当前位置:文档之家› 苏里格气田定向井井壁稳定性分析研究

苏里格气田定向井井壁稳定性分析研究

苏里格气田定向井井壁稳定性分析研究
苏里格气田定向井井壁稳定性分析研究

结构动力稳定性的分析方法与进展_何金龙

结构动力稳定性的分析方法与进展 何金龙1,法永生2 (1.卓特建筑设计有限公司,广东佛山528322;2.上海大学土木工程系,上海200074) 【摘 要】 就目前结构动力稳定性问题这一研究领域的若干基本问题,常用的处理方法,判别准则与实验研究方法以及目前取得的主要成果作了简要总结和综述,并且对结构动力稳定性分析与研究今后的发展方向进行了展望。 【关键词】 结构; 动力稳定性; 处理方法; 判别准则; 实验研究 【中图分类号】 T U311.2 【文献标识码】 A 根据结构承受荷载形式的不同,可以将结构稳定问题分为静力稳定和动力稳定两大类。动力载荷作用下结构的稳定性问题是一个动态问题,由于时间参数的引入,使问题变得极为复杂。对于结构动力稳定性的定义一直难以确切给出,这是因为结构自身动力特性具有复杂性使得其在数学意义上的定义很难予以准确表达[1]。长期以来,力学工作者致力于结构稳定性问题的研究,在发展了经典稳定性理论的同时也极大地推动了动力稳定理论研究的前进。如稳定性判定准则的建立、临界载荷的确定、初缺陷的影响或后分叉分析等。理论分析和实验研究逐渐增多,使得这门学科不仅在理论上形成了一个庞大而复杂的体系,而且具有重要的实用价值。可以说,现在的结构动力稳定性研究分析已经是结构动力学、有限元法、数值计算方法及程序设计等诸多学科相互交叉、有机结合的产物,属于现代工程结构研究领域中的一个重要分支。 1 结构动力稳定性的分类及主要的研究问题 结构动力稳定性就其承载的动力形式大致可以分为三类。 (1)结构在周期性荷载作用下的动力稳定性。在简谐荷载等周期性荷载作用下,当结构的自振频率与外载荷的强迫振动频率非常接近时,结构将产生强烈的共振现象;当结构的横向固有振动频率与外荷载的扰动频率之间的比值形成某种特定的关系时,结构将产生强烈的横向振动,即参数振动。对于这类问题,前苏联学者符华·鲍络金(Bolito n)在其著作《弹性体系的动力稳定》中给出了较全面的分析和论述。他们导出的区分稳定区和不稳定区的临界状态方程是一个周期性方程,即M athieu-Hill方程。在周期相同的解之间存在着不稳定区域,便把问题归结为确定微分方程具有周期解的条件,从而解决了稳定的判别问题。但是对于大变形的几何非线形结构,结构的刚度矩阵需要经过迭代,微分方程非常复杂,这些理论将难以成立。 (2)结构在冲击荷载作用下的动力稳定性。在这种情况下,结构的动力稳定性与冲击类型密切相关,而且首要问题在于合理、实用的判别准则,它不仅要在逻辑上站得住脚,又要在实际上可行,遗憾的是这个问题至今未能形成一致的看法。目前对结构承受瞬态冲击作用下的冲击稳定性的试验和理论研究主要集中在理想脉冲以及阶跃荷载下的动力稳定性。在脉冲荷载作用下发生的动力屈曲称为脉冲屈曲,已有的研究表明[2][3][4],脉冲屈曲是一类响应式屈曲或者动力发展型屈曲。阶跃荷载是一类具有恒定幅值和无限长持续时间的载荷形式。在试验或者实际当中,固体与固体之间的冲击引起的屈曲就可看作脉冲冲击。 (3)结构在随动荷载作用下的动力稳定性。所谓随动荷载是指随着时间的变化荷载的幅值保持不变而方向发生变化的作用力,它是非保守力。它的分析将极其复杂,目前还难以见到可借鉴的动力稳定性分析文献。因此,许多学者通常采用结构动力学响应分析常用的手段,将这类荷载作为确定性荷载进行分析。通过对结构的动力平衡路径全过程进行跟踪,根据结构的各参数在动力平衡路径中的变化特性,对结构的动力稳定性进行有效的判定[5]。 综上所述,目前国内外动力稳定性研究的现状大致为:对周期荷载下的参数动力稳定性问题、在冲击荷载作用下的冲击动力稳定性问题和阶跃荷载下的参数阶跃动力稳定性问题研究较多,并取得了满意的效果[6][7][8]。恒幅阶跃载荷及矩形脉冲载荷或其它冲击载荷作用下杆的动力稳定问题也有很多研究,并从不同的角度建立了一些稳定性判定准则。但冲击载荷作用下板的动力稳定问题还没有获得广泛和深入的研究。对于较为复杂的冲击荷载作用下结构的动力稳定性问题,目前的研究主要集中于理想脉冲载荷和阶跃载荷作用下结构的动力稳定问题。在这类问题的分析中,最常采用的屈曲准则有B-R准则、Simitses总势能原理和放大函数法。对非周期激振、参数激振和强迫激振耦合引起的动力稳定问题研究较少;对弹性基本构件和简单模型研究较多(如周期激励下的柱子、梁、拱及壳等已得到了成功的分析),对复杂工程结构研究较少。对于在地震、风荷载等任意动力荷载作用下的具有较强的几何非线性的结构的动力稳定性问题,国内外这方面的文献资料虽然最近几年也有一些,但距离真正地合理解决这类动力稳定性问题还有许多工作要做。 [收稿日期]2006-06-12 [作者简介]何金龙(1962~),男,工学学士,一级注册结构工程师,主要从事工业与民用建筑设计工作。 155  ·工程结构·  四川建筑 第27卷2期 2007.04

