当前位置:文档之家› 委托 事件 观察者模式资料

委托 事件 观察者模式资料

委托 事件 观察者模式资料
委托 事件 观察者模式资料

认识C#中的委托和事件

引言

委托和事件在.Net Framework中的应用非常广泛,然而,较好地理解委托和事件对很多接触C#时间不长的人来说并不容易。它们就像是一道槛儿,过了这个槛的人,觉得真是太容易了,而没有过去的人每次见到委托和事件就觉得心里别(biè)得慌,混身不自在。本文中,我将通过两个范例由浅入深地讲述什么是委托、为什么要使用委托、事件的由来、.Net Framework中的委托和事件、委托和事件对Observer设计模式的意义,对它们的中间代码也做了讨论。

将方法作为方法的参数

我们先不管这个标题如何的绕口,也不管委托究竟是个什么东西,来看下面这两个最简单的方法,它们不过是在屏幕上输出一句问候的话语:

public void GreetPeople(string name) {

// 做某些额外的事情,比如初始化之类,此处略

EnglishGreeting(name);

}

public void EnglishGreeting(string name) {

Console.WriteLine("Morning, " + name);

}

暂且不管这两个方法有没有什么实际意义。GreetPeople用于向某人问好,当我们传递代表某人姓名的name参数,比如说“Jimmy”,进去的时候,在这个方法中,将调用EnglishGreeting 方法,再次传递name参数,EnglishGreeting则用于向屏幕输出“Morning, Jimmy”。

现在假设这个程序需要进行全球化,哎呀,不好了,我是中国人,我不明白“Morning”是什么意思,怎么办呢?好吧,我们再加个中文版的问候方法:

public void ChineseGreeting(string name){

Console.WriteLine("早上好, " + name);

}

这时候,GreetPeople也需要改一改了,不然如何判断到底用哪个版本的Greeting问候方法合适呢?在进行这个之前,我们最好再定义一个枚举作为判断的依据:

public enum Language{

English, Chinese

}

public void GreetPeople(string name, Language lang){

//做某些额外的事情,比如初始化之类,此处略

swith(lang){

case Language.English:

EnglishGreeting(name);

break;

case Language.Chinese:

ChineseGreeting(name);

break;

}

}

OK,尽管这样解决了问题,但我不说大家也很容易想到,这个解决方案的可扩展性很差,如果日后我们需要再添加韩文版、日文版,就不得不反复修改枚举和GreetPeople()方法,以适应新的需求。

在考虑新的解决方案之前,我们先看看GreetPeople的方法签名:

public void GreetPeople(string name, Language lang)

我们仅看string name,在这里,string 是参数类型,name 是参数变量,当我们赋给name 字符串“jimmy”时,它就代表“jimmy”这个值;当我们赋给它“张子阳”时,它又代表着“张子阳”这个值。然后,我们可以在方法体内对这个name进行其他操作。哎,这简直是废话么,刚学程序就知道了。

如果你再仔细想想,假如GreetPeople()方法可以接受一个参数变量,这个变量可以代表另一个方法,当我们给这个变量赋值EnglishGreeting的时候,它代表着EnglsihGreeting() 这个方法;当我们给它赋值ChineseGreeting 的时候,它又代表着ChineseGreeting()方法。我们将这个参数变量命名为MakeGreeting,那么不是可以如同给name赋值时一样,在调用GreetPeople()方法的时候,给这个MakeGreeting 参数也赋上值么(ChineseGreeting或者EnglsihGreeting等)?然后,我们在方法体内,也可以像使用别的参数一样使用MakeGreeting。但是,由于MakeGreeting代表着一个方法,它的使用方式应该和它被赋的方法(比如ChineseGreeting)是一样的,比如:

MakeGreeting(name);

好了,有了思路了,我们现在就来改改GreetPeople()方法,那么它应该是这个样子了:

public void GreetPeople(string name, *** MakeGreeting){

MakeGreeting(name);

}

注意到*** ,这个位置通常放置的应该是参数的类型,但到目前为止,我们仅仅是想到应该有个可以代表方法的参数,并按这个思路去改写GreetPeople方法,现在就出现了一个大问题:这个代表着方法的MakeGreeting参数应该是什么类型的?

NOTE:这里已不再需要枚举了,因为在给MakeGreeting赋值的时候动态地决定使用哪个方法,是ChineseGreeting还是EnglishGreeting,而在这个两个方法内部,已经对使用“morning”还是“早上好”作了区分。

聪明的你应该已经想到了,现在是委托该出场的时候了,但讲述委托之前,我们再看看MakeGreeting参数所能代表的ChineseGreeting()和EnglishGreeting()方法的签名:

public void EnglishGreeting(string name)

public void ChineseGreeting(string name)

如同name可以接受String类型的“true”和“1”,但不能接受bool类型的true和int类型的1一样。MakeGreeting的参数类型定义应该能够确定MakeGreeting可以代表的方法种类,再进一步讲,就是MakeGreeting可以代表的方法的参数类型和祷乩嘈汀?br /> 于是,委托出现了:它定义了MakeGreeting参数所能代表的方法的种类,也就是MakeGreeting参数的类型。

NOTE:如果上面这句话比较绕口,我把它翻译成这样:string 定义了name参数所能代表的值的种类,也就是name参数的类型。

本例中委托的定义:

public delegate void GreetingDelegate(string name);

可以与上面EnglishGreeting()方法的签名对比一下,除了加入了delegate关键字以外,其余的是不是完全一样?

现在,让我们再次改动GreetPeople()方法,如下所示:

public void GreetPeople(string name, GreetingDelegate MakeGreeting){

MakeGreeting(name);

}

如你所见,委托GreetingDelegate出现的位置与string相同,string是一个类型,那么GreetingDelegate应该也是一个类型,或者叫类(Class)。但是委托的声明方式和类却完全不同,这是怎么一回事?实际上,委托在编译的时候确实会编译成类。因为Delegate是一个类,所以在任何可以声明类的地方都可以声明委托。更多的内容将在下面讲述,现在,请看看这个范例的完整代码:

using System;

using System.Collections.Generic;

using System.Text;

namespace Delegate {

//定义委托,它定义了可以代表的方法的类型

public delegate void GreetingDelegate(string name);

class Program {

private static void EnglishGreeting(string name) {

Console.WriteLine("Morning, " + name);

}

private static void ChineseGreeting(string name) {

Console.WriteLine("早上好, " + name);

}

//注意此方法,它接受一个GreetingDelegate类型的方法作为参数

private static void GreetPeople(string name, GreetingDelegate MakeGreeting) {

MakeGreeting(name);

}

static void Main(string[] args) {

GreetPeople("Jimmy Zhang", EnglishGreeting);

GreetPeople("张子阳", ChineseGreeting);

Console.ReadKey();

}

}

}

输出如下:

Morning, Jimmy Zhang

早上好, 张子阳

我们现在对委托做一个总结:

委托是一个类,它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递,这种将方法动态地赋给参数的做法,可以避免在程序中大量使用If-Else(Switch)语句,同时使得程序具有更好的可扩展性。

将方法绑定到委托

看到这里,是不是有那么点如梦初醒的感觉?于是,你是不是在想:在上面的例子中,我不一定要直接在GreetPeople()方法中给name参数赋值,我可以像这样使用变量:

static void Main(string[] args) {

string name1, name2;

name1 = "Jimmy Zhang";

name2 = "张子阳";

GreetPeople(name1, EnglishGreeting);

GreetPeople(name2, ChineseGreeting);

Console.ReadKey();

}

而既然委托GreetingDelegate 和类型string 的地位一样,都是定义了一种参数类型,那么,我是不是也可以这么使用委托?

static void Main(string[] args) {

GreetingDelegate delegate1, delegate2;

delegate1 = EnglishGreeting;

delegate2 = ChineseGreeting;

GreetPeople("Jimmy Zhang", delegate1);

GreetPeople("张子阳", delegate2);

Console.ReadKey();

}

如你所料,这样是没有问题的,程序一如预料的那样输出。这里,我想说的是委托不同于string的一个特性:可以将多个方法赋给同一个委托,或者叫将多个方法绑定到同一个委托,当调用这个委托的时候,将依次调用其所绑定的方法。在这个例子中,语法如下:

static void Main(string[] args) {

GreetingDelegate delegate1;

delegate1 = EnglishGreeting; // 先给委托类型的变量赋值

delegate1 += ChineseGreeting; // 给此委托变量再绑定一个方法

// 将先后调用EnglishGreeting 与ChineseGreeting 方法

GreetPeople("Jimmy Zhang", delegate1);

Console.ReadKey();

}

输出为:

