当前位置:文档之家› 40系列芯片 4066 CMOS 四双向模拟开

40系列芯片 4066 CMOS 四双向模拟开

40系列芯片  4066 CMOS 四双向模拟开
40系列芯片  4066 CMOS 四双向模拟开

CMOS模拟集成电路课程设计

电子科学与技术系 课程设计 中文题目:CMOS二输入与非门的设计 英文题目: The design of CMOS two input NAND gate 姓名:张德龙 学号: 1207010128 专业名称:电子科学与技术 指导教师:宋明歆 2015年7月4日

CMOS二输入与非门的设计 张德龙哈尔滨理工大学电子科学与技术系 [内容摘要]随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。 集成电路有两种。一种是模拟集成电路。另一种是数字集成电路。本次课程设计将要运用S-Edit、L-edit、以及T-spice等工具设计出CMOS二输入与非门电路并生成spice文件再画出电路版图。 [关键词]CMOS二输入与非门电路设计仿真

目录 1.概述 (1) 2.CMOS二输入与非门的设计准备工作 (1) 2-1 .CMOS二输入与非门的基本构成电路 (1) 2-2.计算相关参数 (2) 2-3.电路spice文件 (3) 2-4.分析电路性质 (3) 3、使用L-Edit绘制基本CMOS二输入与非门版图 (4) 3-1.CMOS二输入与非门设计的规则与布局布线 (4) 3-2.CMOS二输入与非门的版图绘制与实现 (5) 4、总结 (6) 5、参考文献 (6)

1.概述 本次课程设计将使用S-Edit画出CMOS二输入与非门电路的电路图,并用T-spice生成电路文件,然后经过一系列添加操作进行仿真模拟,计算相关参数、分析电路性质,在W-edit中使电路仿真图像,最后将电路图绘制电路版图进行对比并且做出总结。 2.CMOS二输入与非门的设计准备工作 2-1 .CMOS二输入与非门的基本构成电路 使用S-Edit绘制的CMOS与非门电路如图1。 图1 基本的CMOS二输入与非门电路 1

电子科技大学集成电路原理实验CMOS模拟集成电路设计与仿真王向展

实验报告 课程名称:集成电路原理 实验名称: CMOS模拟集成电路设计与仿真 小组成员: 实验地点:科技实验大楼606 实验时间: 2017年6月12日 2017年6月12日 微电子与固体电子学院

一、实验名称:CMOS模拟集成电路设计与仿真 二、实验学时:4 三、实验原理 1、转换速率(SR):也称压摆率,单位是V/μs。运放接成闭环条件下,将一个阶跃信号输入到运放的输入端,从运放的输出端测得运放的输出上升速率。 2、开环增益:当放大器中没有加入负反馈电路时的放大增益称为开环增益。 3、增益带宽积:放大器带宽和带宽增益的乘积,即运放增益下降为1时所对应的频率。 4、相位裕度:使得增益降为1时对应的频率点的相位与-180相位的差值。 5、输入共模范围:在差分放大电路中,二个输入端所加的是大小相等,极性相同的输入信号叫共模信号,此信号的范围叫共模输入信号范围。 6、输出电压摆幅:一般指输出电压最大值和最小值的差。 图 1两级共源CMOS运放电路图 实验所用原理图如图1所示。图中有多个电流镜结构,M1、M2构成源耦合对,做差分输入;M3、M4构成电流镜做M1、M2的有源负载;M5、M8构成电流镜提供恒流源;M8、M9为偏置电路提供偏置。M6、M7为二级放大电路,Cc为引入的米勒补偿电容。 其中主要技术指标与电路的电气参数及几何尺寸的关系:

转换速率:SR=I5 I I 第一级增益:I I1=?I I2 I II2+I II4=?2I I1 I5(I2+I3) 第二级增益:I I2=?I I6 I II6+I II7=?2I I6 I6(I6+I7) 单位增益带宽:GB=I I2 I I 输出级极点:I2=?I I6 I I 零点:I1=I I6 I I 正CMR:I II,III=I II?√5 I3 ?|I II3|(III)+I II1,III 负CMR:I II,III=√I5 I1+I II5,饱和 +I II1,III+I II 饱和电压:I II,饱和=√2I II I 功耗:I IIII=(I8+I5+I7)(I II+I II) 四、实验目的 本实验是基于微电子技术应用背景和《集成电路原理与设计》课程设置及其特点而设置,为IC设计性实验。其目的在于: 根据实验任务要求,综合运用课程所学知识自主完成相应的模拟集成电路设计,掌握基本的IC设计技巧。 学习并掌握国际流行的EDA仿真软件Cadence的使用方法,并进行电路的模拟仿真。 五、实验内容 1、根据设计指标要求,针对CMOS两级共源运放结构,分析计算各器件尺寸。 2、电路的仿真与分析,重点进行直流工作点、交流AC和瞬态Trans分析,能熟练掌握各种分析的参数设置方法与仿真结果的查看方法。 3、电路性能的优化与器件参数调试,要求达到预定的技术指标。