井壁稳定

井壁稳定问题是钻井工程中经常遇到的一个十分复杂的难题,随着勘探领域向新区扩展, 钻遇地层日趋复杂, 井壁不稳定已成为实现勘探目的的障碍。 由于这些地区地层所造成的井壁不稳定, 既影响了钻井速度与测井、固井质量, 又使部分地区无法钻达目的层,影响勘探目的实现。 地层矿物组分与理化性能是研究井壁不稳定机理与技术对策的基础。 1、地层组构分析 利用X射线衍射、扫描电镜、薄片分析、透射电镜及测井资料对地层矿物组分、矿物分布层理、裂隙发育状况进行分析。 2、地层理化性能分析方法 岩石密度、阳离子交换容量、膨胀率、分散性(滚动试验法与C ST 法)页岩稳定指数、比表面积、夸电位、活度、可溶性盐类、胶体含量、岩石强度与硬度及地层压力系数等。 3、井壁稳定问题 钻井过程中的井壁坍塌或缩径(由于岩石的剪切破坏或塑性流动)和地层破裂或压裂(由于岩石的拉伸破裂)两种类型。 井壁不稳定间题是力学问题, 又是化学问题, 归根结底仍是力学问题。 1、化学因素 井壁不稳定的原因及研究方法 1、井壁不稳定的原因 如果经验内的泥浆密度过低,井壁应力将超过岩石的抗剪强度(shear strength)而产生剪切破坏(shear failure,表现为井眼坍塌扩径或屈服缩径),此时的临界井眼压力定义为坍塌压力(collapse pressure); 如果泥浆密度过高,井壁上将产生拉伸应力,当拉伸应力(tensile stress)大于岩石的抗拉强度(tensile strength)时,将产生拉伸破坏(tensile failure,表现为井漏),此时的临界井眼压力定义为破裂压力(fracture pressure)。 因此,在工程实际中,可以通过调整泥浆密度,来改变井眼附近的应力状态(stress state),可以达到稳定井眼的目的。 2、井壁失稳与岩石破坏类型的关系 井壁失稳(unstable borehole)时岩石的破坏类型主要有两种:拉伸破坏(tensile failure)、剪切破坏(shear failure)。 剪切破坏又分为两种类型: 一种是脆性破坏,导致井眼扩大,这会给固井、测井带来问题。 这种破坏通常发生在脆性岩石中,但对于弱胶结地层由于冲蚀作用也可能出现井眼扩大; 另一种是延性破坏,导致缩径,发生在软泥岩、砂岩、岩盐等地层,在工程上遇到这种现象要不断的划地眼,否则会出现卡钻现象。拉伸破坏或水力压裂会导致井漏,严重时可能造成井喷。 实际上井壁稳定与否最终都表现在井眼围岩的应力状态。如果井壁应力超过强度包线,井壁就要破坏;否则井壁就是稳定的。 3、井壁失稳的原因 通过以上分析,可以发现,影响井壁稳定的因素概括起来可以分为四大类;(1)地质力学因素,原地应力状态、地层空隙压力、原地温度、地质构造特征

