。具有独特的缓冲能力。氢氧化镁除在作为阻燃剂领域应用外,在其他领域应用特别是作为中和剂应用都基于这种特性。现将氢氧化镁比其他传统碱类物质所具有的优点综述如下。使用Mg(OH)2做中和剂时,溶液的pH值一般不会超过9,这恰好是美国环保局的“清洁水条例(CleanwaterAet)”中允许排放物pH值的最高限度[5],而其他碱类物质一般都大于12;与用生石灰、消石灰不同,用Mg(OH)2中和含硫酸的液体时形成可溶性的硫酸镁,可作为硫镁肥代替水镁矾(Kieserite),而用前者则会形成难溶的硫酸钙;Mg(OH)2中和能力强,中和同体积和同浓度的含酸废液,Mg(OH)2用量比通常碱的用量减少30%。由于中和速度慢,形成的砖泥致密,体积小,沉降快,过滤时间缩短,龄泥的处理和排人费用也比传统的处理方法减少30%,在温度零度时不结冰,从而可降低人工和维修费用。属弱碱性物质,作业处理和使用均安全可靠[6]。关于氢氧化镁的这些优点,国外有很多议论,如美国DOW化学公司氢氧化镁市场部经理Mark Tomik说:“这种化学品正在敦促越来越多的厂家对酸性液体进行处理时加以采用,以取代传统方法。他还说,用户通过使用氢氧化镁而不用其他碱类物质,在沉淀物处理和清除方面可节省60%的费用[5]。” 3 纳米氢氧化镁的制备技术[ 7] 3. 1 直接沉淀法 直接沉淀法制备纳米氢氧化镁是向含有Mg2+的溶液中加入沉淀剂, 使生成的沉淀从溶液中析出,最常见的是氢氧化钠法和氨法[ 8- 11] , 反应过程为: Mg2+ + 2NaOH Mg(OH)2 + 2Na+ ( 1) Mg2+ + 2NH3.H2O Mg(OH)2 + 2NH4+ ( 2) 直接沉淀法操作工艺简单, 控制反应条件可制得片状、针状和球形的纳米氢氧化镁粉体。东北大学林慧博等[7]研究了用NaOH 和MgC l2.6H2O制备纳米氢氧化镁的最佳工艺条件为:反应 温度80℃, 反应时间20 min, Mg2+ 和OH- 物质的量比为1 :2 ,Mg2+ 浓度为0. 5 mol/ L, 制得产品粒径约为90nm的片状均匀分散的氢氧化镁。由于氨的挥发性较强, 所以氨法制备纳米氢氧化镁容易造成环境污染。但用氢氧化钠方法制备纳米氢氧化镁成本相对较高,而且制备分散性良好的纳米氢氧化镁所需反应条件苛刻。

氢氧化镁制备

氢氧化镁阻燃剂生产方式有两种:一是利用化学合成法,即通过利用含有氯化镁的卤水、卤矿等原料与苛性碱类在水介质中反应,生成的氢氧化镁经过滤、洗涤干燥就可得到;另一种方式是通过天然矿物水镁石经磨细到所需粒度制得。 氢氧化镁的制备:先配制50%(质量分数)化镁溶液和20%(质量分数)的氢氧化钠溶液两者按n(MgCl2):n(NaOH)=1搅拌混合5min,然后倒入1000mL的高压釜中拌,升温到180℃恒温搅拌8h。之后快速冷却,用蒸馏水洗涤、抽滤多次后,将所得膏状物在(1055)℃下烘干得到氢氧化镁(MH)白色粉体产品。 由于盐田产水氯镁石中含有少量泥沙等不溶性杂质,制备氢氧化镁之前必须对其进行除杂预处理。其方法是将水氯镁石加入到一定量的去离子水中,在低温度下搅拌溶解成饱和氯化镁溶液,过滤除去悬浮物杂质。 取过滤除杂后饱和氯化镁溶液,用适量去离子水稀释成含Mg2+3~4mol/L的卤水,氨水浓25%,沉镁反应时氨水和卤水同时滴加到带有搅拌置的反应器中,该反应器预先加入有一定量由氨水与氯化铵配制成的反应底液(pH为11)。通过控氨水与卤水的滴加速度来控制反应体系的pH=11不变,反应温度为55℃。反应生成的Mg(OH 过滤分离后用稀氨水和无水酒精先后各洗涤三次。然后置于无水酒精中,采用超声波分散。过滤分离后在真空干燥箱中于60℃条件下进行真空干燥,得到白疏松的超细氢氧化镁粉末。 将净制好的卤水(MgCl2)2L置放于5L的烧杯中,搅拌,同时滴

加相等体积的NaOH溶液,卤水与NaOH溶液物质的量比为1:2,滴加时间1h,得到Mg(OH)2浆液。 一步法 将卤块加水溶解,精制卤液打入反应釜中,加水调至要求的浓度后升温到50~70℃;一定浓度的氨水在混合槽中加入一定量的表面处理剂,在搅拌下溶解时间1h左右。然后慢慢地将氮表面处理剂溶液加入到反应釜中进行反应,反应温度50~70℃,反应时间1~2h。待氨处理剂溶液加完后,提高反应液温度到80~90℃,恒温处理2~3h后,放料进行过滤、干燥、粉碎,制得氢氧化镁阻燃剂产品。 纳米氢氧化镁 首先,用EDTA络合滴定法测定氯化镁的含镁量,然后分别以去离子水、乙醇与水(乙醇与水的比例分别为l:2、1:1、2:1)的混合溶剂和无水乙醇为溶剂,配制含Mg离子浓度为1.0mol/L制过程先将氯化镁溶解在部分溶剂中,然后滤出杂质,洗涤杂质多次后稀释到0.mol/L液50mL,置于200mL烧杯中,然后加入10mL氨水,加入方式为先缓慢加入,边加入边搅拌,待溶液呈现稳定沉淀时快速加入剩余氨水。沉淀静放一段时间后,抽滤并用去离子水洗涤多次,再用无水乙醇洗涤3次,收集滤液,最后将滤饼置于微波炉中快速干燥。 微胶囊技术 在装有搅拌器、温度计、滴液漏斗、冷凝器的四口烧瓶中加入162.8g37%的甲醛溶液与80g尿素,再加入适量三乙醇胺调节pH=8,并加热到70℃,保温1h,得到粘稠的液体,然后用330mL稀释,形