Morning, Jimmy Zhang

早上好, Jimmy Zhang

实际上,我们可以也可以绕过GreetPeople方法,通过委托来直接调用EnglishGreeting和ChineseGreeting:

static void Main(string[] args) {

GreetingDelegate delegate1;

delegate1 = EnglishGreeting; // 先给委托类型的变量赋值

delegate1 += ChineseGreeting; // 给此委托变量再绑定一个方法

// 将先后调用EnglishGreeting 与ChineseGreeting 方法

delegate1 ("Jimmy Zhang");

Console.ReadKey();

}

NOTE:这在本例中是没有问题的,但回头看下上面GreetPeople()的定义,在它之中可以做一些对于EnglshihGreeting和ChineseGreeting来说都需要进行的工作,为了简便我做了省略。

注意这里,第一次用的“=”,是赋值的语法;第二次,用的是“+=”,是绑定的语法。如果第一次就使用“+=”,将出现“使用了未赋值的局部变量”的编译错误。

我们也可以使用下面的代码来这样简化这一过程:

GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);

delegate1 += ChineseGreeting; // 给此委托变量再绑定一个方法

看到这里,应该注意到,这段代码第一条语句与实例化一个类是何其的相似,你不禁想到:上面第一次绑定委托时不可以使用“+=”的编译错误,或许可以用这样的方法来避免:

GreetingDelegate delegate1 = new GreetingDelegate();

delegate1 += EnglishGreeting; // 这次用的是“+=”,绑定语法。

delegate1 += ChineseGreeting; // 给此委托变量再绑定一个方法

但实际上,这样会出现编译错误:“GreetingDelegate”方法没有采用“0”个参数的重载。尽管这样的结果让我们觉得有点沮丧,但是编译的提示:“没有0个参数的重载”再次让我们联想到了类的构造函数。我知道你一定按捺不住想探个究竟,但再此之前,我们需要先把基础知识和应用介绍完。

既然给委托可以绑定一个方法,那么也应该有办法取消对方法的绑定,很容易想到,这个语法是“-=”:

static void Main(string[] args) {

GreetingDelegate delegate1 = new GreetingDelegate(EnglishGreeting);

delegate1 += ChineseGreeting; // 给此委托变量再绑定一个方法

// 将先后调用EnglishGreeting 与ChineseGreeting 方法

GreetPeople("Jimmy Zhang", delegate1);

Console.WriteLine();

delegate1 -= EnglishGreeting; //取消对EnglishGreeting方法的绑定

// 将仅调用ChineseGreeting

GreetPeople("张子阳", delegate1);

Console.ReadKey();

}

输出为:

Morning, Jimmy Zhang

早上好, Jimmy Zhang

早上好, 张子阳

让我们再次对委托作个总结:

使用委托可以将多个方法绑定到同一个委托变量,当调用此变量时(这里用“调用”这个词,是因为此变量代表一个方法),可以依次调用所有绑定的方法。

事件的由来

我们继续思考上面的程序:上面的三个方法都定义在Programe类中,这样做是为了理解的方便,实际应用中,通常都是GreetPeople 在一个类中,ChineseGreeting和EnglishGreeting 在另外的类中。现在你已经对委托有了初步了解,是时候对上面的例子做个改进了。假设我们将GreetingPeople()放在一个叫GreetingManager的类中,那么新程序应该是这个样子的:

namespace Delegate {

//定义委托,它定义了可以代表的方法的类型

public delegate void GreetingDelegate(string name);

//新建的GreetingManager类

public class GreetingManager{

public void GreetPeople(string name, GreetingDelegate MakeGreeting) {

MakeGreeting(name);

}

}

class Program {

private static void EnglishGreeting(string name) {

Console.WriteLine("Morning, " + name);

}

private static void ChineseGreeting(string name) {

Console.WriteLine("早上好, " + name);

}

static void Main(string[] args) {

// ... ...

}

}

}

这个时候,如果要实现前面演示的输出效果,Main方法我想应该是这样的:

static void Main(string[] args) {

GreetingManager gm = new GreetingManager();

gm.GreetPeople("Jimmy Zhang", EnglishGreeting);

gm.GreetPeople("张子阳", ChineseGreeting);

}

我们运行这段代码,嗯,没有任何问题。程序一如预料地那样输出了:

Morning, Jimmy Zhang

早上好, 张子阳

现在,假设我们需要使用上一节学到的知识,将多个方法绑定到同一个委托变量,该如何做呢?让我们再次改写代码:

static void Main(string[] args) {

GreetingManager gm = new GreetingManager();

GreetingDelegate delegate1;

delegate1 = EnglishGreeting;

delegate1 += ChineseGreeting;

gm.GreetPeople("Jimmy Zhang", delegate1);

}

输出:

Morning, Jimmy Zhang

早上好, Jimmy Zhang

到了这里,我们不禁想到:面向对象设计,讲究的是对象的封装,既然可以声明委托类型的变量(在上例中是delegate1),我们何不将这个变量封装到GreetManager类中?在这个类的客户端中使用不是更方便么?于是,我们改写GreetManager类,像这样:

public class GreetingManager{

//在GreetingManager类的内部声明delegate1变量

public GreetingDelegate delegate1;

public void GreetPeople(string name, GreetingDelegate MakeGreeting) {

MakeGreeting(name);

}

}

现在,我们可以这样使用这个委托变量:

static void Main(string[] args) {

GreetingManager gm = new GreetingManager();

gm.delegate1 = EnglishGreeting;

gm.delegate1 += ChineseGreeting;

gm.GreetPeople("Jimmy Zhang", gm.delegate1);

}

尽管这样达到了我们要的效果,但是似乎并不美气,光是第一个方法注册用“=”,第二个用“+=”就让人觉得别扭。此时,轮到Event出场了,C# 中可以使用事件来专门完成这项工作,我们改写GreetingManager类,它变成了这个样子:

public class GreetingManager{

//这一次我们在这里声明一个事件

public event GreetingDelegate MakeGreet;

public void GreetPeople(string name, GreetingDelegate MakeGreeting) {

MakeGreeting(name);

}

}

很容易注意到:MakeGreet 事件的声明与之前委托变量delegate1的声明唯一的区别是多了一个event关键字。看到这里,你差不多明白到:事件其实没什么不好理解的,声明一个事件不过类似于声明一个委托类型的变量而已。

我们想当然地改写Main方法:

static void Main(string[] args) {

GreetingManager gm = new GreetingManager();

gm.MakeGreet = EnglishGreeting; // 编译错误1

gm.MakeGreet += ChineseGreeting;

gm.GreetPeople("Jimmy Zhang", gm.MakeGreet); //编译错误2

}

这次,你会得到编译错误:事件“Delegate.GreetingManager.MakeGreet”只能出现在+= 或-= 的左边(从类型“Delegate.GreetingManager”中使用时除外)。

事件和委托的编译代码

这时候,我们不得不注释掉编译错误的行,然后重新进行编译,再借助Reflactor来对event 的声明语句做一探究,看看为什么会发生这样的错误:

public event GreetingDelegate MakeGreet;

可以看到,实际上尽管我们在GreetingManager里将MakeGreet 声明为public,但是,实际上MakeGreet会被编译成私有字段,难怪会发生上面的编译错误了,因为它根本就不允许在GreetingManager类的外面以赋值的方式访问。

我们进一步看下MakeGreet所产生的代码:

private GreetingDelegate MakeGreet; //对事件的声明实际是声明一个私有的委托变量

[MethodImpl(MethodImplOptions.Synchronized)]

public void add_MakeGreet(GreetingDelegate value){

this.MakeGreet = (GreetingDelegate) https://www.doczj.com/doc/9912348463.html,bine(this.MakeGreet, value);

}

[MethodImpl(MethodImplOptions.Synchronized)]

public void remove_MakeGreet(GreetingDelegate value){

this.MakeGreet = (GreetingDelegate) Delegate.Remove(this.MakeGreet, value);

}

现在已经很明确了:MakeGreet 事件确实是一个GreetingDelegate类型的委托,只不过不管是不是声明为public,它总是被声明为private。另外,它还有两个方法,分别是add_MakeGreet 和remove_MakeGreet,这两个方法分别用于注册委托类型的方法和取消注册,实际上也就是:“+= ”对应add_MakeGreet,“-=”对应remove_MakeGreet。而这两个方法的访问限制取决于声明事件时的访问限制符。

在add_MakeGreet()方法内部,实际上调用了System.Delegate的Combine()静态方法,这个

方法用于将当前的变量添加到委托链表中。我们前面提到过两次,说委托实际上是一个类,在我们定义委托的时候:

public delegate void GreetingDelegate(string name);

