G656光纤标准研究进展
- 格式:doc
- 大小:372.50 KB
- 文档页数:6
G657光纤设计杨建波光学1012030902摘要: G657光纤具有优异的光学特性,特别是弯曲损耗不敏感性能,因此被认为是诸如光纤到户(FTTH)等局域网和接人网系统的首选产品,所以,该光纤的研究倍受重视。
这里我将采用OptiFiber仿真软件,设计G657光纤,并表征其光学特性。
关键词:G657光纤、弯曲损耗一、G657的标准G657的相应参数标准如下表所示:二、设计的G657参数及相应特性该仿真设计的是G657.A1光纤,其传输波长为1310nm。
其相应参数和特性如下所示。
1、折射率分布图1. 光纤折射率分布在图1中,芯层半径为6um,最大折射率为1.45692,其按Gaussian函数分布。
包层(第二层)的厚度为5.5um,折射率为1.45。
复层厚度为51um,折射率为1.451,比包层的略高,这是产生凹陷,易于实现单模传输,减小色散和损耗。
2、零色散波长图2. 色散随波长变化曲线从图2中,我们可以看到,该光纤的零色散波长为 1.321um,零色散斜率为0.06856ps/nm2*km。
从G657的标准看,其零色散波长和零色散斜率规定的范围是1.3um~1.324um和<=0.092 ps/nm2*km。
显然满足指标。
3、模场直径图3. 模场直径随波长变化曲线从图3中,我们可以模场直径随波长变化规律曲线为蓝色线,其1.31um波长的模场直径为8.62452um。
从相应的标准我们知道其模场直径应在8.6um~9.5um,误差为0.4。
由此比较可知该光纤满足要求。
4、弯曲损耗4.1弯曲半径为15mm图4. 1a弯曲损耗随波长变化曲线图4. 1b弯曲损耗随波长变化曲线从图4.1a、b中,可以看到弯曲损耗在1550nm和1625nm波长处的值分别为5.6561dB/km 和36.8192dB/km。
根据给定的G657标准经过换算,我们可以得到:波长为1550nm时,损耗不超过265.258dB/km;波长为1625时,损耗不超过1061.033dB/km,。
传输线路习题库(含参考答案)一、单选题(共61题,每题1分,共61分)1.公路旁的电杆警示漆应为(),间距20cm;总长120cm。
电杆警示漆下边缘应距地20cm。
A、二蓝两白B、二红两白C、三红三白D、三蓝三白正确答案:C2.与市内街道、里弄胡同、铁道、公路、土路平行时通信线与地面的安全距离分别为( )。
A、4.5m、4.0m、3.0m、3.0m、3.0mB、5.5m、5.0m、6.5m、5.5m、4.5mC、4.5m、4.0m、4.0m、3.0m、3.0mD、5.5m、5.0m、7.5m、5.5m、4.5m正确答案:A3.引上光缆必须穿放铁管或镀锌钢管,并做好防水处理和绑扎,墙壁引上钢管应用抱箍固定;引上至架空部分光缆的曲率半径应大于( )mm。
A、300B、270C、290D、280正确答案:B4.SDH传输体制的速率按同步传输模块来分,STM-16速率为()。
A、155.520Mbit/sB、622.080Mbit/sC、2488.320Mbit/sD、9953.280Mbit/s正确答案:C5.光缆交接箱内的纤芯类型有( )种A、5B、3C、4D、6正确答案:C6.通常情况下检查备用光纤中继段光纤通道后向散射信号曲线的维护测试周期为()A、半年B、按需C、一年D、两年正确答案:A7.测试尾纤采用( )连接方式。
A、固定B、前三种都可以C、临时D、活动正确答案:C8.剪断吊线前,剪点两端应(),防止钢绞线反弹。
A、先人工固定、剪断后缓松B、先人工固定,剪断后拉紧C、先人工固定,缓松后剪断D、先人工缓松,固定后剪断正确答案:A9.架空光缆杆上伸缩弯的长度为( )m/杆。
A、0.2B、0.6C、0.8D、0.4正确答案:A10.光缆线路的三长对应表是()A、路面长度/光缆长度+光纤长度/光纤长度B、路面长度/光缆长度/光纤长度C、路面长度+光纤长度/光缆长度/光纤长度D、路面长度/光缆长度/光纤长度+路面长度正确答案:B11.管道在某一点或某些管孔受到外力损坏,其中的线缆受到伤害,这是可采取( )方式修复。
G654E光纤长距离传输性能研究G654Efiber-CorningG.654E光纤长距离传输性能研究Sergejs Makovejs1, John Downie1, 董浩1, Michael Mlejnek1,陈皓2(1. 康宁公司,纽约州康宁;2. 康宁光通信中国,上海200233)摘要:本⽂对ITU-T G.654E光纤进⾏了传输性能的研究,总结了该类型光纤的⼀些新的特性。
研究结果表明,G.654E光纤的品质因⼦(Figure of merit, FOM)⽐常规G.652光纤⾼3dB左右,实际400G系统测试结果显⽰G.654E光纤⽐G.652光纤的传输距离提升60%以上。
同时也讨论了配有拉曼放⼤器的传输系统⼯作在G.654E 光纤(泵浦光⼯作在光纤截⽌波长以下)时出现的新特性。
关键词:G.654E光纤,400G,品质因⼦,拉曼放⼤,截⽌波长G.654.E fiber performance characterization research in long haultransmissionSergejs Makovejs1, John Downie1, Hao Dong1, Michael Mlejnek1, Hao Chen21, Corning Incorporated, Corning NY, 14831, USA2,Cornng Optical Communication China, Shanghai,200233Abstract:This paper summarizes our recent findings on ITU-T G.654E fiber transmission performance, for which we used Corning TXF fiber. Our model shows that G.654E fiber can provide almost up to 3 dB improvement in figure of merit relative to G.652 fiber. Further experimental results showed that G.654E can allow for ~60 % reach improvement relative to G.652 fiber. Advanced topics related to the use of G.654E fiber in Raman-assisted systems are also discussed.Key words: G.654E fiber, 400G, FOM,Raman amplifier, cut-off wavelength1简介随着新的应⽤(如虚拟现实,物联⽹等)不断兴起,IP流量在未来5年预计增加3倍[1],全球的⽹络运营商都⾯临着⽹络容量急速增加的挑战。
INTERNATIONAL TELECOMMUNICATION UNIONITU-T G.657(12/2006) TELECOMMUNICATIONSTANDARDIZATION SECTOROF ITUSERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKSTransmission media characteristics – Optical fibre cablesCharacteristics of a bending loss insensitive single mode optical fibre and cable for the access networkCAUTION !PREPUBLISHED RECOMMENDATIONThis prepublication is an unedited version of a recently approved Recommendation.It will be replaced by the published version after editing. Therefore, there will be differences between this prepublication and the published version.FOREWORDThe International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.NOTEIn this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.INTELLECTUAL PROPERTY RIGHTSITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.© ITU 2006All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.ITU-T Recommendation G.657Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cablefor the Access NetworkSummaryWorldwide, technologies for Broadband Access Networks are advancing rapidly. Among these, the technology applying single mode fibre provides for a high-capacity transmission medium which can answer the growing demand for broadband services.The experience with the installation and operation of single mode fibre and cable based networks is huge and the ITU-T Rec. G.652 describing its characteristics has been adapted to this experience. Nevertheless, the specific use in an optical access networks puts different demands on the fibre and