基于OrCAD的开关电源仿真

万方数据

万方数据

基于OrCAD的开关电源仿真 作者:刘彬, 王珂, 魏巍, 赵红玉, 马恺, 付廖凯, 郭健鹏 作者单位:刘彬,王珂,魏巍,赵红玉,马恺(中国矿业大学信电学院,221008), 付廖凯,郭健鹏(中国矿业大学徐海学院,221008) 刊名: 中国科技信息 英文刊名:CHINA SCIENCE AND TECHNOLOGY INFORMATION 年,卷(期):2008(20) 本文读者也读过(8条) 1.彭晓珊.余明扬PWM控制的开关电源仿真研究[期刊论文]-株洲工学院学报2003,17(5) 2.吴霞.WU Xia用Orcad PSpice9.2仿真分析输出电压可调的直流稳压电源[期刊论文]-实验室研究与探索 2006,25(7) 3.胡志勇.Hu Zhiyong具有强大功能的OrCAD Capture CIS软件[期刊论文]-印制电路信息2007(4) 4.陶瑞莲OrCAD PSpice在电子线路实验仿真研究[期刊论文]-通信电源技术2010,27(2) 5.许德操.董凌基于EMTDC/PSCAD的数字型高频开关电源仿真研究[会议论文]-2008 6.曾庆立.孟凡斌.陈炳权OrCAD在降压型开关电源优化设计中的应用[期刊论文]-襄樊学院学报2008,29(5) 7.张登奇.Zhang Dengqi调频式开关电源仿真模型的设计与仿真[期刊论文]-电子技术2008,45(11) 8.谭阳红.何怡刚.叶佳卓.伍君锡MATLAB与OrCAD的数据通信[期刊论文]-电气电子教学学报2004,26(3) 本文链接:https://www.doczj.com/doc/9d12276866.html,/Periodical_zgkjxx200820084.aspx

模拟cmos集成电路设计实验

模拟cmos集成电路设计实验 实验要求: 设计一个单级放大器和一个两级运算放大器。单级放大器设计在课堂检查,两级运算放大器设计需要于学期结束前,提交一份实验报告。实验报告包括以下几部分内容: 1、电路结构分析及公式推导 (例如如何根据指标确定端口电压及宽长比) 2、电路设计步骤 3、仿真测试图 (需包含瞬态、直流和交流仿真图) 4、给出每个MOS管的宽长比 (做成表格形式,并在旁边附上电路图,与电路图一一对应) 5、实验心得和小结 单级放大器设计指标 两级放大器设计指标

实验操作步骤: a.安装Xmanager b.打开Xmanager中的Xstart

c.在Xstart中输入服务器地址、账号和密码 Host:202.38.81.119 Protocol: SSH Username/password: 学号(大写)/ 学号@567& (大写)Command : Linux type 2 然后点击run运行。会弹出xterm窗口。 修改密码

输入passwd,先输入当前密码,然后再输入两遍新密码。 注意密码不会显示出来。 d.设置服务器节点 用浏览器登陆http://202.38.81.119/ganglia/,查看机器负载情况,尽量选择负载轻的机器登陆,(注:mgt和rack01不要选取) 选择节点,在xterm中输入 ssh –X c01n?? (X为大写,??为节点名) 如选择13号节点,则输入ssh –X c01n13 e.文件夹管理 通常在主目录中,不同工艺库建立相应的文件夹,便于管理。本实验采用SMIC40nm工艺,所以在主目录新建SMIC40文件夹。 在xterm中,输入mkdir SMIC40 然后进入新建的SMIC40文件夹, 在xterm中,输入cd SMIC40.