当编译器遇到这段代码的时候,会生成下面这样一个完整的类:

public class GreetingDelegate:System.MulticastDelegate{

public GreetingDelegate(object @object, IntPtr method);

public virtual IAsyncResult BeginInvoke(string name, AsyncCallback callback, object @object); public virtual void EndInvoke(IAsyncResult result);

public virtual void Invoke(string name);

}

关于这个类的更深入内容,可以参阅《CLR Via C#》等相关书籍,这里就不再讨论了。

委托、事件与Observer设计模式

范例说明

上面的例子已不足以再进行下面的讲解了,我们来看一个新的范例,因为之前已经介绍了很多的内容,所以本节的进度会稍微快一些:

假设我们有个高档的热水器,我们给它通上电,当水温超过95度的时候:1、扬声器会开始发出语音,告诉你水的温度;2、液晶屏也会改变水温的显示,来提示水已经快烧开了。

现在我们需要写个程序来模拟这个烧水的过程,我们将定义一个类来代表热水器,我们管它叫:Heater,它有代表水温的字段,叫做temperature;当然,还有必不可少的给水加热方法BoilWater(),一个发出语音警报的方法MakeAlert(),一个显示水温的方法,ShowMsg()。

namespace Delegate {

class Heater {

private int temperature; // 水温

// 烧水

public void BoilWater() {

for (int i = 0; i <= 100; i++) {

temperature = i;

if (temperature > 95) {

MakeAlert(temperature);

ShowMsg(temperature);

}

}

}

// 发出语音警报

private void MakeAlert(int param) {

Console.WriteLine("Alarm:嘀嘀嘀,水已经{0} 度了:" , param);

}

// 显示水温

private void ShowMsg(int param) {

Console.WriteLine("Display:水快开了,当前温度:{0}度。" , param);

}

}

class Program {

static void Main() {

Heater ht = new Heater();

ht.BoilWater();

}

}

}

Observer设计模式简介

上面的例子显然能完成我们之前描述的工作,但是却并不够好。现在假设热水器由三部分组成:热水器、警报器、显示器,它们来自于不同厂商并进行了组装。那么,应该是热水器仅仅负责烧水,它不能发出警报也不能显示水温;在水烧开时由警报器发出警报、显示器显示提示和水温。

这时候,上面的例子就应该变成这个样子:

// 热水器

public class Heater {

private int temperature;

// 烧水

private void BoilWater() {

for (int i = 0; i <= 100; i++) {

temperature = i;

}

}

}

// 警报器

public class Alarm{

private void MakeAlert(int param) {

Console.WriteLine("Alarm:嘀嘀嘀,水已经{0} 度了:" , param);

}

}

// 显示器

public class Display{

private void ShowMsg(int param) {

Console.WriteLine("Display:水已烧开,当前温度:{0}度。" , param);

}

}

这里就出现了一个问题:如何在水烧开的时候通知报警器和显示器?在继续进行之前,我们先了解一下Observer设计模式,Observer设计模式中主要包括如下两类对象:

Subject:监视对象,它往往包含着其他对象所感兴趣的内容。在本范例中,热水器就是一个监视对象,它包含的其他对象所感兴趣的内容,就是temprature字段,当这个字段的值快到100时,会不断把数据发给监视它的对象。

Observer:监视者,它监视Subject,当Subject中的某件事发生的时候,会告知Observer,而Observer则会采取相应的行动。在本范例中,Observer有警报器和显示器,它们采取的行动分别是发出警报和显示水温。

在本例中,事情发生的顺序应该是这样的:

警报器和显示器告诉热水器,它对它的温度比较感兴趣(注册)。

热水器知道后保留对警报器和显示器的引用。

热水器进行烧水这一动作,当水温超过95度时,通过对警报器和显示器的引用,自动调用警报器的MakeAlert()方法、显示器的ShowMsg()方法。

类似这样的例子是很多的,GOF对它进行了抽象,称为Observer设计模式:Observer设计模式是为了定义对象间的一种一对多的依赖关系,以便于当一个对象的状态改变时,其他依赖于它的对象会被自动告知并更新。Observer模式是一种松耦合的设计模式。

实现范例的Observer设计模式

我们之前已经对委托和事件介绍很多了,现在写代码应该很容易了,现在在这里直接给出代码,并在注释中加以说明。

using System;

using System.Collections.Generic;

using System.Text;

namespace Delegate {

// 热水器

public class Heater {

private int temperature;

public delegate void BoilHandler(int param); //声明委托

public event BoilHandler BoilEvent; //声明事件

// 烧水

public void BoilWater() {

for (int i = 0; i <= 100; i++) {

temperature = i;

if (temperature > 95) {

if (BoilEvent != null) { //如果有对象注册

BoilEvent(temperature); //调用所有注册对象的方法

}

}

}

}

}

// 警报器

public class Alarm {

public void MakeAlert(int param) {

Console.WriteLine("Alarm:嘀嘀嘀,水已经{0} 度了:", param);

}

}

// 显示器

public class Display {

public static void ShowMsg(int param) { //静态方法

Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", param); }

}

class Program {

static void Main() {

Heater heater = new Heater();

Alarm alarm = new Alarm();

heater.BoilEvent += alarm.MakeAlert; //注册方法

heater.BoilEvent += (new Alarm()).MakeAlert; //给匿名对象注册方法

heater.BoilEvent += Display.ShowMsg; //注册静态方法

heater.BoilWater(); //烧水,会自动调用注册过对象的方法

}

}

}

输出为:

Alarm:嘀嘀嘀,水已经96 度了:

Alarm:嘀嘀嘀,水已经96 度了:

Display:水快烧开了,当前温度:96度。

// 省略...

.Net Framework中的委托与事件

尽管上面的范例很好地完成了我们想要完成的工作,但是我们不仅疑惑:为什么.Net Framework 中的事件模型和上面的不同?为什么有很多的EventArgs参数?

在回答上面的问题之前,我们先搞懂.Net Framework的编码规范:

委托类型的名称都应该以EventHandler结束。

委托的原型定义:有一个void返回值,并接受两个输入参数:一个Object 类型,一个EventArgs类型(或继承自EventArgs)。

事件的命名为委托去掉EventHandler之后剩余的部分。

继承自EventArgs的类型应该以EventArgs结尾。

再做一下说明:

委托声明原型中的Object类型的参数代表了Subject,也就是监视对象,在本例中是Heater(热水器)。回调函数(比如Alarm的MakeAlert)可以通过它访问触发事件的对象(Heater)。EventArgs 对象包含了Observer所感兴趣的数据,在本例中是temperature。

上面这些其实不仅仅是为了编码规范而已,这样也使得程序有更大的灵活性。比如说,如果我们不光想获得热水器的温度,还想在Observer端(警报器或者显示器)方法中获得它的生产日期、型号、价格,那么委托和方法的声明都会变得很麻烦,而如果我们将热水器的引用传给警报器的方法,就可以在方法中直接访问热水器了。

现在我们改写之前的范例,让它符合.Net Framework 的规范:

using System;

using System.Collections.Generic;

using System.Text;

namespace Delegate {

// 热水器

public class Heater {

private int temperature;

public string type = "RealFire 001"; // 添加型号作为演示

public string area = "China Xian"; // 添加产地作为演示

//声明委托

public delegate void BoiledEventHandler(Object sender, BoliedEventArgs e); public event BoiledEventHandler Boiled; //声明事件

// 定义BoliedEventArgs类,传递给Observer所感兴趣的信息

public class BoliedEventArgs : EventArgs {

public readonly int temperature;

public BoliedEventArgs(int temperature) {

this.temperature = temperature;

}

}

// 可以供继承自Heater 的类重写,以便继承类拒绝其他对象对它的监视protected virtual void OnBolied(BoliedEventArgs e) {

if (Boiled != null) { // 如果有对象注册

Boiled(this, e); // 调用所有注册对象的方法

}

}

// 烧水。

public void BoilWater() {

for (int i = 0; i <= 100; i++) {

temperature = i;

if (temperature > 95) {

//建立BoliedEventArgs 对象。

BoliedEventArgs e = new BoliedEventArgs(temperature);

OnBolied(e); // 调用OnBolied方法

}

}

}

}

// 警报器

public class Alarm {

public void MakeAlert(Object sender, Heater.BoliedEventArgs e) {

Heater heater = (Heater)sender; //这里是不是很熟悉呢?