cable which impacts its optimal performance characteristics. Differences with respect to the use in the general transport network are mainly due to the high density network of distribution and drop-cables in the access network. The limited space and the many manipulations ask for operator friendly fibre performance and low bending sensitivity. In addition, the cabling in the crowded telecom offices where space is a limiting factor has to be improved accordingly.It is the aim of this recommendation to support this optimization by recommending strongly improved bending performance compared with the existing G.652 single mode fibre and cables. This is done by means of introducing two classes of single mode fibres, one of which, class A, is fully compliant with the G.652 single mode fibres and can also be used in other parts of the network. The other class, class B, is not necessarily compliant with G.652 but is capable of low values of macrobending losses at very low bend radii and is pre-dominantly intended for in-building use.CONTENTSPage0 Introduction (3)1 Scope (3)2 References (3)2.1 Normativereferences (3)references (4)2.2 Informative3 Terms and definitions (4)4 Abbreviations (4)attributes (5)5 Fibrediameter (5)field5.1 Modediameter (5)5.2 Claddingerror (5)concentricity5.3 Core5.4 Non-circularity (5)wavelength (5)5.5 Cut-offloss (6)5.6 Macrobending5.7 Material properties of the fibre (6)indexprofile (7)5.8 Refractive5.9 Longitudinal uniformity of chromatic dispersion (7)5.10 Chromatic dispersion coefficient (7)attributes (8)6 Cablecoefficient (8)6.1 Attenuation6.2 Polarization mode dispersion coefficient (8)7 Tables of recommended values (8)Appendix I – Lifetime expectation in case of small radius storage of single mode fibre (12)ITU-T Recommendation G.657Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cablefor the Access Network0 IntroductionWorldwide, technologies for Broadband Access Networks are advancing rapidly. Among these, the technology applying single mode fibre provides for a high-capacity transmission medium which can answer the growing demand for broadband services.The experience with the installation and operation of single mode fibre and cable based networks is huge and the ITU-T Rec. G.652 describing its characteristics has been adapted to this experience. Nevertheless, the specific use in an optical access networks puts different demands on the fibre and cable. Due to the dense distribution and drop-cable network, the limited space and the many manipulations in this part of the network, fibre and cable requirements may be optimized differently from the use in a general transport network. It is the aim of this recommendation to support this optimization by recommending different attribute values for the existing G.652 single mode fibre and cables and by recommending other classes of single mode fibre types.As for the network structures in which the single mode optical fibre cable is used, the reader is referred to the extensive information that is available in the references listed in clause 2.2.1 ScopeThis Recommendation describes two categories of single-mode optical fibre cable which are suitable for use in the access networks, including inside buildings at the end of these networks.Category A fibres are suitable to be used in the O, E, S, C and L-band (i.e. throughout the 1260 to 1625 nm range). Fibres and requirements in this category are a subset of G.652.D fibres and have the same transmission and interconnection properties. The main improvements are improved bending loss and tighter dimensional specifications, both for improved connectivity.Category B fibres are suitable for transmission at 1310, 1550, and 1625 nm for restricted distances that are associated with in-building transport of signals. These fibres have different splicing and connection properties than G.652 fibres, but are capable at very low values of bend radiusThe meaning of the terms used in this Recommendation and the guidelines to be followed in the measurement to verify the various characteristics are given in ITU-T Recs G.650.1 and G.650.2. The characteristics of these fibre categories, including the definitions of the relevant parameters, their test methods and relevant values, will be refined as studies and experience progress2 Referencesreferences2.1 NormativeThe following ITU-T Recommendations and other references contain provisions that, through references in this text, constitute the provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currentlyvalid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.