【书】模拟CMOS集成电路设计 毕查德.拉扎维著

【简介】模拟集成电路的设计与其说是一门技术,还不如说是一门艺术。它比数字集成电路设计需要更严格的分析和更丰富的直觉。严谨坚实的理论无疑是严格分析能力的基石,而设计者的实践经验无疑是诞生丰富直觉的源泉。这也正足初学者对学习模拟集成电路设计感到困惑并难以驾驭的根本原因。. 美国加州大学洛杉机分校(UCLA)Razavi教授凭借着他在美国多所著名大学执教多年的丰富教学经验和在世界知名顶级公司(AT&T,Bell Lab,HP)卓著的研究经历为我们提供了这本优秀的教材。本书自2000午出版以来得到了国内外读者的好评和青睐,被许多国际知名大学选为教科书。同时,由于原著者在世界知名顶级公司的丰富研究经历,使本书也非常适合作为CMOS模拟集成电路设计或相关领域的研究人员和工程技术人员的参考书。... 本书介绍模拟CMOS集成电路的分析与设计。从直观和严密的角度阐述了各种模拟电路的基本原理和概念,同时还阐述了在SOC中模拟电路设计遇到的新问题及电路技术的新发展。本书由浅入深,理论与实际结合,提供了大量现代工业中的设计实例。全书共18章。前10章介绍各种基本模块和运放及其频率响应和噪声。第11章至第13章介绍带隙基准、开关电容电路以及电路的非线性和失配的影响,第14、15章介绍振荡器和锁相环。第16章至18章介绍MOS器件的高阶效应及其模型、CMOS制造工艺和混合信号电路的版图与封装。

模拟CMOS集成电路设计.part1.rar 模拟CMOS集成电路设计.part2.rar 模拟CMOS集成电路设计.part3.rar 模拟CMOS集成电路设计.part4.rar 模拟CMOS集成电路设计.part5.rar

常用模拟开关芯片引脚,功能及应用电路

常用模拟开关芯片引脚,功能及应 用电路 ! m8r*}3V"d'w , n7x8L1z&B#r1a0Z3~ CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。$ \, \4F-]5}8 W6 G2 T 2 t$y5I&R!n6N&}4z 一、常用CMOS模拟开关功能及引脚介绍) ]) S f7 X; S& Z+ X 1.四双向模拟开关CD4066% b$ Y) P- k5 c3 \# _, |+ a 4 D7{6F T4v8e,S,y CD4066的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。. V"T!S1O,h#n O 2.单八路模拟开关CD4051 n*L+X%k._+L CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。& Q/]9t"F8o,`7J(q 表1 附件: 您所在的用户组无法下载或查看附件, 保暖

(整理)常用CMOS模拟开关功能和原理

常用CMOS模拟开关功能和原理(4066,4051-53) 开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 2.单八路模拟开关CD4051 CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。 表1 输入状态 接通通道INH C B A 0 0 0 0 “0” 0 0 0 1 “1” 0 0 1 0 “2” 0 0 1 1 “3”

开关电源仿真

开关电源中变压器的Saber仿真辅助设计一:反激 一、Saber在变压器辅助设计中的优势: 1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。主要功率级指标是相当接近真实的,细节也可以被充分体现。 2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。 3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。 4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。 二、Saber 中的变压器 我们用得上的Saber 中的变压器是这些:(实际上是我只会用这些)

分别是: xfrl 线性变压器模型,2~6绕组 xfrnl 非线性变压器模型,2~6绕组 单绕组的就是电感模型:也分线性和非线性2种 线性变压器参数设置(以2绕组为例):

其中: lp 初级电感量 ls 次级电感量 np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置 rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆) k 偶合(互感)系数,建议开始设置为1,需要考虑漏感影响时再设置为低于1的值。需要注意的是,k 为0。99 时,漏感并不等于lp 或者ls 的1/100。漏感究竟是多少,后述。 其他设置项我没有用过,不懂的可以保持默认值。 非线性变压器参数设置(以2绕组为例):

CD4066模拟开关

开关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066 的引脚功能如图1所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 2.单八路模拟开关CD4051 CD4051 引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当 “INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的 CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V, VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。

表1 输入状态 接通通道 INH C B A 0 0 0 0 “0” 0 0 0 1 “1” 0 0 1 0 “2” 0 0 1 1 “3” 0 1 0 0 “4” 0 1 0 1 “5” 0 1 1 0 “6” 0 1 1 1 “7” 1 均不接通 3.双四路模拟开关CD4052 CD4052的引脚功能见图3。CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。其真值表见表2。