氢氧化镁阻燃剂

氢氧化镁阻燃剂 简介 氢氧化镁简称MH,分子式Mg(OH)2,分子量重58.33.白色粉末,相对密度2.39。折射率1.561-1.581。在300℃以下稳定,320℃开始分解,生成氧化镁和水,430℃时分解速度最快,490℃时分解完结。溶于烯酸和铵盐溶液,不溶于水、乙醇。氢氧化镁不仅有阻燃作用,还有一眼功能,无毒、无腐蚀性,多种性能优于氢氧化铝,安全廉价,属于环保型无机阻燃剂。 阻燃机理 氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。 分类 阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类。有机阻燃剂又分为磷系和卤系两个系列。由于有机阻燃剂存在着分解产物毒性大、烟雾大等缺点,正逐步被无机阻燃剂所替代。

无机阻燃剂主要品种有氢氧化铝、氢氧化镁、红磷、氧化锑、氧化锡、氧化钼、钼酸铵、硼酸锌等,其中以氢氧化铝和氢氧化镁因分解吸热量大,并产生H2O可起到隔绝空气作用,其分解后氧化物又是耐高温物质,故二种阻燃剂不仅可起到阻燃作用,而且可以起到填充作用,它所具有不产生腐蚀性卤气及有害气体、不挥发、效果持久、无毒、无烟、不滴等特点。 涂料等高分子材料中,特别是对矿用导风筒涂覆布、PVC整芯运输带、阻燃胶板、蓬布、PVC电线电缆料、矿用电缆护套、电缆附件的阻燃、消烟抗静电,可代替氢氧化铝,具有优良的阻燃效果。 种类间比较 目前国内氢氧化铝用量较多,但随着高聚物加工温度的提高,氢氧化铝易分解,降低阻燃作用,氢氧化镁较氢氧化铝具有如下优点: ①氢氧化镁热分解温度达330℃,比氢氧化铝高100℃,故有利于塑料加工温度的提高,加快挤塑速度,缩短模塑时间; ②氢氧化镁与酸的中和能力强,可较快地中和塑料燃烧过程产生的酸性气体SO2、NOx、CO2等; ③氢氧化镁分解能高,有利于吸收燃烧热,提高阻燃效率; ④氢氧化镁抑烟能力强、硬度小,对设备摩擦小,有助于延长生产设备

修订工业氢氧化镁化工行业标准编制说明

修订工业氢氧化镁化工行业标准编制说明 根据国家发展和改革委员会办公厅文件“发改办工业[2005]739 号《国家发展改革委办公厅下达2005 年行业标准项目计划的通知》的要求,在2005 年~2006 年内完成HG/T 3607—2000《工业氢氧化镁》化工行业标准的修订工作。 1 、Mg(OH) 2 58.34 白色固体粉末,结晶或无定形粉末。难溶于水,不溶于碱性溶液,易溶于稀酸和铵盐溶液。受热分解为氧化镁和水,初始分解温度为340℃,430℃时分解速度最快,到490℃时分解完全。 2 经过表面处理的氢氧化镁作为优良阻燃剂和填充剂可以应用于 EVA、PP、PVC、PS、HIPS、ABS 塑料中,也可用于不饱和聚脂、油漆和涂料中。环保工程用作无污染的中和剂,造纸工业中的填充剂,气体净化、锅炉排烟与废油的脱硫剂;还用于镁盐制造、砂糖精制、制药、牙粉、保温材料、电线电缆、运输带、导风筒、电气器材、新型建材、玻璃钢制品、油漆以及作为土壤改良剂等。采用一般合成法制得的普通型氢氧化镁,表面极性大,粒子之间集聚成团性强,在塑料中的分散性和相容性都很差,故用于制造镁盐、保温材料、烟气脱硫等。采用特殊工艺过程制得阻燃性氢氧化镁,具有比表面积小,成团性差,与高分子材料相容性好,易分散的优点。可以用作塑料的优良阻燃剂和填充剂。 3 3.1 根据碳酸钙和碳酸镁分解温度不同,在白云石煅烧时,将温度控制在 750℃以下,得到白云灰,经消化,除渣及固液分离、干燥等制得产品。该法适用于大量生产含氢氧化镁稍低的产品。 3.2 以含有氯化镁的卤水为原料与碱性物质(如氢氧化钙、氨水、氢氧化钠等)在水溶液中反应,生成氢氧化镁沉淀,经过滤、洗涤、干燥而制得产品。本法适用于生产含氢氧化镁稍高的产品。 3.3 卤水经过精制,除去杂质,送往电解槽,经电解获得氢氧化镁沉淀物,分离、干燥制得产品。电解卤水法适用于制造产量较大的含氢氧化镁较高的氢氧化镁。但能耗较高,不适于电力较紧张地区。 3. 4 将含量大于 94%的菱镁矿和无烟煤或焦炭置于竖窑内煅烧,生成氧化镁和二氧化碳。将菱苦土过 120 目筛后,置于反应罐内,用水按一定比例调成浆状,搅拌均匀,加热到90℃以上,缓慢加入一定浓度的工业盐酸,反应完毕后抽滤得到一定浓度的氯化镁溶液。氯化镁溶液与一定浓度的氨水在合成釜中进行复分解反应,生成新型碱式氯化镁。然后送入水热处理釜内,在120℃~250℃处理1~10 小时。从水热处理釜出来的混合物加水稀释,漂洗、沉降、离心分离后制取湿产品。它具有晶粒大,比表面积小,分散性好的特点,纯度一般大于90%。 3. 5 对生产企业的调查中发现,企业还使用其它的生产工艺,如轻烧粉-水合法及以优质碳酸镁为原料,经化工合成生产氢氧化镁的新工艺。综上所述,生产氢氧化镁的原料很多,有水镁石、卤水、轻烧粉(氧化镁)、优质碳酸镁、氯化镁等几种。 3.1 编制原则 3.1.1 积极采用国际标准和国外先进标准; 3.1.2 有利于促进技术进步,提高产品质量; 3.1.3 有利于合理利用资源,提高经济效益; 3.1.4 符合用户要求,保护消费者利益,促进对外贸易。 3.2 编制依据 3.2.1 国内外标准指标对比表(见附表1); 3.2.2 国内外标准试验方法对比表(见附表2); 3.2.3 国内生产厂质量月报(见附表3); 3.2.4 编制过程中的验证数据。全国化学标准化技术委员会无机化工分会接到制标任务后,查阅了国内外标准及有关技术资料,并向生产、使用单位发函,进行调查并广泛征求对修标的意见,在此基础上提出了文献小结。2005 年 10 月,在天津召开了制定标准工作方案会,会上确定了工业氢氧化镁的指标项目和试验方法等内容,提出了工作方案。会后,各有关单位根据工作方案的安排进行了试验工作,并对本厂产品进行了质量考核。 200 6 年5 月由负责起草单位提出了标准