[1] ITU-T Recommendation G.652; “Characteristics of a single mode optical fibre and cable”(2005)[2] ITU-T Recommendation G.650.1; “Definitions and test methods for linear, deterministicattributes of single-mode fibre and cable” (2004).[3] ITU-T Recommendation G.650.2; “Definitions and test methods for statistical and non-linearrelated attributes of single-mode fibre and cable” (2004).[4] IEC 60793-1-47; Optical fibre – Part 1-47; Measurements methods and procedures –macrobending loss (Ed 2.0; 2006).references2.2 InformativeThe following documents contain provisions which, through reference in this text, constitute other relevant information[1] ITU-T Recommendation L.13; “Performance requirements for passive optical nodes: Sealedclosures for outdoor environments”; (2003)[2] ITU-T Recommendation L.42; “Extending optical fibre solutions into the access network”,(2003)[3] ITU-T draft Recommendation L.ofdistr ; Optical Fibre Distribution of Access Networks forFttH” (COM 6 D6; Dec. 2005)[4] ITU-T draft Recommendation L.omif; “Optical fibre cable maintenance criteria for in-servicefibre testing in access networks” (COM 6 D16; Dec. 2005)[5] ITU-T Recommendation G.671; “Transmission characteristics of optical components andsubsystems” (2002).[6] Rec. Sub39 ; “Optical system design and engineering considerations”; (Com 15 C 99; Aug.2003)[7] “Access Network Standard Overview”; Issue 12; Febr 2006[8] IEC 60793-2-50 standard; “Optical fibres – Part 2-50: Product specifications – Sectionalspecification for class B single-mode fibres” (2004).3 Terms and definitionsFor the purposes of this Recommendation, the definitions and the guidelines to be followed in the measurement to verify the various characteristics are given in ITU-T Recs G.650.1 and G.650.2 apply. Values shall be rounded to the number of digits given in the Tables of Recommended values before conformance is evaluated.4 AbbreviationsThis Recommendation uses the following abbreviations:DGD Differential Group DelayPMD Polarization Mode Dispersionattributes5 FibreThe optical fibre characteristics that provide the essential design framework for fibre manufacture, system design and use in outside plant networks have been recommended in ITU-T Rec. G.652. In this clause, the emphasis is on attributes that optimize the fibre and cable for its use in broadband optical access networks, especially its improved macro-bending behaviour which supports small volume fibre managements systems and low radius mounting in telecom offices and customer premises in apartment buildings and single dwelling houses.For completeness also those characteristics of the fibre that provide a minimum essential design framework for fibre manufacture are recommended in this clause. Ranges or limits on values are presented in the tables of clause 7. Of these, cable manufacture or installation may significantly affect the cabled fibre cut off wavelength and PMD. Otherwise, the recommended characteristics will apply equally to individual fibres, fibres incorporated into a cable wound on a drum, and fibres in an installed cable.diameter5.1 ModefieldBoth a nominal value and tolerance about that nominal value shall be specified at 1310 nm. The nominal that is specified shall be within the range found in clause 7. The specified tolerance shall not exceed the value in clause 7. The deviation from nominal shall not exceed the specified tolerance.diameter5.2 CladdingThe recommended nominal value of the cladding diameter is 125 µm. A tolerance is also specified and shall not exceed the value in clause 7. The cladding deviation from nominal shall not exceed the specified tolerance.5.3 Core concentricity errorThe core concentricity error shall not exceed the value specified in clause 7.5.4 Non-circularity5.4.1 Mode field non-circularityIn practice, the mode field non-circularity of fibres having nominally circular mode fields is found to be sufficiently low that propagation and jointing are not affected. It is therefore not considered necessary to recommend a particular value for the mode field non-circularity. It is not normally necessary to measure the mode field non-circularity for acceptance purposes.5.4.2 Cladding non-circularityThe cladding non-circularity shall not exceed the value found in clause 7.wavelength5.5 Cut-offThree useful types of cut-off wavelength can be distinguished:a) cable cut-off wavelength λcc;wavelengthλc;cut-offb) fibrec) jumper cable cut-off wavelength λcj.The correlation of the measured values of λc,λcc