模拟开关的技术特性和应用

模拟开关的关键技术特性和应用实例分析 近年来,便携式产品越来越多地采用多源设计,因此开关功能是视频、音频传输及处理过程中的一个重要组成部分。早期采用的机械开关具有可靠性低、体积大、功耗大的缺点,所以模拟开关已经引起了越来越多人的重视,并已被广泛应用于各种电子产品中。 尽管模拟开关具有机械开关不可取代的优势,然而它的应用较机械开关稍微复杂些,初次使用模拟开关的工程人员往往会由于模拟开关使用不当,引起整个系统的故障。本文通过将模拟开关与普通机械开关作比较,论述了模拟开关的若干基本概念,并结合实例对模拟开关应用的关键技术进行研究。 模拟开关的模拟特性 许多工程师第一次使用模拟开关,往往会把模拟开关完全等同于机械开关。其实模拟开关虽然具备开关性,但和机械开关有所不同,它本身还具有半导体特性: 1. 导通电阻(R on)随输入信号(V IN)变化而变化 图1a是模拟开关的简单示意图,由图中可以看出模拟开关的常开常闭通道实际上是由两个对偶的N沟道MOSFET与P沟道MOSFET构成,可使信号双向传输,如果将不同V IN值所对应的P沟道MOSFET与N沟道MOSFET的导通电阻并联,可得到图1b并联结构下R on随输入电压(V IN)的变化关系,如果不考虑温度、电源电压的影响,R on随V in呈线性关系,将导致插入损耗的变化,使模拟开关产生总谐波失真(THD)。此外,R on也受电源电压的影响,通常随着电源电压的上升而减小。 图1:a. 模拟开关原理图;b. 模拟开关导通电阻与输入电压关系 2. 模拟开关输入有严格的输入信号范围 由于模拟开关是半导体器件,当输入信号过低(低于零电势)或者过高(高于电源电压)时,MOSFET处于反向偏置,当电压达到某一值时(超出限值0.3V),此时开关无法正常工作,严重者甚至损坏。因此模拟开关在应用中,一定要注意输入信号不要超出规定的范围。 3. 注入电荷

cmos模拟集成电路设计_实验报告

北京邮电大学 实验报告 实验题目:cmos模拟集成电路实验 姓名:何明枢 班级:2013211207 班内序号:19 学号:2013211007 指导老师:韩可 日期:2016 年 1 月16 日星期六

北京邮电大学电子工程学院2013211207班何明枢CMOS模拟集成电路与设计实验报告 目录 实验一:共源级放大器性能分析 (1) 一、实验目的 (1) 二、实验内容 (1) 三、实验结果 (1) 四、实验结果分析 (3) 实验二:差分放大器设计 (4) 一、实验目的 (4) 二、实验要求 (4) 三、实验原理 (4) 四、实验结果 (5) 五、思考题 (6) 实验三:电流源负载差分放大器设计 (7) 一、实验目的 (7) 二、实验内容 (7) 三、差分放大器的设计方法 (7) 四、实验原理 (7) 五、实验结果 (9) 六、实验分析 (10) 实验五:共源共栅电流镜设计 (11) 一、实验目的 (11) 二、实验题目及要求 (11) 三、实验内容 (11) 四、实验原理 (11) 五、实验结果 (15) 六、电路工作状态分析 (15) 实验六:两级运算放大器设计 (17) 一、实验目的 (17) 二、实验要求 (17) 三、实验内容 (17) 四、实验原理 (21) 五、实验结果 (23) 六、思考题 (24) 七、实验结果分析 (24) 实验总结与体会 (26) 一、实验中遇到的的问题 (26) 二、实验体会 (26) 三、对课程的一些建议 (27)

实验一:共源级放大器性能分析 一、实验目的 1、掌握synopsys软件启动和电路原理图(schematic)设计输入方法; 2、掌握使用synopsys电路仿真软件custom designer对原理图进行电路特性仿真; 3、输入共源级放大器电路并对其进行DC、AC分析,绘制曲线; 4、深入理解共源级放大器的工作原理以及mos管参数的改变对放大器性能的影响 二、实验内容 1、启动synopsys,建立库及Cellview文件。 2、输入共源级放大器电路图。 3、设置仿真环境。 4、仿真并查看仿真结果,绘制曲线。 三、实验结果 1、实验电路图