氢氧化镁

氢氧化镁综合介绍 基本介绍: 氢氧化镁(化学式:Mg(OH)2、分子量58.32)是镁的氢氧化物,为白色晶体或粉末,难溶于水,广泛用作阻燃剂、抗酸剂和胃酸中和剂。氢氧化镁在水中的悬浊液称为氢氧化镁乳剂,简称镁乳,用于中和过多的胃酸和治疗便秘。水溶液,呈碱性。用做分析试剂,还用于制药工业。 物化性质: 白色晶体或粉末。水溶液呈碱性。2.36g/cm3。溶于稀酸和铵盐溶液,几乎不溶于水和醇。在水中的溶解度(18℃)为0.0009g/100g 。易吸收空气中的二氧化碳。在碱性溶液中加热到200℃以上时变成六方晶体系结晶。在350℃分解而成氧化镁和水。高于500℃时失去水转变为氧化镁。沸水中碳酸镁可转变为溶解性更差的氢氧化镁。粒径1.5-2μm ,目数10000,白度≥95。 生产工艺: 1、水镁石磨细法 由于由天然水镁石磨细生产氢氧化镁只是一个物理过程,因此需要较纯净的天然水镁石资源。天然矿物水镁石的主要成分是氢氧化镁, 是一种层状结构的氢氧化物, 属于三方晶系, 常见的构造有块状、球状及纤维状, 是迄今自然界发现的含镁量最高的一种矿物。水镁石磨细法制备氢氧化镁, 是将水镁石粉碎成水镁石粉 ( 150μm ) , 再将水镁石粉气流粉碎至 1~ 26μm 粉体 ( 由表面活性剂改性的氢氧化镁 ) 。该氢氧化镁制造工艺简单, 价格也较低。该方法生产的是重质氢氧化镁。 2、化学合成法 化学合成法是利用含有氯化镁的卤水、卤矿等与苛性碱类物质在水介质中反应, 生成氢氧化镁浆料, 经过滤、洗涤、干燥制得氢氧化镁。化学合成法中应用较多的方法包括氢氧化钙法、氨法、氢氧化钠法。采用这些方法生产的是轻质氢氧化镁。氢氧化钙法又称石灰乳法, 是以 Ca(OH)2为沉淀剂, 是一种传统的制备 方法。该法优点是原料易得, 生产工艺简单, 成本较低。但是, 由于所得产品粒度小 (可达 0. 51μm 以下) , 聚附倾向大, 难于沉降、过滤及洗涤, 并且易吸附硅、钙、铁等杂质离子,因此产品纯度低, 只适用于对纯度要求不太高的行业, 如烟气脱硫和酸性废水中和等。 氢氧化钠法是采用氯化镁水溶液与烧碱反应制备氢氧化镁。该方法优点是操作简单, 产物的形貌、粒度分布及纯度、晶体结构均易于控制, 适宜制备高纯微细产品。但是, 烧碱的使用会使成本增大;另外, 由于粒度较细, 过滤有一定困 难。用氢氧化钠沉淀卤水生成碱式氯化镁沉淀, 如果要得到氢氧化镁需要在高压 釜中再进行水热处理, 使之转化成氢氧化镁晶体。由于氢氧化钠是强碱, 如果条件控制不当会使生成的氢氧化镁形成胶体, 给产物性能的控制带来困难, 同时 也易带入较多的Na 和 Cl 。与氨法比较, 该方法的母液回收不如氨法容易。 + - +

高纯氧化镁的制备方法总结

高纯氧化镁的制备方法总结

————————————————————————————————作者:————————————————————————————————日期:

高纯氧化镁制备方法 1.卤水制备氧化镁 1.1石灰法 将氯化镁溶液与煅烧石灰石(或白云石)灰乳反应生成氢氧化镁,煅烧得氧化镁。 此法会产生1t镁砂会产生2.76吨CaCl2,如果不能对其进行有效利用,会造成新的废物堆积,只是生产不能扩大。 1.2碳铵法 碳酸氢铵(或二氧化碳和氨)同氯化镁溶液反应生成碱式碳酸镁,经煅烧得到氧化镁。