and λcj depends on the specific fibre and cable design and the test conditions. While in general λcc < λcj < λc, a general quantitative relationship cannot be easily established. The importance of ensuring single mode transmission in the minimum cable length between joints at the minimum operating wavelength is paramount. This may be performed byrecommending the maximum cable cut-off wavelength λcc of a cabled single-mode fibre to be 1260 nm, or for typical jumpers by recommending a maximum jumper cable cut-off to be 1250 nm, or for worst case length and bends by recommending a maximum fibre cut-off wavelength to be 1250 nm. The cable cut-off wavelength, λcc, shall be less than the maximum specified in clause 7.loss5.6 MacrobendingMacrobending loss varies with wavelength, bend radius and number of turns about a mandrel with a specified radius. Macrobending loss shall not exceed the maximum value given in clause 7 for the specified wavelength(s), bend radii, and number of turns.The actual low radius exposure of the fibre is on relatively short lengths only. As the typical choice of the bending radius and the length of the bent fibre may vary dependent upon the design of the fibre management system and the installation practice, a specification at one single bending radius is not sufficient anymore. Although modelling results on various fibre types have been published, no general applicable bending loss model is available to describe the loss versus bend radius behaviour. For this reason the recommended maximum macrobending loss is specified at different bend radii in the tables in clause 7.As optical bending losses increase with wavelengths, a loss specification at the highest envisioned wavelength, i.e. either 1550 or 1625 nm, suffices. If required, a customer and supplier can agree on a lower or higher specification wavelength.NOTE 1 – A qualification test may be sufficient to ensure that this requirement is being met.NOTE 2 – In case another number of turns than the recommended number of turns is chosen to be implemented, it is assumed that the maximum loss that occurs in that deployment is proportional to the specified number of turns.NOTE 3 – In the event that routine tests are required, deviating loop diameters can be used instead of the recommended test, for accuracy and measurement ease. In this case, the loop diameter, number of turns, and the maximum permissible bend loss for the several-turn test should be chosen so as to correlate with the recommended test and allowed loss.NOTE 4 – In general, the macrobending loss is influenced by the choice of the values for other fibre attributes as the mode field diameter, chromatic dispersion coefficient and the fibre cut-off wavelength. Optimization with respect to macrobending losses usually involves a trade-off between the values of these fibre attributes.NOTE 5 – A mandrel winding method (Method A), which is described in IEC60793-1-47, can be utilized as a measurement method for macrobending loss by substituting the bending radius and number of turns specified in Table 7 of this recommendation.5.7 Material properties of the fibre5.7.1 Fibre materialsThe substances of which the fibres are made should be indicated.NOTE – Care may be needed in fusion splicing fibres of different substances. Provisional results indicate that adequate splice loss and strength can be achieved when splicing different high-silica fibres.5.7.2 Protective materialsThe physical and chemical properties of the material used for the fibre primary coating and the best way of removing it (if necessary) should be indicated. In the case of single jacketed fibre, similar indications shall be given.5.7.3 Proof stress levelThe specified proof stress σp shall not be less than the minimum specified in clause 7.NOTE 1 The definitions of the mechanical parameters are contained in 3.2/G.650.1 and5.6/G.650.1.NOTE 2 See also the informative Appendix I on this subject5.8 Refractive index profileThe refractive index profile of the fibre does not generally need to be known.5.9 Longitudinal uniformity of chromatic dispersionThis attribute is usually less relevant for applications in the access network. For more details see ITU-T Recommendation G.652.5.10 Chromatic dispersion coefficient for class A fibresThe measured group delay or chromatic dispersion coefficient versus wavelength shall be fitted by the three-term Sellmeier equation as defined in Annex A/G.650.1. (See sub clause 5.5 of G.650.1 for guidance on the interpolation of dispersion values to unmeasured