开关电源中Saber仿真设计实例

经常在论坛上看到变压器设计求助,包括:计算公式,优化方法,变压器损耗,变压器饱和,多大的变压器合适啊? 其实,只要我们学会了用Saber这个软件,上述问题多半能够获得相当满意的解决。 一、 Saber在变压器辅助设计中的优势: 1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。主要功率级指标是相当接近真实的,细节也可以被充分体现。 2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。 3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。 4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。 二、 Saber 中的变压器 我们用得上的 Saber 中的变压器是这些:(实际上是我只会用这些 ) 分别是:

xfrl 线性变压器模型,2~6绕组 xfrnl 非线性变压器模型,2~6绕组 单绕组的就是电感模型: 也分线性和非线性2种 线性变压器参数设置(以2绕组为例): 其中: lp 初级电感量 ls 次级电感量 np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置

模拟开关电路介绍

模拟开关是一种三稳态电路,它可以根据选通端的电平,决定输人端与输出端的状态。当选通端处在选通状态时,输出端的状态取决于输人端的状态;当选通端处于截止状态时,则不管输人端电平如何,输出端都呈高阻状态。模拟开关在电子设备中主要起接通信号或断开信号的作用。由于模拟开关具有功耗低、速度快、无机械触点、体积小和使用寿命长等特点,因而,在自动控制系统和计算机中得到了广泛应用。 一、模拟开关的电路组成及工作原理 模拟开关电路由两个或非门、两个场效应管及一个非门组成,如图一所示。模拟开关的真值表见表一。 表一 模拟开关的工作原理如下: 当选通端E和输人端A同为1时,则S2端为0,S1端为1,这时VT1导通,VT2截止,输出端B输出为1,A=B,相当于输入端和输出端接通。 当选通E为0时,而输人端A为0时,则S2端为1,S1端为0,这时VT1截止,VT2导通,输出端B为0,A=B,也相当于输人端和输出端接通。 当选通端E为0时,这时VT1和VT2均为截止状态,电路输出呈高阻状态。

从上面的分析可以看出,只有当选通端E为高电平时,模拟开关才会被接通,此时可从A向B传送信息;当输人端A为低电平时,模拟开关关闭,停止传送信息。 二、常用的CMOS模拟开关集成电路 根据电路的特性和集成度的不同,MOS模拟开关集成电路可分为很多种类。现将常用的模拟开关集成电路的型号、名称及特性列入表二中。 表二常用的模拟开关 三、CD4066模拟开关集成电路的应用举例 CD4066是一种双向模拟开关,在集成电路内有4个独立的能控制数字及模拟信号传送的模拟开关。每个开关有一个输人端和一个输出端,它们可以互换使用,还有一个选通端(又称控制端),当选通端为高电平时,开关导通;当选通端为低电平时,开关截止。使用时选通端是不允许悬空的。 下面介绍CD4066模拟开关的两个应用实例。 1.采样信号保持电路 采样信号保持电路如图二所示。 图二采样信号保持电路 模拟信号Ui从运算放大器的同相输人端输人。当模拟开关控制端为高电平时,模拟开关导通,电容C被充电至Ui,这个过程叫做输人信号的采样。当采样结束时,使模拟开关控制端为低电平,模拟开关断开。由于模拟开关断开时的电阻高达100M以上,且运放A2的输人阻抗也极高,故电容C上可以保持采样信号。

CD4066是四双向模拟开关

CD4066是四双向模拟开关,主要用作模拟或数字信号的多路传输。CD4066 的每个封装内部有4 个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。 模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 CD4066的引出端排列与CC4016一致,但具有比较低的导通阻抗。另外,导通阻抗在整个输入信号范围内基本不变。CD4066由四个相互独立的双向开关组成,每个开关有一个控制信号,开关中的p和n器件在控制信号作用下同时开关。这种结构消除了开关晶体管阈值电压随输入信号的变化,因此在整个工作信号范围内导通阻抗比较低。与单通道开关相比,具有输入信号峰值电压范围等于电源电压以及在输入信号范围内导通阻抗比较稳定等优点。但若应用于采样电路,仍推荐CD4016。 当模拟开关的电源电压采用双电源时,例如=﹢5V,=﹣5V(均对地0V而言),则输入电压对称于0V的正、负信号电压(﹢5V~﹣5V)均能传输。这时要求控制信号C=“1” 为+5V,C=“0”为-5V,否则只能传输正极性的信号电压。 2引脚功能编辑 CONTROL:开关控制端[1] IN/OUT:输入/输出端 OUT/IN:输出/输入端 VDD:电源正 VSS:电源负 3工作条件编辑 电源电压(VDD) :3V ~15V 输入电压(VIN):0V ~ VDD 工作温度范围(TA) ?55℃~ +125℃ 参考资料