该法以碳酸氢氨为原料,蒸发水量大,势必耗能较大,生产成本较高。如果能够利用合成氨工厂排放的二氧化碳及中间产品氨为原料,可降低其成本。 1.3氨法 将水氯化镁石(或老卤)与液氨加入晶种沉镁,沉淀经洗涤、烘干、煅烧得到氧化镁产品。 此法沉镁效率可达80%-85%,氨转化率可达80%,产品中氧化镁质量分数在99%以上,副产品NH4Cl可作为化肥化工原料,而且无三废,基本无污染。如在沉镁过程中添加特殊晶种核心,可产生超细氧化镁、磁性氧化镁和空气氧化镁等等。 1.4纯碱法 将卤水与纯碱反应,生成碱式碳酸镁沉淀,洗涤脱水后煅烧,制得氧化镁。 此法制得的氧化镁产品纯度较高,工艺简单,能耗小,但使用纯碱会使成本过高。

以上方法都在液相中反应,通过加入沉淀剂、洗涤剂和化学精制等方法除去杂质离子,保持碱式碳酸镁或氢氧化镁的纯度,最终高纯镁砂纯度可达99.9%以上。但是卤水生产高纯镁砂成本过高,能源消耗大,生产工艺复杂,存在很多难点. 1.5水氯镁石直接热解 含水氯化镁直接在空气(或热气流)中加热,随着温度升高能逐步失去结晶水。反应方程式如下: 该法工艺流程较简单,不需消耗任何辅助原料,使生产成本降低,更易实现镁的高值化和产业化。现行方法主要有喷雾法和沸腾炉法。 1.5.1喷雾热解法 将卤水直接喷入热分解反应炉中进行热分解,煅烧后得粗氧化镁,多次水洗除去未完全分解的可溶性氯化物,粗氧化镁完全水化生成氢氧化镁,煅烧至轻质氧化镁,再重烧得到高纯镁砂,纯度可达99%以上。 喷雾法工艺流程用此法生产氧化镁具有工业规模的厂家是以色列Mishor Rotem的死海方镁石公司。此工艺的热解时间短,生产成本较低,但回收率比较低,氯化氢尾气腐蚀性强,对设备的要求很高,而且对氯化氢尾气的吸收和浓缩有很大难度。 1.5.2沸腾炉热解法 将原料经沸腾炉脱水,热解和焙烧,产品由出料管自动溢入集料缶储存。 矿石沸腾炉炉体散热较大,应采用适当的隔热保温措施,才能较低散热,提高炉子的有效热利用率。 2.固体矿制备氧化镁 2.1煅烧菱镁矿法 菱镁矿中含90%以上的碳酸镁,以及少量碳酸钙和其他微量杂质,直接煅烧便能得到纯度较

纳米级氢氧化镁阻燃剂

纳米级氢氧化镁阻燃剂的研究现状 氢氧化镁作为阻燃剂的阻燃机理为:氢氧化镁受热分解时,释放出H2O,同时吸收大量的潜热,这就降低了树脂在火焰中实际承受的温度,具有抑制高聚物分解和可燃性气体产生的冷却效应。分解后生成的MgO 是良好的耐火材料,也能帮助提高树脂抵抗火焰的能力,而且氢氧化镁的热分解温度高达340 ℃,因此,其阻燃性能十分优越。但普通氢氧化镁用于聚合物阻燃的主要缺点是阻燃效率低以及与基体的相容性差,要使材料的阻燃性能达到一定要求,氢氧化镁的添加量通常要高达50 %以上,这样会对材料的力学性能和加工性能影响很大,难以达到使用要求。为了使氢氧化镁能更好地用于塑料阻燃,国内外不少研究机构已成功地开发出了不同性能的氢氧化镁。美国Solem 公司开发出了分散性良好,加工温度可达332 ℃的优质氢氧化镁。日本协和化学工业自1973 年开始研究特殊大晶粒,低比表面积的氢氧化镁,1975 年研究成功。该机构最近又开发出了氢氧化镁薄片状粒子和纤维状结晶,但该项技术并未公开。大连理工大学也曾研制出晶粒尺寸大、比表面积小、具有优良阻燃性能的新型氢氧化镁。江苏海水综合利用研究所、兰州化学工业公司研究院以及中科院青海盐湖研究所等相继致力于研制特殊晶形的氢氧化镁阻燃剂。 应用研究表明:当加入的氢氧化物粒径减小到 1 μm 时,其阻燃聚合物体系的氧指数显著提高。不少文献报道随着粒径的减小,无机粒子对聚合物材料有增强增韧的作用。因此,超细化成为氢氧化镁阻燃剂的一个重要发展方向。在材料科学里面,人们将超细微粒子称谓纳米粒子,是一种介于固体和分子间的亚稳中间态物质。纳米氢氧化镁是指颗粒粒度介于1~100 nm 的氢氧化镁,作为一种纳米材料,它具有纳米材料所具有的共同特点,即小尺寸效应,量子尺寸效应,表面效应,宏观量子效应等,用它填充于复合材料中能大大提高材料的阻燃性能、力学性能和其它性能。研究表明,采用纳米Mg(OH)2的塑料阻燃性能优于普通Mg(OH)2填充的塑料,具有更好的机械加工性,与含磷和卤素的有机阻燃剂相比,纳米氢氧化镁无毒,无味,且具有阻燃,填充,抑烟三重功能,是开发阻燃聚合物的理想添加剂,已受到人们的广泛关注。 姚佳良等研究了纳米氢氧化镁与微米氢氧化镁填充聚丙烯(PP)体系的阻燃性能、流动性能和力学性能。实验结果表明:添加相同质量分数Mg(OH)2时,纳米Mg(OH)2填充体系的阻燃性能要好于微米Mg(OH)2填充体系,并在填充量为60 %时达到V-0 级标准,且发烟量少,流动性能和力学性能也要好于微米Mg(OH)2填充体系。 1 制备方法 液相化学法是目前广泛采用的制备纳米氢氧化镁粉体的方法,已用于制备纳米Mg(OH)2的液相法有:直接沉淀法、水热反应法等。 1.1 直接沉淀法 直接沉淀法是在金属盐溶液中加入沉淀剂,仅通过沉淀操作从溶液中直接得到某一目标金属的纳米颗粒沉淀物,将阴离子从沉淀中除去,经干燥即可得到纳米粉体。常见的沉淀剂有NaOH、NH3.H2O、CO(NH2)2等。该法操作简便易行,对设备、技术要求不高,不易引入杂质,产品纯度高,有良好的化学计量性,制备成本较低;但产品粒度较大,粒度分布较宽。邱龙臻等以氯化镁、氢氧化钠为原料,采用表面活性剂包覆的溶液沉淀法制备出了不易团聚的纳米Mg(OH)2粉体,经透射电镜表征,其形态是短轴方向尺寸为6~9 nm,长轴方向尺寸为50~100 nm 的针状粒子。随着Mg(OH)2粒径的减小,光致发光光强度显著增强。将其以1︰1 的比例与EV A 混合,能很好地均匀分散在EV A 基体中,氢氧化镁几乎没有发生团聚现象。而且,EV A/纳米Mg(OH)2复合材料也表现出了优异的阻燃性能,该材料的