wavelengths.)The Sellmeier equation can be used to fit the data in each range (1310 nm and 1550 nm) separately in two fits or as one common fit with data from both ranges.The Sellmeier fit in the 1310 nm region may not be sufficiently accurate when extrapolated to the 1550 nm region. Because the chromatic dispersion in the latter region is large, the reduced accuracy may be acceptable; if not, it can be improved by including data from the 1550 nm region when performing the common fit, or by using a separate fit for the 1550 nm region. It should be noted that a common fit may reduce the accuracy in the 1310 nm region.The chromatic dispersion coefficient, D, is specified by putting limits on the parameters of a chromatic dispersion curve that is a function of wavelength in the 1310 nm region. The chromatic dispersion coefficient limit for any wavelength, λ, is calculated with the minimum zero-dispersion wavelength, λ0min , the maximum zero-dispersion wavelength, λ0max , and the maximum zero-dispersion slope coefficient, S 0max , according to:()⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛λλ−λ≤λ≤⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛λλ−λ4min 0max04max 0max01414S D S The values of λ0min , λ0max , and S 0max shall be within the limits indicated in the tables of clause 7.NOTE 1 – It is not necessary to measure the chromatic dispersion coefficient of single-mode fibre on a routine basis.NOTE 2 - The chromatic dispersion for class B fibres is generally not critical for the application of this class of fibres and therefore its value is not included in the attributes listed in Table 7 class B. 6 Cable attributesSince the geometrical and optical characteristics of fibres given in clause 5 are barely affected by the cabling process, this clause gives recommendations mainly relevant to transmission characteristics of cabled factory lengths.Environmental and test conditions are paramount and are described in the guidelines for test methods.6.1 AttenuationcoefficientThe attenuation coefficient is specified with a maximum value at one or more wavelengths in both the 1310 nm and 1550 nm regions. The optical fibre cable attenuation coefficient values shall not exceed the values found in clause 7.NOTE – The attenuation coefficient may be calculated across a spectrum of wavelengths, based on measurements at a few (3 to 4) predictor wavelengths. This procedure is described in 5.4.4/G.650.1 and an example is given in Appendix III/G.650.1.6.2 Polarization mode dispersion coefficient for class A fibresWhen required, cabled fibre polarization mode dispersion shall be specified on a statistical basis, not on an individual fibre basis. The requirements pertain only to the aspect of the link calculated from cable information. The metrics of the statistical specification are found below. Methods of calculations are found in IEC 61282-3, and are summarized in Appendix IV/G.650.2.The manufacturer shall supply a PMD link design value, PMD Q, that serves as a statistical upper bound for the PMD coefficient of the concatenated optical fibre cables within a defined possible link of M cable sections. The upper bound is defined in terms of a small probability level, Q, which is the probability that a concatenated PMD coefficient value exceeds PMD Q. For the values of M and Q given in clause 7, the value of PMD Q shall not exceed the maximum PMD coefficient specified in clause 7.Measurements and specifications on uncabled fibre are necessary, but not sufficient to ensure the cabled fibre specification. The maximum link design value specified on uncabled fibre shall be less than or equal to that specified for the cabled fibre. The ratio of PMD values for uncabled fibre to cabled fibre depends on the details of the cable construction and processing, as well as on the mode coupling condition of the uncabled fibre. G.650.2 recommends a low mode coupling deployment requiring a low tension wrap on a large diameter spool for uncabled fibre PMD measurements.The limits on the distribution of PMD coefficient values can be interpreted as being nearly equivalent to limits on the statistical variation of the differential group delay (DGD), that varies randomly with time and wavelength. When the PMD coefficient distribution is specified for optical fibre cable, equivalent limits on the variation of DGD can be determined. The metrics and values for link DGD distribution limits are found in Appendix I of Rec. G.652.NOTE 1 – PMD Q specification would be required only where cables are employed for