saber仿真35W反激开关电源设计

今天开始,为大家介绍一个开关电源仿真的实例。由于开关电源具有很强的非线性,并且经常是双环乃至多环反馈,因此无论用哪种仿真工具,对其进行仿真分析都是一件很困难的事情,相信用Saber进行开关电源分析的网友,也有过类似的经验。这个仿真实例中使用了TI的UC3844做为控制器,实现一个反激电路。验证电路源于TI公司的UC3844 数据手册(data sheet) 第七页所提供的反激变换器设计电路,如下图所示: 在SaberSketch根据对该原理图进行适当修改,具体修改情况如下: 1.输出由双路±12V/0.3A 的负载改为24V/0.6A负载. 2.输出滤波电容C12/C13 由2200u 改为141u. C11 由4700u 改为3000u 3.去掉负载绕组供电的复杂滤波网络, 改为RC充电模式, 其中R=10, C=C2=100u. 4.将输出部分的滤波器由π 型改为电容直接滤波. 5.去掉MOSFET (UFN833)的缓冲电路( SNUBBER). 6.对部分Saber中没有模型的器件进行替换: a. POWER MOSFET UFN833->mtp4n80e b. Current Sense R10=0.33->R10=0.55 c. Output Rectifier USD945->mbr2545ct UFS1002->ues704 d. T1采用xfrl3 template 使用电感量控制变比, L1=1m, L2=10.7u, L3=216.7u, L4=66.9u. 在完成以上修改后,在各种负载条件下,对该电路进行仿真分析。 测试条件: Vacin = 117V, Vout = 5V/4A (Rload =1.25) Vout = 24V/0.6A (Rload=40) 分析结果如下:

常用模拟开关

常用模拟开关 关在电路中起接通信号或断开信号的作用。最常见的可控开关是继电器,当给驱动继电器的驱动电路加高电平或低电平时,继电器就吸合或释放,其触点接通或断开电路。CMOS模拟开关是一种可控开关,它不象继电器那样可以用在大电流、高电压场合,只适于处理幅度不超过其工作电压、电流较小的模拟或数字信号。 一、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066的引脚功能如图1所示。每个封装内部有4个 独立的模拟开关,每个模拟开关有输入、输出、控制三个端 子,其中输入端和输出端可互换。当控制端加高电平时,开关 导通;当控制端加低电平时开关截止。模拟开关导通时,导通 电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看 成为开路。模拟开关可传输数字信号和模拟信号,可传输的 模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 图1 CD4066的引脚功能 2.单八路模拟开关CD4051 CD4051引脚功能见图2。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。其真值表见表1。“INH”是禁止端,当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。 图2 CD4051引脚功能 表1 CD4051真值表

模拟CMOS集成电路设计实验指导手册

目录 第一部分.前言 第二部分.实验的基础知识 第三部分.实验内容 1.cadence virtuoso schematic进行电路图的绘制2.cadence virtuoso analog environment电路性能模拟3.cadence virtuoso layout editor进行版图设计4.cadence virtuoso DRC Extract LVS以及后仿真等。第四部分.附件 1.Cadence schematic simple tutorial 2.cadence virtuoso layout editor tutorial 3.SMIC0.18um library

第一部分.前言 本实验为微电子系专业选修课程《模拟CMOS集成电路设计》的配套实验。本实验围绕如何实现一个给定性能参数要求的简单差分运算放大器而展开。 通过该实验,使得学生能够建立模拟集成电路设计的基本概念,了解设计的基本方法,熟悉模拟CMOS集成电路设计的典型流程,了解在每一个流程中所应用的EDA工具,并能较熟练地使用每个流程对应的设计工具。通过让学生自己分析每个流程中所出现的问题,把课程所学知识联系实际,从而增强学生分析问题、解决问题的能力。 本实验的内容以教材一至十章内容为基础,因此,该实验适合在开课学期的后半部分时间开展。 本实验讲义内容安排如下,首先是前言,其次是基础知识,接下来是实际实验内容,具体分成四个过程,最后是附录。建议在实际实验开始之前依次浏览三个附件文档。