//访问sender 中的公共字段

Console.WriteLine("Alarm:{0} - {1}: ", heater.area, heater.type);

Console.WriteLine("Alarm: 嘀嘀嘀,水已经{0} 度了:", e.temperature); Console.WriteLine();

}

}

// 显示器

public class Display {

public static void ShowMsg(Object sender, Heater.BoliedEventArgs e) { //静态方法Heater heater = (Heater)sender;

Console.WriteLine("Display:{0} - {1}: ", heater.area, heater.type);

Console.WriteLine("Display:水快烧开了,当前温度:{0}度。", e.temperature); Console.WriteLine();

}

}

class Program {

static void Main() {

Heater heater = new Heater();

Alarm alarm = new Alarm();

heater.Boiled += alarm.MakeAlert; //注册方法

heater.Boiled += (new Alarm()).MakeAlert; //给匿名对象注册方法

heater.Boiled += new Heater.BoiledEventHandler(alarm.MakeAlert); //也可以这么注册heater.Boiled += Display.ShowMsg; //注册静态方法

heater.BoilWater(); //烧水,会自动调用注册过对象的方法

}

}

}

输出为:

Alarm:China Xian - RealFire 001:

Alarm: 嘀嘀嘀,水已经96 度了:

Alarm:China Xian - RealFire 001:

Alarm: 嘀嘀嘀,水已经96 度了:

Alarm:China Xian - RealFire 001:

Alarm: 嘀嘀嘀,水已经96 度了:

Display:China Xian - RealFire 001:

Display:水快烧开了,当前温度:96度。

// 省略...

总结

在本文中我首先通过一个GreetingPeople的小程序向大家介绍了委托的概念、委托用来做什么,随后又引出了事件,接着对委托与事件所产生的中间代码做了粗略的讲述。

在第二个稍微复杂点的热水器的范例中,我向大家简要介绍了Observer设计模式,并通过实现这个范例完成了该模式,随后讲述了.Net Framework中委托、事件的实现方式。

一、委托的简介

1、委托的声明:

delegate HandlerName ([parameters])

例如:

public delegate void PrintHandler(string str);

委托声明定义了一种类型,它用一组特定的参数以及返回类型来封装方法。对于静态方法,委托对象封装要调用的方法。对于实例方法,委托对象同时封装一个实例和该实例上的一个方法。如果您有一个委托对象和一组适当的参数,则可以用这些参数调用该委托。

2、委托的使用:

using System;

public class MyClass

{

public static void Main()

{

PrintStr myPrinter = new PrintStr();

PrintHandler myHandler = null;

myHandler += new PrintHandler(myPrinter.CallPrint); // 将委托链接到方法,来实例化委托

if(myHandler!=null)

myHandler("Hello World!"); // 调用委托,相当于匿名调用委托所链接的方法

Console.Read();

}

}

public delegate void PrintHandler(string str); // 声明委托类型

public class PrintStr

{

public void CallPrint(string input)

{

Console.WriteLine(input);

}

}

在C#中使用委托方法:

·创建委托所使用的方法必须和委托声明相一致(参数列表、返回值都一致)

·利用+=、-=来进行委托的链接、取消链接或直接使用https://www.doczj.com/doc/9912348463.html,bine和

Delegate.Remove方法来实现

·可以使用MulticastDelegate的实例方法GetInvocationList()来获取委托链中所有的委托

·不能撰写包含out 参数的委托

二、事件的简介

C# 中的“事件”是当对象发生某些事情时,类向该类的客户提供通知的一种方法。

1、事件的声明:

声明的格式为: event EventName

因为使用委托来声明事件,所以在类里声明事件时,首先必须先声明该事件的委托类型(如果尚未声明的话)。在上面我们已经提到过了委托类型的声明,但是在.net framework下为事件使用的委托类型进行声明时有更严格的规定:

(1)、事件的委托类型应采用两个参数;

(2)、两个参数分别是:指示事件源的“对象源”参数和封装事件的其他任何相关信息的“e”参数;

(3)、“e”参数的类型应为EventArgs 类或派生自EventArgs 类。

如下的定义:

public delegate void PrintHandler(object sender,System.EventArgs e);

然后我们才能声明该委托类型的事件

例如:

public event PrintHandler Print;

当事件发生时,将调用其客户提供给它的委托。

C#委托及事件

C#委托及事件 在C#中,委托(delegate)是一种引用类型,在其他语言中,与委托最接近的是函数指针,但委托不仅存储对方法入口点的引用,还存储对用于调用方法的对象实例的引用。 简单的讲委托(delegate)是一种类型安全的函数指针,首先,看下面的示例程序,在C++中使用函数指针。 首先,存在两个方法:分别用于求两个数的最大值和最小值。 int Max(int x,int y) { return x>yx:y; } int Min(int x,int y) { return x } 上面两个函数的特点是:函数的返回值类型及参数列表都一样。那么,我们可以使用函数指针来指代这两个函数,并且可以将具体的指代过程交给用户,这样,可以减少用户判断的次数。 下面我们可以建立一个函数指针,将指向任意一个方法,代码如下所示: 建立一个委托类型,并声明该委托可以指向的方法的签名(函数原型)delegate void MyDelegate(int a,int b); 2.建立一个委托类的实例,并指向要调用的方法 用委托类实例调用所指向的方法 int c=md(4,5); 下面通过实例来演示C#中委托的使用。

案例操作020601:利用委托实现方法的 动态调用 首先,添加如下控件: 两个RadioButton,分别用来让用户选 择求最大值以及求最小值 二个TextBox,用来输入两个操作数 一个TextBox,用来显示运算结果 一个Button,用来执行运算 界面如下图所示: 下一步,在窗口中添加两个方法:Max,Min,这两方法的代码如下: int Max(int x,int y) { return x>yx:y; } int Min(int x,int y) { return x } 窗口中的代码,如下图所示:

C#委托事件详解

C# 中的委托和事件 引言 委托和事件在 .Net Framework中的应用非常广泛,然而,较好地理解委托和事件对很多接触C#时间不长的人来说并不容易。它们就像是一道槛儿,过了这个槛的人,觉得真是太容易了,而没有过去的人每次见到委托和事件就觉得心里别(biè)得慌,混身不自在。本文中,我将通过两个范例由浅入深地讲述什么是委托、为什么要使用委托、事件的由来、.Net Framework中的委托和事件、委托和事件对Observer设计模式的意义,对它们的中间代码也做了讨论。 将方法作为方法的参数 我们先不管这个标题如何的绕口,也不管委托究竟是个什么东西,来看下面这两个最简单的方法,它们不过是在屏幕上输出一句问候的话语: public void GreetPeople(string name) { // 做某些额外的事情,比如初始化之类,此处略 EnglishGreeting(name); } public void EnglishGreeting(string name) { Console.WriteLine("Morning, " + name); } 暂且不管这两个方法有没有什么实际意义。GreetPeople用于向某人问好,当我们传递代表某人姓名的name参数,比如说“Jimmy”,进去的时候,在这个方法中,将调用EnglishGreeting方法,再次传递name参数,EnglishGreeting则用于向屏幕输出“Morning, Jimmy”。

现在假设这个程序需要进行全球化,哎呀,不好了,我是中国人,我不明白“Morning”是什么意思,怎么办呢?好吧,我们再加个中文版的问候方法: public void ChineseGreeting(string name){ Console.WriteLine("早上好, " + name); } 这时候,GreetPeople也需要改一改了,不然如何判断到底用哪个版本的Greeting问候方法合适呢?在进行这个之前,我们最好再定义一个枚举作为判断的依据: public enum Language{ English, Chinese } public void GreetPeople(string name, Language lang){ //做某些额外的事情,比如初始化之类,此处略 swith(lang){ case Language.English: EnglishGreeting(name); break; case Language.Chinese: ChineseGreeting(name); break; } } OK,尽管这样解决了问题,但我不说大家也很容易想到,这个解决方案的可扩展性很差,如果日后我们需要再添加韩文版、日文版,就不得不反复修改枚举和GreetPeople()方法,以适应新的需求。 在考虑新的解决方案之前,我们先看看 GreetPeople的方法签名:

仲恺软件设计模式实验指导书

设计模式实验指导 一、实验目的 使用合理的UML建模工具(ROSE或者Visio)和任意一种面向对象编程语言实现几种常用的设计模式,加深对这些模式的理解,包括简单工厂模式、工厂方法模 式、抽象工厂模式、单例模式、适配器模式、组合模式、装饰模式、外观模式、、命令模式、迭代器模式、观察者模式、策略模式等12种模式。 二、实验内容 根据以下的文档描述要求,使用合理的UML建模工具(ROSE或者Visio)和任意一种面向对象编程语言实现以下设计模式,包括根据实例绘制相应的模式结构图、编写模式实现代码,运行并测试模式实例代码。 (1)、简单工厂模式 使用简单工厂模式模拟女娲(Nvwa)造人(Person),如果传入参数M,则返回一个Man对象,如果传入参数W,则返回一个Woman对象,请实现该场景。现需要增加一个新的Robot类,如果传入参数R,则返回一个Robot对象,对代码进 行修改并注意女娲的变化。 (2)、工厂方法模式 海尔工厂(Haier)生产海尔空调(HaierAirCondition),美的工厂(Midea)生产美的空调(MideaAirCondition) 。使用工厂方法模式描述该场景,绘制类图并编程实现。 (3)、抽象工程模式 电脑配件生产工厂生产内存、CPU等硬件设备,这些内存、CPU的品牌、型号并不一定相同,根据下面的“产品等级结构-产品族”示意图,使用抽象工厂模式实现电脑配件生产过程并绘制相应的类图,绘制类图并编程实现。

(4)、单例模式 用懒汉式单例实现在某系统运行时,其登录界面类LoginForm只能够弹出一个,如果第二次实例化该类则提示“程序已运行”。绘制类图并编程实现。 提示:不要求做界面,用类模拟界面就可以了。 (5)、组合模式 使用组合模式设计一个杀毒软件(AntiVirus)的框架,该软件既可以对某个文件夹(Folder)杀毒,也可以对某个指定的文件(File)进行杀毒,文件种类包括文本文件TextFile、图片文件ImageFile、音频视频文件MediaFile。绘制类图并编程实现。 (6)、适配器模式 现有一个接口DataOperation定义了排序方法sort(int[]) 和查找方法search(int[], int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法,类BinarySearch 的binarySearch(int[], int)方法实现了二分查找算法。现使用适配器模式设计一个系统,在不修改源代码的情况下将类QuickSort和类BinarySearch的方法适配到DataOperation接口中。绘制类图并编程实现。(要求实现快速排序和二分查找) (7)、装饰模式 某图书管理系统中,书籍类(Book)具有借书方法borrowBook()和还书方法returnBook() 。现需要动态给书籍对象添加冻结方法freeze()和遗失方法lose()。使用装饰模式设计该系统,绘制类图并编程实现。 (8)、外观模式 在电脑主机(Mainframe)中,只需要按下主机的开机按钮(on()),即可调用其他硬

唯一看明白额委托与事件讲解

一、在控制台下使用委托和事件 我们都知道,C#中有“接口”这个概念,所谓的“接口”就是定义一套标准,然后由实现类来具体实现其中的方法,所以说“接口,是一组类的抽象”。同样道理,我们可以将“委托”理解为“方法的抽象”,也就是说定义一个方法的模板,至于这个方法具体是怎么样的,就由方法自己去实现。 我们知道接口的最大好处就是可以实现多态,同理,“委托”是可以实现方法的多态,当我们想调用某个具体方法的时候,我们不直接调用这个方法,而是去调用这个委托。当然,我们必须在具体方法和委托之间建立某种关联。 下面我们来看例子。 首先,我们定义一个委托: public delegate void SaySomething(string name); 这跟抽象方法的语法格式很相似,只是多了一个关键字delegate。既然是对方法的一种抽象,那么我们最关注的当然就是方法的返回值以及方法的参数了。所以上面红色的部分就是我们定义出来的一个规矩,如果某个方法想委托我去做事,那么请你遵循我的规矩,就是返回值为void,参数为一个字符串。我们这个委托的含义是,当某个人来了,就向他说点东西。 好,既然我们已经定义了这个规矩,下面我们就定义具体的方法了。 public void SayHello(string name) { Console.WriteLine("Hello," + name + "!"); } public void SayNiceToMeetYou(string name) { Console.WriteLine("Nice to meet you," + name + "!"); } 我们这里一共定义了两个方法,一个是向某人说Hello,另一个是向某人说Nice to meet you。我们看到,这里定义的两个方法的返回值和参数跟我们前面定义的“委托”是一致的。 接下来,我们来看事件。 public event SaySomething come;

模式总结

设计模式总结 一、创建型模式 简单工厂 简单工厂最大优点在于工厂类中包含了必要的逻辑判断(switch),根据客户端的选择条件动态实例化相关的类,对于客户端来说,去除了与具体产品的依赖。 工厂方法 工厂方法模式(Factory Method),定义一个用于创建对象的接口,让子类决定实例化哪一个类。工厂方法使一个类的实例化延迟到其子类。 工厂方法模式实现时,客户端要觉定实例化哪一个工厂来实现运算类,选择判断的问题还是存在的,也就是说,工厂方法把简单工厂的内部逻辑判断移到了客户端代码来进行。你想要加功能,本来是改工厂类的,而现在时修改客户端。 抽象工厂 抽象工程模式(Abstract Factory),提供一个创建一系列相关或相互依赖对象的接口,而无需制定它们具体的类。 原型模式 原型模式(Prototype),用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。 原型模式其实就是从一个对象再创建另外一个可定制的对象,而且不需要知道任何创建的细节。(拷贝对象的引用地址《浅表副本》)。.NET在System命名空间中提供了ICloneable接口(里面唯一的方法Clone()),只要实现这个接口就可以完成原型模式。 建造者模式 建造者模式(Builder),将一个复杂对象的构造过程与它的表示分离,使得同样的构造过程可以创建不同的表示。

如果使用建造者模式,那么用户就只需建造的类型就可以得到它们,而具体建造的过程和细节就不需要知道了。——抽象不应该依赖细节,细节应该依赖于抽象。建造者模式主要用于创建一些复杂的对象,这些对象内部构建间的建造顺序通常是稳定的,但对象内部的构建通常面临着复杂的变化。 单例模式 单例模式(Singleton),保证一个类仅有一个实例,并提供一个访问它的全局访问点。 二、行为型模式 观察者模式 观察者模式(Observer),定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象。这个主题对象在状态发生改变时,会通知所有观察者对象,使它们能自动更新自己。 当一个对象的改变需要同时改变其他对象的时候,而且他不知道具体有多少对象有待改变,应该考虑使用观察者模式。观察者模式所做的工作其实就是在解除耦合,让耦合的双方都依赖于抽象,而不依赖于具体,从而使得各自的变化都不会影响另一边的变化。 模板方法模式 模板方法模式(TemplateMethod),定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以不改变一个算法的结构可重复定义该算法的某些特定的步骤。 模板方法模式是通过把不变行为搬移到超类,去除子类中德重复代码来体现它的优势。模板方法模式就是提供了一个很好的代码复用平台。 状态模式 状态模式(State),当一个对象的内在状态发生改变时允许改变其行为,这个对象看起来像是改变了其类。

委托事件1

委托 定义委托的语法和定义方法比较相似,只是比方法多了一个关键字delegate,我们都知道方法就是将类型参数化,所谓的类型参数化就是说该方法接受一个参数,而该参数是某种类型的参数,比如int、string等等;而委托是将方法参数化,说了上面的那个类型参数化之后,相信你也能猜到方法参数化的意思了,对,就是将方法作为一个参数传到一个委托中。 首先来看看声明委托的语句: public deletate void MyDelegate(); public:访问修饰符delegate:关键字void:返回类型MyDelegate:委托名称( ):参数列表 看到声明大家会想了,为什么该委托的返回值,参数列表要这样的,我不能返回一个string,一个int么?我不能给委托加几个参数么?答案是:当然可以,但委托的定义是相对于方法来说的,因为得你的委托最终是要来注册方法的,而你的方法是具有某种签名的,所以你要给怎样签名的方法来声明一个委托,该委托就要和该方法具有同等的签名,就类似于你用一个int 类型的变量去接受一个string类型的值,显然是不行的(个人理解).... * 委托只要定义就可以了,我们并不需要关心他的实现 委托的使用 注册委托有两种方法: 第一种:直接将方法赋值[=]或者用“+=”给一个委托==>委托名=[+=] 方法名 第二种:委托本质也是一个类,只是一个特殊的类,所以我们也可以实例化一个委托对象通过委托构造函数来注册委托==》委托名对象名= new 委托名(方法名)

了解了委托的声明和使用,我们就可以来看小例子来加深理解了 首先看看界面: 界面上就是简单的四个按钮两个属于委托,两个属于事件,都是一个用来执行,一个用来干扰,以便于来理解委托事件 然后看后台代码,首先我定义了一个Test类,声明委托,实例了委托,还声明了事件,写了个方法用来触发事件,代码如下: 1public class Test 2 { 3//声明一个委托 4public delegate void MyDelegate(); 5 6//创建一个委托实例 7public MyDelegate myDel; 8//声明一个事件 9public event MyDelegate EventMyDel; 10 11//事件触发机制(必须和事件在同一个类中) 外界无法直接用EventMyDel()来触发事件 12public void DoEventMyDel() 13 { 14 EventMyDel(); 15 } 16 }