systems that have the specification of the max DGD, i.e., for example, PMD Q specification would not be applied to systems recommended in ITU-T Rec. G.957.NOTE 2 – PMD Q should be calculated for various types of cables, and they should usually be calculated using sampled PMD values. The samples would be taken from cables of similar construction.NOTE 3 –The PMD Q specification should not be applied to short cables such as jumper cables, indoor cables and drop cables.NOTE 4 - The PMD coefficient for class B fibres is generally not critical for the application of this class of fibres and therefore its value is not included in the attributes listed in Table 7 class B.7 Tables of recommended valuesThe following tables summarize the recommended values for the categories of fibres that satisfy the objectives of this Recommendation.Table 7 class A Attributes, contains the recommended attributes and values needed to support optimized access network installation with respect to macrobending loss while the recommended values for the other attributes still remain within the range recommended in the ITU-T Rec. G.652.D. Table 7 class B Attributes, contains the recommended attributes and values needed to support optimized access network installation with very short bending radii applied in fibre management systems and particularly for in- and outdoor installation. For the mode-field diameter and chromatic dispersion coefficients the recommended range of value might be outside of the range of values recommended in the ITU-T Rec. G.652.Table 7-class A : G.657 AttributesNOTE 1: G.652 fibres deployed at a radius of 15 mm generally can have macrobendinglosses of several dB’s per 10 turns at 1625 nmNOTE 2 The macrobending loss can be evaluated using a mandrel winding method(Method A of IEC60793-1-47), substituting the bending radius and thenumber of turns specified in this tableNOTE 3: This wavelength region can be extended to 1260 nm by adding 0.07 dB/kminduced Rayleigh scattering loss to the attenuation value at 1310 nm. In thiscase, the cable cut-off wavelength should not exceed 1250 nmNOTE 4 The sampled attenuation average at this wavelength shall be less than or equalto the maximum value specified for the range, 1310 nm to 1625 nm, afterhydrogen ageing according to IEC 60793 2-50 regarding the B1.3 fibrecategoryTable 7-class B : G.657 AttributesFibre attributesAttribute Detail ValueWavelength 1310 nmRange of nominal values 6.3-9.5 µmMode field diameter Tolerance ±0.4 µmNominal 125.0 µmCladding diameter Tolerance ± 0.7 µmCore concentricity error Maximum 0.5 µmCladding non-circularity Maximum 1.0%Cable cut-off wavelength Maximum 1260 nmRadius 15 10 7.5Number of turns 10 1 1Max. at 1550 nm (dB) 0.03 0.1 0.5Macrobending loss (Note 1) Max. at 1625 nm (dB) 0.1 0.2 1.0Proof stress Minimum 0.69 GPaChromatic dispersion coefficient (Note 2)TBD Cable attributesMaximum at 1310 nm 0.5 dB/kmMaximum at 1550 nm 0.3 dB/kmAttenuation coefficient Maximum at 1625 nm 0.4 dB/kmPMD coefficient (Note 3)TBDTable 7-class B : G.657 AttributesNOTE 1: The macrobending loss can be evaluated using a mandrel winding method(Method A of IEC60793-1-47), substituting the bending radius and thenumber of turns specified in this table.NOTE 2: Chromatic dispersion coefficients are not essential because the class Bfibre supports a part of optimized access network installation with verysmall bending radii. The minimum and maximum zero-dispersionwavelength can be considered as λ0min = 1300 nm and λ0max = 1420 nm,respectively, with the maximum dispersion slope S 0max = 0.10 ps/nm 2·km.NOTE 3: PMD coefficients are not essential because the class B fibre supports a partof optimized access network installation with very small bending radii.To illustrate the different macrobending specifications of the various classes defined in this clause, the recommended values have been represented in Figure 7-1 .17.50.0010.010.111057.51012.515bend radius (mm)Fig. 7-1 Macrobending loss data from Table 7, class A and BAppendix ILifetime expectation in case of small radius storage of single mode fibre 1 IntroductionFibre storage at reduced radius in fibre management systems and in closures may impose concerns with respect to the fibre lifetime expectation. Important parameters that determine the expected lifetime are the applied proof stress level when producing the fibre and the intrinsic strength of the fibre. The required values of these parameters have to be offset against the accepted failure rate in the network. In assessing the result of