新型无机阻燃剂氢氧化镁

新型无机阻燃剂氢氧化镁 简介:氢氧化镁属于填加型阻燃剂,受热分解释放出水气,同时吸收了大量的热量,可以降低材料表面的温度,使得聚合物降解的速度放慢,随之小分子可燃物质的产生也减少。释放出来的水气稀释了表面的氧气,使燃烧难以进行。氢氧化镁在材料表面形成炭化层,阻止氧气和热量的进入,并且氢氧化镁分解生成的氧化镁是高级耐火材料,所以当燃烧源消失,火就自动停止,起到阻燃的效果。由于氢氧化镁阻燃作用主要发生在聚合物降解区,减少可燃物的产生,而对预燃区作用很少,可燃物的完全燃烧影响很小,产生的烟雾也减少,并且氢氧化镁可以冲淡和吸收烟雾,所以氢氧化镁具有减烟效果。 1、氢氧化镁阻燃剂的特点 氢氧化镁Mg(OH)2,白色固体粉末,不溶于碱性物质,受热分解为氧化镁和水,加热到340℃时开始分解,430℃时分解速度最快,到490℃时完全分解。氢氧化镁晶体属于2价金属水合物族,晶体结构是层状的CdI2型,形成连续的六边形,Mg2+层和OH-层互相重叠,每个镁离子被6个氢氧根离子配合从而形成Mg(OH)6八面体。标准状态下:Mg(OH)2(s)MgO(s)+H2O(g)△H=mol同样作为无机阻燃剂,氢氧化镁与氢氧化铝相比具有很多优点:①氢氧化铝热分解温度为245~320℃,与氢氧化镁分解温度340~490℃相比,有效使用范围低,适合用于加工温度比较低的树脂如ABS、丙烯酸树脂和环氧树脂等。氢氧化铝由于分解温度较低,其中部分结晶水在材料加工时已经分解,易使制品多泡、多孔,自身的阻燃效果也下降。而氢氧化镁能使得被填加的材料承受更高的加工温度,有利于加快挤塑速度,缩短模塑时间。而且氢氧化镁的分解能比氢氧化铝大、热容高,能够吸入更多的热量,阻燃效果更好[2]。②氢氧化镁的粒度比氢氧化铝小,对材料加工设备磨损小,有利于延长设备的使用寿命。③氢氧化镁的减烟效果

直接沉淀法制备超细氢氧化镁研究

直接沉淀法制备超细氢氧化镁 摘要:实验中采用直接沉淀法合成超细氢氧化镁。考察影响MH粒径大小的影响因素,如反应时间、反应温度、反应物浓度和分散剂的添加量。同时采用激光粒度仪和XRD衍射分析仪表征所制备的超细氢氧化镁的性能。XRD衍射分析结果表明采用两种分散剂制备的产品结构与典型Mg(OH)2的结构一致。产品平均最小粒径为200nm.实验研究结果表明,作为分散剂的无水乙醇和PEG6000通过阻碍粒子团聚,能明显降低产品的平均粒径。从经济和环保角度来讲,采用PEG6000作为分散剂的方法更适合制备超细氢氧化镁。 关键词:超细氢氧化镁;直接沉淀法;Mg(OH)2;无水乙醇;PEG6000 Preparation of superfine magnesium hydroxide by direct precipitation method Abstract:In this study, superfine magnesium hydroxide was synthesized by direct precipitation method. The influence factors, such as reaction time, reaction temperature, solution concentration and the additive amount of dispersing agent on the particle size of MH were investigated. The properties of prepared Mg(OH)2were studied by Laser particle size analyzer, X-ray diffraction(XRD). The results of XRD showed that the prepared Mg(OH)2 with two kinds of dispersing agent has the same structure compared to the typical Mg(OH)2. The average particle size is about 200nm. The study indicated that the ethanol and PEG6000 as the dispersing agent can obviously reduce the average size of samples by preventing particles reunion. From the point of view of economic and environmental protection, PEG6000 is better to used as the dispersing agents for preparating super fine magnesium hydroxide. Keywords- superfine magnesium hydroxide ; Direct precipitation method ; Mg(OH)2; ethanol; PEG6000 引言 超细氢氧化镁(MH)因其无毒、抑烟、分解温度高等特点,可作为高性能无机阻燃剂应用于高分子材料中,能进一步提高材料的阻燃性能和力学性能,近年来成为国内外研究和开发的热点,广受人们的关注[1-5]。目前制备超细氢氧化镁的方法有物理粉碎法[6]、水热反应法[7-8]、均相沉淀法[9]、直接沉淀法[10]等[11]。粉碎法通过机械力的作用将水镁石物料粉碎、磨细。粉碎法效率低、能耗大,所得颗粒较粗,粒度分布较宽,里面杂质含量高。水热法对