设计模式实验三

CENTRAL SOUTH UNIVERSITY 《软件体系结构》实验报告 实验名称设计模式实验二 学生姓名 学生学号XXX 专业班级软件工程1007班 指导教师刘伟 完成时间2012年12月25日

实验三设计模式实验二 一、实验目的 熟练使用PowerDesigner和任意一种面向对象编程语言实现几种常见的设计模式,包括外观模式、代理模式、职责链模式、命令模式、迭代器模式、观察者模式、策略模式和模板方法模式,理解每一种设计模式的模式动机,掌握模式结构,学习如何使用代码实现这些模式,并学会分析这些模式的使用效果。 二、实验内容 使用PowerDesigner和任意一种面向对象编程语言实现外观模式、代理模式、职责链模式、命令模式、迭代器模式、观察者模式、策略模式和模板方法模式,包括根据实例绘制模式结构图、编写模式实例实现代码,运行并测试模式实例代码。 (1) 外观模式 某软件公司为新开发的智能手机控制与管理软件提供了一键备份功能,通过该功能可以将原本存储在手机中的通信录、短信、照片、歌曲等资料一次性全部拷贝到移动存储介质(例如MMC卡或SD卡)中。在实现过程中需要与多个已有的类进行交互,例如通讯录管理类、短信管理类等,为了降低系统的耦合度,试使用外观模式来设计并编程模拟实现该一键备份功能。 (2) 代理模式 在某应用软件中需要记录业务方法的调用日志,在不修改现有业务类的基础上为每一个类提供一个日志记录代理类,在代理类中输出日志,如在业务方法method()调用之前输出“方法method()被调用,调用时间为2010-10-10 10:10:10”,调用之后如果没有抛异常则输出“方法method()成功调用”,否则输出“方法method()调用失败”。在代理类中调用真实业务类的业务方法,使用代理模式设计该日志记录功能的结构,绘制类图并编程模拟实现。 (3) 职责链模式 某企业的SCM(Supply Chain Management,供应链管理)系统中包含一个采购审批子系统。该企业的采购审批是分级进行的,即根据采购金额的不同由不同层次的主管人员来审批,主任可以审批5万元以下(不包括5万元)的采购单,副董事长可以审批5万元至10万元(不包括10万元)的采购单,董事长可以审批10万元至50万元(不包括50万元)的采购单,50万元及以上的采购单就需要开董事会讨论决定。试使用职责链模式设计并实现该系统。 (4) 命令模式 某软件公司欲开发一个基于Windows平台的公告板系统。系统提供一个主菜单(Menu),在主菜单中包含了一些菜单项(MenuItem),可以通过Menu类的addMenuItem()方法增加菜单项。菜单项的主要方法是click(),每一个菜单项包含一个抽象命令类,具体命令类包括

委托与事件 机制

Button1.Click+=new EventHandler(Button1_Click);-----------------@1 大家都熟悉的一段代码,Button1.Click是事件(也可以说是一条委托链),EventHandler 是委托,Button1_Click是订阅事件的人,也可以说是委托的人。 通过这样的机制,一个事件可以有多个订阅者,从而可以实现点击button可以响应多个方法。委托,顾名思义,委托给别人。 事件,“发布者/订阅者” 模式,发布者发布一个事件,订阅者订阅这个事件,当事件触发时,就会通知订阅者。通知这个过程是通过委托来实现的。 大家想象一下这个情景,经理有一个项目,计划A君负责美工方面,B君负责程序方面,将项目一分为二;于是一天,在用餐的时候告诉他们这个计划。 发布者:经理---------@2 订阅者订阅这个事件原因:A,B君是经理的部下 -------------@3 事件:经理分配了A,B一个项目-------------@4 触发事件的原因:经理有个计划----------------@5 通知方式(委托):”在用餐的时候告诉“方式----------------@6 public delegate void OneThing(object sender, CustomEventArgs e);定义一个委托,返回值为空,委托名OneThing,相当于@1中的EventHandler,有两个参数分别为触发事件的对象和事件信息。 Custom EventArgs必须继承于EventArgs public class CustomEventArgs : EventArgs

设计模式上机实验二实验报告

设计模式实验二 实验报告书 专业班级软件0703 学号24 姓名吉亚云 指导老师刘伟 时间2010年4月24日 中南大学软件学院

实验二设计模式上机实验二 一、实验目的 使用PowerDesigner和任意一种面向对象编程语言实现几种常用的设计模式,加深对这些模式的理解,包括装饰模式、外观模式、代理模式、职责链模式、命令模式、迭代器模式、观察者模式、状态模式、策略模式和模板方法模式。 二、实验内容 使用PowerDesigner和任意一种面向对象编程语言实现装饰模式、外观模式、代理模式、职责链模式、命令模式、迭代器模式、观察者模式、状态模式、策略模式和模板方法模式,包括根据实例绘制相应的模式结构图、编写模式实现代码,运行并测试模式实例代码。 三、实验要求 1. 正确无误绘制装饰模式、外观模式、代理模式、职责链模式、命令模式、迭代器模式、观察者模式、状态模式、策略模式和模板方法模式的模式结构图; 2. 使用任意一种面向对象编程语言实现装饰模式、外观模式、代理模式、职责链模式、命令模式、迭代器模式、观察者模式、状态模式、策略模式和模板方法模式,代码运行正确无误。 四、实验步骤 1. 使用PowerDesigner绘制装饰模式结构图并用面向对象编程语言实现该模式; 2. 使用PowerDesigner绘制外观模式结构图并用面向对象编程语言实现该模式; 3. 使用PowerDesigner绘制代理模式结构图并用面向对象编程语言实现该模式; 4. 使用PowerDesigner绘制职责链模式结构图并用面向对象编程语言实现该模式; 5. 使用PowerDesigner绘制命令模式结构图并用面向对象编程语言实现该模式; 6. 使用PowerDesigner绘制迭代器模式结构图并用面向对象编程语言实现该模式; 7. 使用PowerDesigner绘制观察者模式结构图并用面向对象编程语言实现该模式; 8. 使用PowerDesigner绘制状态模式结构图并用面向对象编程语言实现该模式; 9. 使用PowerDesigner绘制策略模式结构图并用面向对象编程语言实现该模式; 10. 使用PowerDesigner绘制模板方法模式结构图并用面向对象编程语言实现该模式。 五、实验报告要求 1. 提供装饰模式结构图及实现代码; 2. 提供外观模式结构图及实现代码; 3. 提供代理模式结构图及实现代码; 4. 提供职责链模式结构图及实现代码;

论C#中的委托与事件

论C#中的委托与事件 在C#里,委托与事件类是两个不易理解的概念。主要阐述对委托与事件的理解,同时结合Observer设计模式与.NET Framework规范,针对生活中的案例来辨析委托与事件的应用。 标签:委托;事件Observer设计模式;.NET Framework C#中的委托类似于C++中的函数指针,功能却更多。事件是在委托的基础上的一种结构,类似于委托的变量,在界面的控件中处处都有应用。 1 什么是委托 委托的申明格式:修饰符delegate 返回值数据类型委托名(形参列表)。 例如:Delegate int AbcDel(string s, bool b);是一个委托申明,每一个委托都有自己的签名,就是说AbcDel这个委托有string 和bool类型的形参,返回一个int类型数据,即具有这样的函数签名。委托类似于函数指针,它能够引用函数,通过传递地址的机制完成。委托是一个类,当对它实例化时,要提供一个引用函数,将其作为它构造函数的参数。例如:private int AbcFun (string str, bool bln){},则可以把这个函数传给AbcDel的构造函数,因为它们签名一致。AbcDel sd = new SomeDelegate(AbcFun),sd 引用了AbcFun,也就是说,AbcFun已被sd所登记注册,如果你调用sd,AbcFun这个函数即会被调用。 2 事件的理解 事件的申明格式:修饰符event 委托名事件名; 例如:public event AbcDel Boil;//AbcDel为委托名 Boil事件的声明与之前委托变量sd的声明唯一的区别是多了event关键字。声明事件类似于声明一个委托类型的变量。 3 Observer设计模式 假设热水器系统由两部分组成:热水器、警报器,由不同厂商进行了组装。热水器仅负责烧水;警报器在水烧开时发出警报,当水温超过95度,就发出警报。我们需要应用委托与事件来模拟此过程。 Observer设计模式是为了定义对象间的一种一对多的依赖关系,以便于当一个对象的状态改变时,其他依赖于它的对象会被自动告知并更新。Observer模式是一种松耦合的设计模式。它包括两类对象:

Windows实验报告

华北电力大学 实验报告 | | 实验名称验证性试验、设计性试验 课程名称Windows体系及编程 | | 专业班级:计科0803 学生:董世令 学号:2 成绩: 指导教师:王新颖实验日期:2011.4.8进程管理实验 一、实验目的 理解Windows编程环境下的进程管理机制,能创建一个完成特定功能的进程,并能对进程进行信息的获取、终止和保护。

二、实验要求 1.编写一段程序,能够完成创建进程的功能,要求启动windows记事本程序 (notepad.exe),同时打开一个文本文件,路径为:c:\system\user.log 。并打 印出新建进程ID。 2.获取当前系统进程信息,打印输出进程名称和ID号。 3.终止新创建的进程并获取退出代码。 三、实验原理 (1)进程的创建 进程的创建通过CreateProcess()函数来实现,CreateProcess()通过创建一个新的进程及在其地址空间运行的主线程来启动并运行一个新的程序。具体地,在执行CreateProcess()函数时,首先由操作系统负责创建一个进程核对象,初始化计数为1,并立即为新进程创建一块虚拟地址空间。随后将可执行文件或其他任何必要的动态库文件的代码和数据装载到该地址空间中。在创建主线程时,也是首先由系统负责创建一个线程核对象,并初始化为1。最后启动主线程并执行进程的入口函数WinMain(),完成对进程和执行线程的创建。 CreateProcess()函数的原型声明如下: BOOL CreateProcess( LPCTSTR lpApplicationName, // 可执行模块名 LPTSTR lpCommandLine, // 命令行字符串 LPSECURITY_ATTRIBUTES lpProcessAttributes, // 进程的安全属性 LPSECURITY_ATTRIBUTES lpThreadAttributes, // 线程的安全属性 BOOL bInheritHandles, // 句柄继承标志 DWORD dwCreationFlags, // 创建标志 LPVOID lpEnvironment, // 指向新的环境块的指针 LPCTSTR lpCurrentDirectory, // 指向当前目录名的指针 LPSTARTUPINFO lpStartupInfo, // 指向启动信息结构的指针LPPROCESS_INFORMATION lpProcessInformation // 指向进程信息结构的指针); (2)进程的获取 进程的定义是为执行程序指令的线程而保留的一系列资源的集合。进程是一个可执行的程序,由私有虚拟地址空间、代码、数据和其他操作系统资源(如进程创建的文件、管道、同步对象等)组成。进程是一些所有权的集合,一个进程拥有存、CPU运行时间等一系列资源,为线程的运行提供一个环境,每个进程都有它自己的地址空间和动态分配的存、线程、文件和其他一些模块。 系统快照的获取可以通过Win32 API函数CreateToolhelp32Snapshot()来完成,通过该函数不仅可以获取进程的快照,同样可以获取堆、模块和线程的系统快照。函数的声明如下: HANDLE WINAPI CreateToolhelp32Snapshot(

23种模式详解

总体来说设计模式分为三大类: 创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。 行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。 其实还有两类:并发型模式和线程池模式。用一个图片来整体描述一下: 二、设计模式的六大原则 1、开闭原则(Open Close Principle)

开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。 2、里氏代换原则(Liskov Substitution Principle) 里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。—— From Baidu 百科 3、依赖倒转原则(Dependence Inversion Principle) 这个是开闭原则的基础,具体内容:真对接口编程,依赖于抽象而不依赖于具体。 4、接口隔离原则(Interface Segregation Principle) 这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。 5、迪米特法则(最少知道原则)(Demeter Principle) 为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。 6、合成复用原则(Composite Reuse Principle) 原则是尽量使用合成/聚合的方式,而不是使用继承。 三、Java的23中设计模式 从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。 1、工厂方法模式(Factory Method) 工厂方法模式分为三种:

unity3D学习之委托、事件全解析(二)

废话就不多说了,直接进入今天的主题-事件在我们所接触到的事件一般分两种:一种是自定义的,自定义的事件需要自己对其进行赋值。 一种是控件提供方定义的,如:ngui,控件事件只需要查找控件定义的事件列表,选择所需要的进行操作即可。 当然,我们的话题是上面第一种啦。 实例模拟场景为:文章来自【狗刨学习网】 游戏战斗中,猪脚在指定的一片区域中,存在4只怪物,他的目的就是一只一只找到并消灭该区域的怪物。 简易流程:查询目标->行走->攻击,依次循环 ok,在此,我用代码快速模拟这样一个情景,建立一个Hero类,如下: using UnityEngine; using System.Collections; using System.Collections.Generic; using System;

// 英雄角色 public class Hero : MonoBehaviour { //当前目标id public int TargetID=0; public List ListMonster; void Start() { InvokeRepeating("selectTarget", 0.3f, 0.3f); } // 查询目标 private void selectTarget() { if (TargetID==0) { if (ListMonster.Count > 0) { for (int i = 0; i <= ListMonster.Count; i++) { TargetID = ListMonster[i];[/i] WalkToTarget(TargetID);

北京信息科技大学Java语言程序设计-GUI

【实验名称】实验 5 Java GUI 【实验目的】 1、学习和掌握 Java常用的 GUI组件。 2、学习和掌握 Java常用的布局管理器。 3、实习和掌握 Java的事件驱动程序设计方法。 4、能够实现简单的 Java GUI 。 【实验步骤(解题过程)】 1、第一步, Java GUI 静态界面的设计和实现,包括:组件和组件的摆放(布 局管理器)。 2、第二步, Java GUI 动态事件处理的设计与实现,需要Java事件驱动模型。 3、第三步,如果需要实体类支持,则按实验2的步骤实现实体类并使用。 【实验内容】 1、(移动小球)编写一个程序,在面板上移动小球。定义一个面板类来显示小球,并提供想做、向右、向上和向下移动小球的方法。 说明:⑴程序来源编程练习 16.3 (P456)。⑵可以不考虑小 球移动到边界外的情况。 【实验预习】 1.问题描述:创建一个界面,通过鼠标点击按钮实现小球的上下左右移动。 2.输入;鼠标点击按钮;处理:通过事件监听,实现圆的重画;输出;显示出 移动效果。 3.技术支持;需要用到事件监听,及圆的绘制即图形知识,布局管理器等。 【附编程代码】 import javax.swing.JButton; import javax.swing.JFrame; import javax.swing.JPanel; import javax.swing.*; import java.awt.*; import java.awt.event.*; public class MovingBall extends JFrame { private static JButton bleft=new JButton("向左"); private static JButton bright=new JButton("向右"); private static JButton bup=new JButton("向上"); private static JButton bdown=new JButton("向下"); private CirclePanel canvas = new CirclePanel(); public MovingBall() { JPanel panel = new JPanel(); //将按钮放入面板中 panel.add(bleft); panel.add(bright); panel.add(bup); panel.add(bdown); this.add(canvas, BorderLayout.CENTER); //将含有圆的面板放在中央this.add(panel, BorderLayout.SOUTH); //将含有按钮的面板放在右边 //创建按钮的监听器并注册到按钮 bleft.addActionListener(new Listener());

你可能不知道的陷阱:C#委托和事件的困惑

你可能不知道的陷阱:C#委托和事件的困惑 . 问题引入 通常,一个C 语言学习者登堂入室的标志就是学会使用了指针,而成为高手的标志又是“玩转指针”。指针是如此奇妙,通过一个地址,可以指向一个数,结构体,对象,甚至函数。最后的一种函数,我们称之为“函数指针”(和“指针函数”可不一样!)就像如下的代码: 1 2 3 int func(int x); /* 声明一个函数 */ int (*f) (int x); /* 声明一个函数指针 */ f=func; /* 将func 函数的首地址赋给指针f */ C 语言因为函数指针获得了极强的动态性,因为你可以通过给函数指针赋值并动态改变其行为,我曾在单片机上写的一个小系统中,任务调度机制玩的就是函数指针。 在.NET 时代,函数指针有了更安全更优雅的包装,就是委托。而事件,则是为了限制委托灵活性引入的新“委托”(之所以为什么限制,后面会谈到)。同样,熟练掌握委托和事件,也是C#登堂入室的标志。有了事件,大大简化了编程,类库变得前所未有的开放,消息传递变得更加简单,任何熟悉事件的人一定都深有体会。 但你也知道,指针强大,高性能,带来的就是危险,你不知道这个指针是否安全,出了问题,非常难于调试。事件和委托这么好,可是当你写了很多代码,完成大型系统时,心里是不是总觉得怪怪的?有当年使用指针时类似的感觉? 如果是的话,请看如下的问题: 1. 若多次添加同一个事件处理函数时,触发时处理函数是否也会多次触发? 2. 若添加了一个事件处理函数,却执行了两次或多次”取消事件“,是否会报错? 3. 如何认定两个事件处理函数是一样的? 如果是匿名函数呢? 4. 如果不手动删除事件函数,系统会帮我们回收吗? 5. 在多线程环境下,挂接事件时和对象创建所在的线程不同,那事件处理函数中的代码将在哪个线程中执行? 6. 当代码的层次复杂时,开放委托和事件是不是会带来更大的麻烦? 列下这些问题,下面就让我们讨论这些”尖酸刻薄“的问题。 二. 事件订阅和取消问题 我们考虑一个典型的例子:加热器,加热器内部加热,在达到温度后通知外界”加热已经完成“。 尝试写下如下测试类:

(完整版)软件设计架构试卷

一、选择题(每题2分,共24分) 1.以下关于构造函数的说法,其中错误的是( B ) A.构造函数的函数名必须与类名相同 B.构造函数可以指定返回类型 C.构造函数可以带有参数 D.构造函数可以重载 2.类的构造函数是在( B )调用的。 A. 类创建时 B. 创建对象时 C. 删除对象时 D. 不自动调用 3.在以下关于方法重载的说法,其中错误的是( D ) A.方法可以通过指定不同的返回值类型实现重载 B.方法可以通过指定不同的参数个数实现重载 C.方法可以通过指定不同的参数类型实现重载 D.方法可以通过指定不同的参数顺序实现重载 4.在定义类时,如果希望类的某个方法能够在派生类中进一步进行改进,以处理不同的派生类的需要,则应该将该方法声明为( D ) A.sealed B.public C.virtual D.override 5.( D )表示了对象间的is-a的关系。 A. 组合 B. 引用 C. 聚合 D. 继承 6.关于单一职责原则,以下叙述错误的是( C )。 A.一个类只负责一个功能领域中的相应职责 B.就一个类而言,应该有且权有一个引起它变化的原因 C.一个类承担的职责越多,越容易复用,被复用的可能性越大 D.一个类承担的职责过多时需要将职责进行分离,将不同的职责封装在不同的类中 7.某系统通过使用配置文件,可以在不修改源代码的情况下更换数据库驱动程序,该系统满足( B ) A. 里氏代换原则 B. 接口隔离原则 C. 单一职责原则 D. 开闭原则 8.一个软件实体应尽可能少地与其他软件实体发生相互作用,这样,当一个模块修改时,就会尽量少的影响其他模块,扩展会相对容易。这是( A )的定义。 A. 迪米特法则 B. 接口隔离原则 C. 里氏代换原则 D. 合成复用原则 9.当我们想创建一个具体的对象而又不希望指定具体的类时,可以使用( A )模式。 A.创建型 B.结构型 C行为型 D.以上都可以 10.在观察者模式中,表述错误的是( C )

AN-ION-1-3400 CANoe J1939用于系统仿真的原因

CANoe J1939用于系统仿真的原因 1.0 概述 最近几年,全世界的汽车总线网络开发都使用了一种功能强大的仿真分析工具,Vector公司的CANoe。J1939的用户现在也能通过CANoe而受益于汽车工业的开发经验。 CANoe.J1939对J1939系统而言给用户提供了一个功能强大的仿真和开发环境。在J1939的设计阶段,开发者可以通过CANoe.J1939来仿真剩余总线的网络行为,并通过观测总线负载从而决定正要进行开发的硬件系统应该满足的基本要求。CANoe.J1939可以容易地完全仿真一个总线系统,在该过程中还能得到对J1939协议的完全支持。因此,CANoe.J1939的应用使得在整个J1939的项目过程中不仅缩短了时间还节约了成本。 CANerator J1939是Vector公司所提供的J1939网络配置工具,该软件集成于CANoe J1939中。CANerator J1939可以用来创建一个工程,该工程用于将要被仿真的J1939系统。CANerator为每一个仿真的设备产生CANoe数据库和设备模型。由于给定了所有与通讯相关的参数,设备模型就能代替所有的总线通讯。该过程不需要用户写一些用于通讯仿真的代码,因为这些代码是自动生成的。基于回调函数和环境变量灵活的数据接口,用户可以集中精力编写应用程序。对于某些外部影响的仿真和可视化,例如输入/输出值、温度、增量编码信号等,可以通过操作面板来实现。同时,仿真过程中产生的模型可以被真实的J1939设备逐步取代。然后每一个真实设备可以同现有的设备(模型)进行实时仿真。该过程可以称为残余总线仿真。在开发的最后阶段,当所有的设备都是真实的时候,CANoe J1939此时提供给J1939系统分析的功能。

设计模式考试复习题(含答案)14542

一、1. 设计模式一般用来解决什么样的问题: A.同一问题的不同表相 2. 下列属于面向对象基本原则的是: C.里氏代换 3. Open-Close原则的含义是一个软件实体:A.应当对扩展开放,对修改关闭. 4. 当我们想创建一个具体的对象而又不希望指定具体的类时,使用(A)模式。A.创建型 5. 要依赖于抽象不要依赖于具体。即针对接口编程不要针对实现编程:(D)依赖倒转原则 6. 依据设计模式思想,程序开发中应优先使用的是( A )关系实现复用。A, 委派 7. 设计模式的两大主题是( D ) D.系统复用与系统扩展 8. 单体模式中,两个基本要点(AB)和单体类自己提供单例A .构造函数私有 B.唯一实例 9. 下列模式中,属于行为模式的是( B ) B观察者 10. “不要和陌生人说话”是( D )原则的通俗表述 D.迪米特 1. 软件体系结构是指一个系统的有目的的设计和规划,这个设计规划既不描述活动,也不描述系统怎样开发,它只描述系统的组成元素及其相互的交互协作。 2.一个UML模型只描述了一个系统要做什么,它并没告诉我们系统是怎么做。 3.接口是可以在整个模型中反复使用的一组行为,是一个没有属性而只有方法的类。 4.多重性指的是,某个类有多个对象可以和另一个类的一对象关联。 5.当一个类的对象可以充当多种角色时,自身关联就可能发生。 6.在泛化关系中,子类可以替代父类。后前者出现的可以相同地方。反过来却不成立。 7.最通常的依赖关系是一个类操作的形构中用到了另一个类的定义。 8.组成是强类型的聚集,因为聚集中的每个部分体只能属于一个整体。 9.实现的符号和继承的符号有相似之处,两者的唯一差别是实现关系用虚线表示,继承关系用实线表示。 10. 设计模式中应优先使用对象组合而不是类继承。 1.适配器模式属于创建型模式结构型( F ) 2.在设计模式中,“效果”只是指“原因和结果”( T ) 3.设计模式使代码编制不能真正工程化( T ) 4.面向对象语言编程中的异常处理,可以理解为责任链模式(T ) 5.反模式就是反对在软件开发过程中使用设计模式分析:反模式用来解决问题的带有共性的不良方法(F ) 1.什么是设计模式?设计模式目标是什么? 答:设计模式是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解,保证代码可靠性。 2.设计模式中一般都遵循的原则有什么? 答:开闭原则、根据场景进行设计原则、优先组合原则、包容变化原则 3.“Gang of Four”针对“创建优秀面向对象设计”建议了哪些策略? 答:针对接口编程、优先使用对象组合而不是类继承,找到并封装变化点。 4.面向对象系统中功能复用的两种最常用技术是什么? 答:类继承和对象组合,类继承允许你根据其他类的实现来定义一个类的实现。父类的内部细节对子类可见。 类继承是在编译时刻静态定义的,且可直接使用,类继承可以较方便地改变被复用的实现。对象组合是类继承之外的另一种复用选择。新的更复杂的功能可以通过组装或组合对象来获得。对象组合要求被组合的对象具有良好定义的接口。 5.只根据抽象类中定义的接口来操纵对象有什么好处? 答:1)客户无须知道他们使用对象的特定类型,只须对象有客户所期望的接口。 2)客户无须知道他们使用的对象是用什么类来实现的,他们只须知道定义接口的抽象类。 五、应用题(分值15) 公司架构:经理、工程师、技师和后勤人员都是公司的雇员,经理管理工程师、技师和后勤人员。高层经理领导较低级别的经理。典型层次图如下:可以使用哪种设计模式实现公司的层级关系?并说明为什么? 组合模式,第一,其公司关系架构为树形结构;第二,其表示了部分-整体关系(自己扩展)

相关主题
文本预览
相关文档 最新文档