this, the major question is whether the single mode fibres as specified in this recommendation fulfill the requirements for a sufficiently long lifetime expectation. In this Appendix more background is given on this question.Network and network failureFor the lifetime calculations a simple network is considered consisting of a 1000 fibre distribution cable with a tree structure as indicated in Fig. AI-1. Dependent upon the installation and customer connection procedures of the operator, the individual fibres or groups of fibres are stored in cassettes in the main distribution cable or in the branches. For simplicity and as a worst case situation it is assumed that all 1000 fibres are passing 5 cabinets or enclosures with a storage cassette in every individual fibre link and in every cabinet or enclosure.Fig. AI-1Simplified network structureIn this particular network structure a failure rateresults in a 5 % probability that in 20 years one single spontaneous break in the total network. This probability has to be compared with the probability of other failures that may occur in the distribution network during the 20 years operational lifetime. Causes for this are in the failures due to re-work or re-configuration in the link or due to other causes of cable or cabinet damage. For most access network situations, it may be assumed that the stated failure probability due to spontaneous fibre breakage is much lower than the failure probability due to other causes. Each operator has to determine the accepted failure rate based on more precise data on the outside plant failure rate statistics.Fibre lifetime considerationsApart from the intrinsic fibre strength characteristics and the fibre environment, the main parameters that determine the failure rate per cassette are the length of the stored fibre and the bending radius R of the storage. The shorter storage length will have a positive influence, whereas the reduced bending radius will have a negative influence. Applying the Ref [1] life time model with more details in Ref [2], on current fibres with standard setting of the proof stress and normal proof-test performance, the resulting maximum storage length for a 20 years lifetime as a function of the fiber bend radius is indicated in Fig. AI-2 for different values of the static stress corrosion susceptibility coefficient n (fatigue parameter).1This appendix is based on the content of a delayed contribution COM 15 D 472 which was considered as being of value for inclusion in this informative part of the G.657 Recommendation。
2024年一级建造师考试《通信与广电工程管理与实务》真题及答案1.【单选题】以下通信网中具备信令功能的是( )A. 终端节点B. 交换节点C. 业务节点D. 传输系统正确答案:B我的答(江南博哥)案:未作答参考解析:交换节点其主要功能有:①用户业务的集中和接入功能,通常由各类用户接口和中继接口组成。
②交换功能,通常由交换矩阵完成任意入线到出线的数据交换。
③信令功能,负责呼叫控制和连接的建立、监视、释放等。
④其他控制功能,路由信息的更新和维护、计费、话务统计、维护管理等。
2.【单选题】EPON中光纤采用的传输方式是( )A. 单纤单向B. 单纤双向C. 双纤单向D. 双纤双向正确答案:B参考解析:PON采用波分复用(WDM)技术,上、下行信号分别用不同的波长在同一根光纤中传送,实现单纤双向传输。
3.【单选题】按下图搭建的传输中,乙,丙站未显示序号的纤芯采用跳线,拓扑结构式( )ABCD正确答案:B参考解析:环形网:通过闭合环路将所有节点连接起来,结构简单,易于实现。
4.【单选题】下列关于卫星通信说法正确的是( )A. 覆盖范围大,组网不灵活B. 保密性好,存在回波延迟C. 机动性好可自发自收监测D. 建站成本与距离有关正确答案:C参考解析:(1)通信距离远,且费用与通信距离无关(2)覆盖面积大,组网灵活,便于多址连接(3)通信频带宽,传输容量大。
(4)机动性好。
(5)通信线路稳定,传输质量高。
(6)可以自发自收进行监测5.【单选题】移动通信中,不同的路径产生自干扰的属于( )效应A. 阴影B. 远近C. 多径D. 多普勒正确答案:C参考解析:多径效应由于移动台所处地理环境的复杂性,接收到的信号不仅有直射波的主径信号,还有从不同建筑物反射过来及绕射过来的多条不同路径信号,而且它们到达时的信号强度、到达时间及到达时的载波相位都是不一样的。
所接收到的信号是上述各路径信号的矢量和,也就是说各路径之间可能产生自干扰。
HFRR试验方法标准的现状与发展■ 李宝石 夏 鑫 蔺建民 李 妍 陶志平(中国石化石油化工科学研究院)摘 要:低硫柴油出现润滑性能不足的问题,受到了广泛的关注。
润滑性模拟评价方法是研究并解决柴油润滑性问题的基础,因此寻求一种准确而高效的柴油润滑性能评价方法就显得尤为重要。
本文指出了柴油的润滑性问题及其影响。
介绍了高频往复试验法(HFRR法)的相关标准,以ISO 12156-1标准为例,详述了HFRR试验方法标准的修订变化,进一步概述了HFRR试验法在柴油润滑性能及相关领域的研究内容,意在阐明HFRR试验法在柴油润滑性相关研究方面的优势。
最后,针对我国现行的SH/T 0765-2005标准提出修订建议。
关键词:柴油,润滑性,标准,HFRR DOI编码:10.3969/j.issn.1002-5944.2020.12.039Current Status and Development of Standards on High-FrequencyReciprocating Rig (HFRR) Test MethodsLI Bao-shi XIA Xin LIN Jian-min LI Yan TAO Zhi-ping(SINOPEC Research Institute of Petroleum Processing )Abstract: Low sulfur diesel has insufficient lubrication performance, which has attracted extensive attention. Evaluationmethod of diesel lubricating performance is the basis for researching and solving the problem of diesel lubricity. Therefore, it is very important to seek an accurate and efficient diesel lubrication performance evaluation method. This article briefly reviews the origin of diesel lubricity and analyzes the factors of diesel lubricity, and introduces the relevant standards of the high-frequency reciprocating rig test methods (HFRR methods). It recounts in detail the revised changes of standards of HFRR test method, taking the standard of ISO 12156-1 for example. Furthermore, it summarizes the research contents of HFRR test methods in lubricating performance of diesel fuels, which are intended to clarify the advantages of the HFRR test method in diesel lubricity related research. Finally, it puts forward some revision proposals for the current standard of SH/T 0765-2005.Keywords: diesel fuel, lubricity, standard, HFRR检测认证基金项目:本文受国家科技部国家重点研发计划项目(项目编号:2017YFB0306605)资助。