氢氧化镁阻燃剂的制备

氢氧化镁阻燃剂的制备 介绍了氢氧化镁阻燃剂的特点和阻燃机理,重点阐述了氢氧化镁阻燃剂的制备方法,并讨论了其存在问题和发展方向。 标签:氢氧化镁;阻燃剂;制备 非卤化无机阻燃剂近年来成为研究的热点。非卤化无机阻燃剂应用于高分子材料的阻燃,可减少高分子材料燃烧时产生的有毒物质及污染物的产生量,保护环境,减少火灾损失。非卤化无机阻燃剂氢氧化镁是无机阻燃剂的新起之秀,引起广大研究者的兴趣。本文介绍氢氧化镁阻燃剂的特点和阻燃机理,重点介绍纳米氢氧化镁阻燃剂的制备方法,并对其研究方向进行展望。 1 氢氧化镁阻燃剂的特点和阻燃机理 氢氧化镁作为新型的无卤阻燃剂来源于其高温下的热分解反应。当温度达到340℃时,氢氧化镁开始分解,其分解方程式如下: 氢氧化镁热分解过程中生成氧化镁和水,完全分解时温度高达490℃。氢氧化镁热分解所产生的水蒸气能够吸收大量的热量,降低材料的表面温度,减少可燃小分子物质的产生,同时也稀释了高分子材料表面的氧气,使燃烧难以进行;此外,氢氧化镁与可燃物反应产生的碳化层可有效隔绝氧气阻碍可燃物的热分解;热分解产生耐火材料氧化镁能够覆盖聚合物的表面,有效阻止燃烧。同时,氢氧化镁还具有吸烟的作用。 氢氧化镁作为阻燃剂在高分子材料燃烧过程中不产生有害物质,且能够中和酸性气体,避免二次污染,绿色环保。但氢氧化镁表面具有较强的亲水性,与疏水性的聚合物分子亲和力较差。此外,氢氧化镁用作阻燃剂时只有其填充量>40%才具有较好的阻燃效果,但高填充量降低了高分子聚合物材料的机械性能和加工性能。采用特殊的方法制备分散性能好的氢氧化镁阻燃剂成为研究的重点。 2 氢氧化镁的制备 氢氧化镁的制备方法有多种,根据物态的不同,可分为固相法、气相法、液相法。液相法主要有沉淀法和水热反应法,沉淀法依据沉淀剂的种类不同细分为石灰法、氨法和氢氧化钠法,根据沉淀实施的具体方式不同又可分为直接沉淀法、均相沉淀法、溶液沉淀法和沉淀-共沸法以及反向沉淀法。沉淀法是将沉淀剂与Mg2+反应得到氢氧化镁的方法,也是最常用的氢氧化镁制备方法。水热法是以水为溶剂,在一定温度和压力下进行化学反应制备氢氧化镁的方法。水热处理氢氧化镁时需特殊的高压反应器,成本相对较高。 石灰法制备氢氧化镁的反应式如下所示:

碳纳米管的制备

常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 电弧放电法 碳纳米管制备 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电 法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在 这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳 米管。通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对产量。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难 得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外该方法反应消耗能量太大。有些研究人员发现,如果采用熔融的氯化锂作为阳极,可以有效地降低反应中消耗的能量,产物纯化也比较容易。 发展出了化学气相沉积法,或称为碳氢气体热解法,在一定程度上克服了电弧放电法的缺陷。这种方法是让气态烃通过附着有催化剂微粒的模板,在800~1200度的条件下,气态 烃可以分解生成碳纳米管。这种方法突出的优点是残余反应物为气体,可以离开反应体系,得到纯度比较高的碳纳米管,同时温度亦不需要很高,相对而言节省了能量。但是制得 的碳纳米管管径不整齐,形状不规则,并且在制备过程中必须要用到催化剂。这种方法的主要研究方向是希望通过控制模板上催化剂的排列方式来控制生成的碳纳米管的结构,已经取得了一定进展。 激光烧蚀法 激光烧蚀法的具体过程是:在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体冲入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成CNTs。 固相热解法