定向井钻井工程师技术等级晋升标准

定向井钻井工程师技术等级晋升标准 四级工程师 1专业理论知识 1.1了解钻井工艺的主要环节(如钻进、下套管、注水泥、电测等)及其实现方法; 1.2能看懂定向井工程设计书内容; 1.3熟知各种常规钻具和套管的技术规范和机型; 1.4了解钻井设计的基本原则、设计程序、设计内容; 1.5掌握井眼轨迹计算参数和计算方法; 1.6掌握定向井专用工具的工作原理及其技术规范; 1.7掌握单点、电子多点、地面记录陀螺的工作原理和技术规范; 1.8掌握井下动力钻具的工作原理、内部结构和技术规范; 1.9了解海洋钻井平台主要设备及其技术性能规范; 1.10了解海洋钻井平台主要仪器、仪表的用途及其技术性能; 1.11掌握海洋常用的钻井工具及其技术规范; 1.12了解钻井取芯基本原理; 1.13了解海洋钻井作业的基本安全常识。 2操作知识 2.1掌握单点、电子多点和地面记录陀螺操作技能,能独立地进行井眼轨迹参数测量和计算; 2.2会正确选用定向井专用工具,并能正确组合; 2.3会正确选用动力钻具,掌握其正确操作要领; 2.4能正确判断钻井指重表、泵压表、扭矩表、流量表,并根据以上仪表读数判断井下情况(如钻压、遇卡、遇阻等); 2.5会正确选用配合接头及其上扣扭矩; 2.6能正确选用各种钻井工具,并掌握其操作要领; 2.7会看懂较复杂的钻井工具装配图,并能绘制简单零配件的机加工图; 2.8会记录钻井班报表、日报表以及定向井测量数据记录; 2.9能进行日常定向井专业英语交流; 2.10能识别各种型号取芯工具、取芯钻头基本类型和应用范围、性能参数,以及组装、保

养取芯工具的技能。 2.11油田常用单位(英制)和公制单位熟练换算; 2.12能用英语进行作业技术交流。

大跨度公路隧道长期稳定性分析.

大跨度公路隧道长期稳定性分析 6.1 引言 前面的分析都是基于岩体的弹塑性本构关系进行的,未考虑时间效应和长期蠕变的影响。前人研究发现,地下工程开挖后一段很长时间内,支护或衬砌上的压力一直在变化,可见岩石的蠕变对于隧道特别是深埋隧道围岩的变形和长期稳定性,具有重要影响[78]。为保证现场隧道的长期稳定运行,必须考虑到长期蠕变效应。 蠕变是当应力不变时,应力随时间增加而增长的现象,是流变效应的最重要表现特征。岩石的蠕变曲线有三种主要类型[88],见图6-1。 图6-1 岩石蠕变曲线 图中三条蠕变曲线是在不同应力下得到的,C B A σσσ>>,蠕变试验表明,当岩石在较小荷载σC 持续作用下,变形量虽然随时间增长有所增加,但变形速率逐渐减小,最后变形趋于一个稳定的极限值,这种蠕变称为稳定蠕变;当荷载σA 很大时,变形速率逐渐增加,变形量一直加速增长,直到破坏,蠕变为不稳定蠕变;当荷载较大时,如图中的abcd 曲线所示,此时根据应变速率不同,蠕变过程可分为3个阶段:第一阶段,如曲线中ab 所示,应变速率随时间增加而减小,故又称为减速蠕变阶段或初始蠕变阶段;第二阶段,如曲线中bc 所示,应变速率保持不变,故又称为等速蠕变阶段;第三阶段,如曲线中cd 所示,应变速率迅速增加直到岩石破坏,故又称为加速蠕变阶段。 一种岩石既可发生稳定蠕变也可发生不稳定蠕变,这取决于岩石应力的大小。超过某一临界应力时,蠕变向不稳定蠕变发展。小于此临界应力时,蠕变按稳定蠕变发展,通常称此临界应力为岩石的长期强度。对岩石隧道来讲,由于开挖和支护导致应力重分布,围岩产生不同的应力分布状态,在进行长期蠕变效应分析时,应计算相应监测点的应力和变形状态,判断其蠕变效应。 众所周知,固体本构关系有三种:弹性、塑性和粘性。文献中,通常将围岩应力小于屈服极限时应力应变与时间的关系称为粘弹性问题,将围岩应力大于屈服极限时应力应变与时间的关系称为粘塑性问题。研究表明,在隧道开挖完毕后的长期运营过程中,大多数岩石都表现出瞬时变形(弹性变形)和随着时间而增长的变形(粘性变形),即岩石是粘弹性的[80];为使巷道维持稳定状态,人们也总是力图使围岩应力小于屈服极限。 下面采用FLAC 软件进行数值分析,版本为FLAC2D 5.00.355。 6.3 弹塑性数值分析 ε