第二部分.实验的基础知识 该实验内容所涉及的基础知识包括两部分:电路方面、流程方面和EDA设计工具使用方面。 1.电路有关的基础知识。 该实验是围绕如何实现基于SMIC0.18um工艺下,一个给定性能参数要求的简单差分运算放大器而展开,因此,以电流镜做负载的基本五管差分运算放大器的性能分析是该实验的理论基础。具体内容在讲义以及课件相关章节中有详细介绍。以下用一张图简单重述该电路的有关性能与各元件参数之间的关系分析结论。 相关的设计公式如下:

最新开关电源仿真

开关电源仿真

开关电源中变压器的Saber仿真辅助设计一:反激 一、 Saber在变压器辅助设计中的优势: 1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。主要功率级指标是相当接近真实的,细节也可以被充分体现。 2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。 3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。 4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。 附件下载磁芯手册.XLS 二、 Saber 中的变压器

我们用得上的 Saber 中的变压器是这些:(实际上是我只会用这些) 分别是: xfrl 线性变压器模型,2~6绕组 xfrnl 非线性变压器模型,2~6绕组 单绕组的就是电感模型:也分线性和非线性2种 线性变压器参数设置(以2绕组为例):

其中: lp 初级电感量 ls 次级电感量 np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置 rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆)

多路复用器和模拟开关

多路复用器和模拟开关 多路复用器(MULTIPLEXER 也称为数据选择器)是用来选择数字信号通路的;模拟开关是传递模拟信号的,因为数字信号也是由高低两个模拟电压组成的, 所以模拟开关也能传递数字信号。 在CMOS多路复用器中,因为其数据通道也是模拟开关结构,所以也能用于选择多路模拟信号。但是TTL的多路复用器就不能选择模拟信号.。 用CMOS的多路复用器或模拟开关传递模拟信号时要注意:模拟信号的变化值必须在正负电源电压之间,譬如要传递有正负半周的正弦波时,必须使用正负电源且电源电压大于传递的模拟信号峰值,这时其控制或地址信号必须以负电源电压为0,而以正电源电压为1;或者用单电源供电,而使模拟信号的变化中值在 1/2 电源电压上, 传递之后再恢复到原来的值。 1、常用CMOS模拟开关引脚功能和工作原理 1.四双向模拟开关CD4066 CD4066的引脚功能如下图所示。每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。各开关间的串扰很小,典型值为-50dB。 2.单八路模拟开关CD4051

CD4051引脚功能如下图所示。CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。“INH”是禁止端, 当“INH”=1时,各通道均不接通。此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。 3.双四路模拟开关CD4052 CD4052的引脚功能如下图所示。CD4052相当于一个双刀四掷开关,具体接通哪一通道,由输入地址码AB来决定。 4.三组二路模拟开关CD4053 CD4053的引脚功能如下图所示。CD4053内部含有3组单刀双掷开关,3组开关具体接通哪一通道,由输入地址码ABC来决定。

BUCK开关电源闭环控制的仿真研究-28V15V

CHANGZHOU INSTITUTE OF TECHNOLOGY 课程设计说明书 课程设计名称:电力电子技术 题目:BUCK开关电源闭环控制的仿真研究- 28V/15V 课题名 称 BUCK开关电源闭环控制的仿真研究-28V/15V 课题内容及指标要求课题内容: 1、根据设计要求计算滤波电感和滤波电容的参数值,完成开关电路的设计 2、根据设计步骤和公式,设计双极点-双零点补偿网络,完成闭环系统的设计 3、采用MATLAB中simulink中simpowersystems模型库搭建开环闭环降压式变换器的仿真模型 4、观察并记录系统在额定负载以及突加、突卸80%额定负载时的输出电压和负载电流的波形 指标要求: 1、输入直流电压(V IN):28V,输出电压(V O):15V,输出电压纹波峰-峰值 Vpp≤50mV 2、负载电阻:R=3Ω,电感电流脉动:输出电流的10%,开关频率(fs)=100kHz