20年国外氢氧化镁行研究报告

20年国外氢氧化镁行业研究报告

前言 近25年来氢氧化镁产品的生产和应用,在国外特别是美国和日本得到迅速的发展。据不完全统计,目前国外氢氧化镁总生产能力已超125万t,美日两国合计超过96万t。在镁化学制品中仅次于耐火级氧化镁和轻烧氧化镁位居第3位,且仍呈增长趋势。出现这种情况主要原因有4个: 1)由于钢铁工业从延长炉龄寿命出发采用新耐火材料,导致传统耐火材料镁砂的用量大幅度减少,一些生产厂家不得不在非耐火材料领域寻求出路;2)环保呼声的日益高涨和环境立法的日趋完善,原来应用于该领域中的一些强碱性物质如烧碱、纯碱和石灰的使用量随之减少,进而被具有缓冲性能更符合环保要求的所谓“绿色安全中和剂”——氢氧化镁所取代,这就为氢氧化镁的大量应用提供了机会;3)氢氧化镁可作为高聚的无卤阻燃剂,而这种阻燃剂也是环境友好的;4)国外镁盐生产企业以市场需求为导向,及时调整镁盐产品结构的必然结果。 据美国斯坦弗研究院统计,到2003年11月国外有13个国家,27家公司生产粉状、滤饼状和料浆状氢氧化镁,近年来有关老厂扩建,合资经营乃至 新产品研发方面时有报导。可见氢氧化镁作为镁化学制品中最具活力的产品受到各国业界人士的关注。本文拟就国外主要是美国和日本氢氧化镁生产应用和研发近况做一简要综述和分析。 1 原料构成 国外用来生产氧化镁和氢氧化镁的主要原料资源有菱镁矿、白云石、地下卤水、湖水海水和水镁石。美国原料构成是地下卤水占49%,湖水海水23%,菱镁矿17%水镁石和其他资源11%。日本海水卤水在95%以上,西欧各国菱镁矿、白云石和其他含镁矿物60%,海水35%,地下卤水5%。美国2001年镁化学制品用原料种类见表1。 2 生产厂家和生产能力 2002年全球氢氧化镁生产总能力为126.7万t,其中美国63.6万t,日本32.3万t,西欧各国28.6万t,亚洲其他国(主要是韩国)和地区为2.22万t,现将美国和日本氢氧化镁生产厂家和生产能力列入表2、表3。

碳纳米管的制备方法

碳纳米管的制备方法 摘要:本文简单介绍了碳纳米管的结构性能,主要介绍碳纳米管的制备方 法, 包括石墨电弧法、催化裂解法,激光蒸发法等方法,也对各种制备方法的优缺 点进行 了阐述。 关键词:碳纳米管制备方法 Preparation of carbon nanotubes Abstract: The structure and performance of carbon nanotubes are briefly introduced, and some synthesis methods, including graphite arc discharge method, catalytic cracking method, laser evaporation method and so on, are reviewed. And the advantages and disadvantages of various preparation methods are also described. Key words:carbon nanotubes methods of preparation 纳米材料被誉为是21世纪最重要材料,是构成未来智能社会的四大支柱之一 ,而碳纳米管是纳米材料中最富有代表性,并且是性能最优异的材料。碳纳米管是碳 的一种同素异形体,它包涵了大多数物质的性质,甚至是两种相对立的性质,如从高 硬度到高韧性,从全吸光到全透光、从绝热到良导热、绝缘体/半导体/高导体和高临界温度的超导体等。正是由于碳纳米材料具有这些奇异的特性,被发现的短短十几年

来,已经广泛影响了物理、化学、材料等众多科学领域并显示出巨大的潜在应用前景。 碳纳米管又名巴基管,即管状的纳米级石墨晶体。它具有典型的层状中空结构, 构成碳纳米管的层片之间存在一定夹角,管身是准圆筒结构,并且大多数由五边形截 面组成,端帽部分由含五边形的碳环组成的多边形结构。是一种具有特殊结构(径向 尺寸为纳米量级、轴向尺寸为微米两级,管子两端基本上都封口)的一维纳米材料。 碳纳米管存在多壁碳纳米管(MWNTS)和单壁碳纳米管(SWNTS)两种形式。单层碳纳米管结构模型如图1所示。理想的多层碳纳米管可看成多个直径不等的单层管同轴套构而成,层数可以从二层到几十层,层与层之间保持固定距离约为0.34nm,直径一般为2~20nm.但实际制备的碳纳米管并不完全是直的或直径均匀的,而是局部 1 区域出现凸凹弯曲现象,有时会出现各种形状如L、T、Y形管等。研究认为所有这 些形状的出现是由于碳六边形网络中引入五边形和七边形缺陷所致。五边形的引入引 起正弯曲,七边形的引入引起负弯曲。

氢氧化镁阻燃剂

氢氧化镁阻燃剂 姓名:单显朋学号:20130591 班级:材料1305班 【摘要】:随着高分子材料日新月异飞速发展,高分子复合材料应用在人类生活的每一个领域,高分子材料的阻燃技术发挥着越来越重要的作用,市场发展的需要,对氢氧化镁的阻燃剂的研发方向也有着改变,更加注重对氢氧化镁的阻燃剂新的性能的研究,励志开发出更加高效的阻燃剂适应市场的进一步的发展。无论从合成资源还是从天然资源制得的氢氧化镁,用于阻燃剂量与日俱增,利用我国丰富的镁资源,依托技术创新开发高附加值的阻燃性氢氧化镁,是镁盐行业面临地一个共同课题。氢氧化镁是阻燃性能好的高效无卤阻燃剂,火灾后不会产生二次污染,都具有抑烟性强、无毒、无腐蚀、不挥发、不析出、安全等特点,已经被公认是环保型阻燃剂,正因为氢氧化镁的安全、环保特性,在塑料、电缆、橡胶等行业得到广泛的应用。我国拥有丰富的含镁矿物、富镁废弃物资源,因此氢氧化镁阻燃填料的前景是十分广阔的。本文简单介绍了阻燃剂的分类,氢氧化镁阻燃机理。重点介绍了氢氧化镁阻燃剂的作用、研究现状和发展方向。并指出氢氧化镁阻燃剂是一种新型的,环境友好型的无机阻燃剂。 【关键词】:氢氧化镁阻燃剂环保发展方向 【前言】:随随着高分子材料的发展,高分子材料的易燃性日益受到了人们的重视,对阻燃剂的需求量也随之增加。然而,随着人们对环境等因素提出了更加严格的要求,阻燃的无卤化、高效性、抑烟性、无毒成为未来的发展趋势。 1.阻燃剂的分类 阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类。有机阻燃剂又分为磷系和卤系两个系列。由于有机阻燃剂存在着分解产物毒性大、烟雾大等缺点,正逐步被无机阻燃剂所替代。 无机阻燃剂主要品种有氢氧化铝、氢氧化镁、红磷、氧化锑、氧化锡、氧化钼、钼酸铵、硼酸锌等,其中以氢氧化铝和氢氧化镁因分解吸热量大,并产生H2O可起到隔绝空气作用,其分解后氧化物又是耐高温物质,故二种阻燃剂不仅可起到阻燃作用,而且可以起到填充作用,它所具有不产生腐蚀性卤气及有害气体、不挥发、效果持久、无毒、无烟、不滴等特点。 2.氢氧化镁的阻燃机理 氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。氢氧化镁阻燃剂通过受热分解时释放出结合水,吸收大量的潜热,来降低它所填