四川电信光接入网工程设计、监理、施工项目经理认证考试试卷第Ⅰ部分:考试说明1、本试卷共四大题,满分为100分,考试时间为120分钟;2、本次考试采用闭卷、笔试形式;3、请在密封线内填写姓名、准考证号等信息,注意字迹清晰、工整,字迹无法辨认者成绩无效;4、请用钢笔、签字笔等答题,不能采用铅笔答题,不能在试卷背面答题。
第Ⅱ部分:个人信息与成绩第Ⅲ部分:以下为正式试题部分一、单项选择题(此大题包含20小题,每小题1.5分,共30分。
请将正确的选项填写在提干后的括号中。
)1、光纤包层外径一般是。
()A. 50umB.5umC.125umD.250um2、()光纤称为是色散移位光纤,又称为1310nm波长性能最佳的单模光纤,是目前广泛应用的常规单模光纤。
A.G652B.G653C.G657D.G 6563、损耗用损耗系数α(λ)表示,单位为()。
A.dBm/KmB. dB/KmC.dBD. dBm4、根据下图中光缆的截面可判断该光缆属于()。
A、层绞式光纤束光缆B、中心束管式带状光缆C、层绞式带状光缆D、骨架式带状光缆5、根据下图中光缆的截面可判断该光缆属于()。
A、室内蝶形引入光缆B、管道蝶形引入光缆C、自承式蝶形引入光缆D、楼道蝶形引入光缆6、蝶形引入光缆参数为;非金属加强件,PVC护套、室内引入,产品型号为()。
A、GJXVB、GJXFHC、GJXFVD、GJXH7、EPON数据业务下行波长、CATV业务下行波长、ONU上行波长分别为()。
A、1490nm、1550 nm、1310 nmB、1310 nm、1490nm、1550 nmC、1550 nm、1490 nm、1310 nmD、1550 nm、1310 nm、1490 nm8、PON是一种基于()拓扑技术的无源光网络。
A、P2PB、P2MPC、TDMAD、FDMA9、所谓无源,是指()中不含有任何电子器件及电子电源等有源设备。
A、OLTB、ONUC、ODND、ODF10、PON系统采用()技术,使得不同方向使用不同波长的光信号,实现单纤双向传输。
G.656光纤标准研究进展
1. 研究历史简介
从2002年5月日本NTT和CLPAJ在日内瓦ITU-T SG15会议上 联合提出研
究这类光纤的文稿以来,期间经历了六次会议:2002年10月美国加州Santa Rosa
中期会议; 2003年1月SG15全会,2003年6月美国Corning举行了一次中期
会议,2003年10月的第十五研究组全会,2004年2月在Geneva召开的专家中
期会议,以及新近结束的2004年4月第十五研究组全会。下面介绍2003年6
月以来四次会议的研究进展。
2. 2003年6月Corning 中期会议
2003年6月5日至6日,来自六个国家的14名专家参加了在美国康宁城举
行的中期会议,关于新光纤建议G.656,有如下的结果【1】:
G.656建议的起草人D.Tanaka在WD 15-11文件中提交了该建议的 04版,
该建议是关于S,C,L三波段的非零色散位移光纤。 Pirelli 和 Telecom Italia
在WD 15-6中, Alcatel在WD 15-12中, OFS在WD 15-13 中,NTT 和 CLPAJ
在 WD 15-15文稿中对该建议中内容提出了各自的观点。并就色散最大值和最小
模场直径进行了广泛的讨论,但没有达成共识。在此会议之前的观点已被整理到
该建议的04版之中。最新的讨论结果将被纳入新的版本提交到2003年10月在
日内瓦召开的SG15全会期间讨论。2003年10月仍然是该建议通过的目标期限,
但是有些专家表达了他们的忧虑:该建议可能会被推迟通过,因为当时的市场对
该光纤的兴趣不是很高。会议鼓励大家针对该光纤的应用多提供文稿。
3. 2003年10月第十五研究组全会【2】
2003年10月在Geneva召开了第十五研究组全会,Q15的专家针对G.656
提出了3篇文稿,本建议的起草人日本的D.Tanaka先生通过文稿D.893 提出了
该建议05版,起草人提出将五项Sellmeier色散模拟方案在附录I中,还可能
加入四阶多项式拟合的内容。
Alcatel公司的文稿D.867通过与G.655光纤的比较,数值模拟了G.656光
纤的模场直径和色散对传输性能的影响,提出了该新光纤的模场直径和色散的参
数范围。
日本NTT和CLPAJ的文稿D.898讨论了G656光纤的可能应用,同时也提出
了模场直径和色散的参数范围,并表达了希望能够在本研究期使该建议得到通过
(consent)。
在D.893和D.898文稿中提出的模场直径和色散参数均存在几个不同的范围
(选择),起草人将继续其通讯联络工作以达到:一,澄清该光纤的应用领域;
二,通过讨论使光纤指标的数值范围达成一致。
会议同意在2004年2月2日在日内瓦召开中期会议,讨论该光纤建议将是
中期会议的首要议题,而其目的是使该建议在2004年4月的日内瓦第十五研究
组会议上得到通过。
4. 2004年2月专家中期会议【3】
由于2003年10月会议关于G.656建议的进展不大,2004年2月2日在日
内瓦召开一次专家中期会议,来自五个国家的13名代表参加了本次专家中期会
议,有9篇文稿(见表一)集中讨论G.656建议。首先是起草人D.Tanaka先生在
文稿WD15-9中提出了G.656建议草案的06版,其中包括了自2003年10月会议
以来的通信联络工作的结果。有八位专家参加了通信联络组的工作(包括本文作
者),其中六位支持在2004年4月通过G.656建议;有两位觉得鉴于当前市场
情况该建议未成熟,通过为时尚早,但同意继续通过通信联络方式在4月会议以
前研究未决的问题,使该建议在4月得到通过的可能性仍然存在。
主要的悬而未决的问题:
1)S波段DWDM应用是否成熟到可以标准化的程度?可用的商用器件(如S
波段放大器)存在的证明;用户在S波段采用DWDM技术的承诺。
2)能否通过小幅度修改G.655建议,达到足够覆盖C和L波段10 Gb/s和
40 Gb/s应用的目的?或者针对这些应用是否需要在G.656建议中添加一些重要
的指标?如果这样做了,是否能够成为4月通过该建议的足够理由?
3)关于G.656光纤的色散系数,究竟定为12,14,或是15 ps/nm.km,存在
不同意见。解决这一分歧的一个新的尝试是由荷兰的DFT公司和中国的长飞公司
联合提出的,光纤的色散范围为2~14 ps/nm.km, 这一提案在4月会议之前应
该继续研究。
5. 2004年4月会议【4】
从2004年2月的中期会议以来,起草人D.Tanaka先生协调各国专家(包括
中国)积极参与通信联络组的工作,解决了该光纤建议存在的分歧,终于在2004
年4月会议前达成了一致。起草人D.Tanaka先生在D.1010中提出了该建议的准
备通过(for consent)的文本,文本中还总结了通信联络工作。在文稿
D.1022(USA),D.1078 (Corning), D.1169 (Italy) 和D.1192 (Alcatel)中,大
家一致同意:G.656建议草案仅包含一个光纤类别,它适宜CWDM和DWDM系统的
应用。
在意大利的文稿D.1169中提到:考虑到下个研究期会有更多的讨论,起草
G.656建议时要使某些光纤参数的数值范围尽可能大以方便未来的讨论。
本次会议的结果是G.656光纤建议得到通过(consented)。
6. 中国对通过G.656建议的贡献
在2004年2月的专家中期会议上,中国贡献了两篇文稿,两篇文稿均支持
G.656建议在2004年4月会议得到通过,并对该光纤的应用和具体的光纤指标
提出了建议。其中一篇是长飞公司联合荷兰DFT公司共同提出的【5】。该文稿
同意该光纤建议适用于CWDM和DWDM应用,并建议将Raman放大加入该建议;考
虑到制造容差和光纤的色散补偿是基于光纤链路色散,建议光纤色散值的范围为
2~14 ps/nm.km; 支持该光纤建议仅包含一个光纤类别,并反对将色散符号改为
可正可负,均被采纳。另外一篇文稿来源于中国信息产业部【6】,是由长飞光
纤光缆有限公司,电信科学技术第五研究所,武汉邮电科学研究院联合提出的。
文稿代表中国支持G.656光纤建议在2004年4月通过,并对该光纤的应用和具
体指标提出了建议,该文稿建议的内容绝大部分被采纳。
7. G.656光纤的应用范围
本建议描述了一种单模光纤,在1460nm~1625nm波长范围内,其色散为一个
大于零的数值。该色散减小了链路中非线性效应,这些非线性效应对DWDM系统
非常有害。该光纤在比G.655光纤更宽的波长范围内,利用非零色散减小FWM,XPM
效应。未来将决定是否能将该光纤的应用扩展到1460nm~1625nm波长范围以外。
在1460nm~1625nm波长范围内,该光纤可以用于CWDM和DWDM系统的传输。
目前该类光纤可以应用于下列系统建议:G.691, G.692, G.693, G.695和
G.959.1。
8. G.656光纤的主要技术指标【7】
表二中概括了本光纤为了满足其系统应用所推荐的参数数值。
表二G.656的光纤和光缆属性
1如果 Raman泵浦在这个波长范围以外应用,光纤特性必须与泵浦的要求
相适应。
2如果针对某种光缆结构,成缆前后光纤的PMD系数的变化关系比较清楚,
在满足光缆PMD系数要求的前提下,未成缆光纤的最大PMD系数可由光缆制造商
规定。
表三为G.656光缆链路的代表性指标:
9.结论:
本建议的通过对于光纤通信技术的提升,对于采用新技术推动新的市场两个
方面都具有非常重要的意义。