目录 一、引言 (1) 二、课题简介 (1) 2.1 BUCK变换器PID控制的参数设计 (1) 2.2 BUCK电路的工作原理 (1) 2.3 BUCK开关电源的应用 (3) 三、课题设计要求 (3) 3.1 课题内容 (3) 3.2 参数要求 (4) 四、课题设计方案 (4) 4.1 系统的组成: (4) 4.2 主电路部分的设计 (5) 4.3 闭环系统的设计 (6) 4.4 闭环系统仿真 (10) 五、总结及心得体会 (13) 六、参考文献 (13) 七、附录 (14)

一、引言 随着电力电子技术的快速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。电子设备的小型化和低成本化使电源向轻、薄、小和高效率方向发展。开关电源因其体积小,重量轻和效率高的优点而在各种电子信息设备中得到广泛的应用。伴随着人们对开关电源的进一步升级,低电压、大电流和高效率的开关电源成为研究趋势。 开关电源分为AC/DC和DC/DC,其中DC/DC 变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。 IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用IGBT作为全控型器件的降压斩波电路就有了IGBT 易驱动,电压、电流容量大的优点。IGBT降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT降压斩波电路的发展。 二、课题简介 BUCK电路是一种降压斩波器,降压变换器输出电压平均值Uo总是小于输入电压Ui。通常电感中的电流是否连续,取决于开关频率、滤波电感L和电容C 的数值。简单的BUCK电路输出的电压不稳定,会受到负载和外部的干扰,当加入PID控制器,实现闭环控制。可通过采样环节得到PWM调制波,再与基准电压进行比较,通过PID控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK电路闭环PID控制系统。 2.1 BUCK变换器PID控制的参数设计 PID控制是根据偏差的比例P、积分I、微分D进行控制,是控制系统中应用最为广泛的一种控制规律。通过调整比例、积分和微分三项参数,使得大多数工业控制系统获得良好的闭环控制性能。PID控制的本质是一个二阶线性控制器,其优点:1、技术纯熟;2、易被人们熟悉和掌握;3、不需要建立数学模型;4、控制效果好;5、消除系统稳定误差 2.2 BUCK电路的工作原理 Buck变换器主电路如图下所示,其中RC为电容的等效电阻(ESR)。

模拟开关介绍与应用

模拟开关介绍与应用 模拟开关是一种三稳态电路,它可以根据选通端的电平,决定输人端与输出端的状态。当选通端处在选通状态时,输出端的状态取决于输人端的状态;当选通端处于截止状态时,则不管输人端电平如何,输出端都呈高阻状态。模拟开关在电子设备中主要起接通信号或断开信号的作用。由于模拟开关具有功耗低、速度快、无机械触点、体积小和使用寿命长等特点,因而,在自动控制系统和计算机中得到了广泛应用。 一、模拟开关的电路组成及工作原理 模拟开关电路由两个或非门、两个场效应管及一个非门组成,如图一所示。模拟开关的真值表见表一。 表一 模拟开关的工作原理如下: 当选通端E和输人端A同为1时,则S2端为0,S1端为1,这时VT1导通,VT2截止,输出端B输出为1,A=B,相当于输入端和输出端接通。 当选通E为0时,而输人端A为0时,则S2端为1,S1端为0,这时VT1截止,VT2导通,输出端B为0,A=B,也相当于输人端和输出端接通。

当选通端E为0时,这时VT1和VT2均为截止状态,电路输出呈高阻状态。 从上面的分析可以看出,只有当选通端E为高电平时,模拟开关才会被接通,此时可从A向B传送信息;当输人端A为低电平时,模拟开关关闭,停止传送信息。 二、常用的CMOS模拟开关集成电路 根据电路的特性和集成度的不同,MOS模拟开关集成电路可分为很多种类。现将常用的模拟开关集成电路的型号、名称及特性列入表二中。 表二常用的模拟开关 三、CD4066模拟开关集成电路的应用举例 CD4066是一种双向模拟开关,在集成电路内有4个独立的能控制数字及模拟信号传送的模拟开关。每个开关有一个输人端和一个输出端,它们可以互换使用,还有一个选通端(又称控制端),当选通端为高电平时,开关导通;当选通端为低电平时,开关截止。使用时选通端是不允许悬空的。 下面介绍CD4066模拟开关的两个应用实例。 1.采样信号保持电路 采样信号保持电路如图二所 示。 图二采样信号保持电路 模拟信号Ui从运算放大器的同相输人端输人。当模拟开关控制端为高电平时,模拟开关导通,电容C被充电至Ui,这个过程叫做输人信号的采样。当采样结束时,使模拟开关控制

相关主题
文本预览
相关文档 最新文档