高纯氢氧化镁系列产品介绍

高纯氢氧化镁系列产品介绍高纯氢氧化镁(High Purity Magnesium Hydroxide),化学分子式为Mg(OH)2,白色固体、结晶或无定形粉末,难溶于水,不溶于碱性溶液,易溶于烯酸和铵盐溶液,受热分解为氧化镁和水,初始分解温度为340℃,430℃时分解速度最快,到490℃时分解完全。采用国际领先的工艺技术,经反应合成、过滤、洗涤、干燥等工序加工而成,含量99%以上,平均粒径50μm,堆积密度1.29g/cm3,也可按照客户要求加工至1-50μm,堆积密度0.3-1.29g/cm3。该产品安全无毒,对环境无危害,不属于易燃、易爆产品。其产品质量优于国际上同类产品质量。该产品以青海盐湖水氯镁石(bischofite,MgCl2〃6H2O)为原料采用合成法生产,产品全部为高纯级,可作为终端产品直接用于阻燃(钢铁、有色、化工、塑料、橡胶)、电子、医药、食品等行业,其中需求量最大的是阻燃行业,也是生产高纯轻质氧化镁、高纯重质氧化镁、医药级氧化镁、电工级氧化镁、硅钢级氧化镁等高端氧化镁产品的首选高品质原料。该产品最为优良阻燃剂和填充剂可广泛应用于EVA、PP、PVC、PS、HIPS、ABS塑料中,也可用于不饱和聚脂、油漆和涂料行业中。环保工程用作无污染的中和剂,造纸行业中的填充剂,气体净化、锅炉排烟与废油的脱硫剂;还用于镁盐制造、砂糖精制、制药、牙粉、保温材料、电线电缆、运输带、导风筒、电气器材、新型建材、玻璃钢制品、油漆以及作为土壤改良剂等,是环境友好型功能材料。 高纯氧化镁(High Purity Magnesium oxide),化学分子式为

MgO,该产品为一种白色固体,是以盐湖水氯镁石为原料后生产的高纯氢氧化镁为原料,深加工为具有色白纯度极高的高纯氧化镁,是冶镁的原料,作为单体助剂、活性剂、促进剂,是生产新型橡胶、工程塑料、医药化工、特殊陶瓷等产品的重要添加材料,对产品防老化性、耐磨性、耐高温性、导电性、强度、韧性等各项技术指标起着关键作用,用途广泛,可用作高温耐热材料,在陶瓷领域用作透光性陶瓷坩埚、基板原料。在电子、电器领域可用于磁性装置填料,绝缘材料填料及各种载体,还可用作耐热性涂料用的填料。 特级高纯镁砂(superfine high-purity magnesia),化学分子式为MgO,该产品是用化学方法从卤水中提取高纯氢氧化镁生产的烧结镁砂,MgO含量在99%以上,最高可达99.75%,体积密度为3.40-3.45 g/cm3。产品纯度高、密度高、高温性能好,是制砖、不定型耐火材料优质原料,也是钢铁、有色、玻璃及水泥行业高温炉内衬耐火材料的原料。

碳纳米管制备及其应用

碳纳米管的制备及其应用进展 10710030133 周健波 摘要:本文通过对新型化工材料碳纳米管的结构以及制备方法的介绍,并说明了制备纳米管方法有石墨电弧法、激光蒸发法、催化热解法等技术。同时也叙述了碳纳米管在力学性能、光学性能、电磁学性能等性能的研究及其应用。 关键词:碳纳米管制备结构石墨电弧法应用 1.引言 1991年日本科学家IIJI MA发现了碳纳米管(Carbon nanotube , CNT), 开辟了碳科学发展的新空间. 碳纳米管具有机械强度高、比表面大、电导率高、界面效应强等特点,以及特殊的机械、物理、化学性能,在工程材料、催化、吸附分离、储能器件电极材料等诸多领域得到了广泛应用。 2.碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主, 与相邻的3个碳原子相连,形成六角形网格结构,但此六角形网格结构会产生一定的弯曲, 可形成一定的sp3杂化键。 单壁碳纳米管( SW CNT )的直径在零点几纳米到几纳米之间,长度可达几十微米;多壁碳纳米管(MW CNT)的直径在几纳米到几十纳米之间长度可达几毫米,层与层之间保持固定的间距,与石墨的层间距相当,约为0 . 134 nm。碳纳米管同一层的碳管内原子间有很强的键合力和极高的同轴向性,可看作是轴向具有周期性的一维晶体,其晶体结构为密排六方, 被认为是理想的一维材料。 碳纳米管可看成是由石墨片层绕中心轴卷曲而成, 卷曲时石墨片层中保持不变的六边形网格与碳纳米管轴向之间可能会出现夹角即螺旋角.当螺旋角为零时, 碳纳米管中的网格不产生螺旋而不具有手性, 称之为锯齿型碳纳米管或扶手型碳纳米管;当碳纳米管中的网格产生螺旋现象而具有手性时,称为螺旋型碳纳米管。随着直径与螺旋角的不同, 碳纳米管可表现出金属性或半导体性。 3.碳纳米管的制备方法 3.1石墨电弧法

相关主题
文本预览
相关文档 最新文档