深水高温高压井测试期间井壁稳定性分析方法研究

深水高温高压井测试期间井壁稳定性分析方法研究 随着我国海洋油气勘探开发逐步迈向深水,常规浅水测试工程设计技术方法在深水领域的局限性逐渐暴露出来,文章分析了目前深水测试作业常用的井壁稳定性分析方法,对比了深水测试作业与钻完井作业井眼稳定性分析的区别,分析推荐了适用于深水测试作业的井壁稳定性分析方法及相关参数确定方法,并研究了深水高温高压环境对测试期间井壁稳定性的影响,取得了一定的认识。 标签:测试工程;井壁稳定性分析;深水;高温高压;规律分析 1 简介 随着荔湾3-1和陵水17-2等一系列重大油气项目的实施,我国逐步加快了南海深水空白区块的油气勘探开发步伐。然而,南海西部深水高温高压油气藏条件对我国当前的海洋深水钻完井测试工程技术体系提出了重大的技术挑战。 测试期间的井壁稳定性分析主要服务于测试期间完井方式的选择,如井壁稳定性分析认为测试期间井壁有可能垮塌,则必须采取具有井壁支撑功能的完井方式,如独立筛管完井或者砾石充填完井等。我国海上测试作业期间的井壁稳定性分析一般沿用开发井完井的地层出砂预测分析方法,如现场观测法、经验法、数值计算法和实验法等。 其中,经验公式法最为常用,我国南海东部和西部绝大多数浅水和深水测试井在测试工程设计阶段都采用了经验公式法中的单轴抗压强度法(也是目前我国海上油气田完井设计 中的常用方法)作为测试期间的井壁稳定性分析方法,如式(1)所示[1]。 单轴抗压强度法是Shell公司根据大量已钻井数据总结得到的经验公式,对于附近有大量邻井存在的区域,应用效果良好。该方法成功应用的关键在于经验系数的准确设定,然而,我国深水油气勘探开发刚刚起步,深水井的钻井数量极其有限,南海绝大部分深水区域都没有进行过钻井作业[2],在这些区域应用单轴抗压强度法就会存在无邻井信息确定和校核经验系数的问题。另外,单轴抗压强度法是针对地层出砂问题提出的经验公式方法,主要目标地层为砂岩地层,对于碳酸盐岩地层的适用性还有待进一步验证,我国南海流花4-1和流花11-1三井区就存在一些礁灰岩储层。 2 适用于测试工况的井壁稳定性分析方法 测试作业是在钻井作业结束之后针对储层储量和产能而开展的测试工作,主要是通过控制地层流体放喷求得所需信息和数据。本文针对从未开发的偏远区块开发分析对比了探井钻井、评价井测试以及生产井完井期间井壁稳定性分析研究可利用数据以及根据工况特点需要考虑因素的不同,如表1所示,认为目前测试

钻杆受力分析篇

第三章钻受力分析 3.1 作用在钻柱上的基本载荷 钻柱的受力状态与所选用的钻井方式有关,不同的位置上作用不同的载荷。概括起来,作用在钻柱上的基本载荷有以下几种: (1)轴向力。处于悬挂状态下的钻柱,在自重作用下,由上到下均受拉力。最下端的拉力为零,井口处的拉力最大。在钻井液中钻柱将受到浮力的作用,浮力使钻柱受拉减小。起钻过程中,钻柱与井壁之间的摩擦力以及遇阻、遇卡,均会增大钻柱上的拉伸载荷。下钻时钻柱的承载情况与起钻时相反。循环系统在钻柱内及钻头水眼上所耗损的压力,也将使钻柱承受的拉力增大。钻铤以自重给钻头加钻压,造成钻柱下部处于压缩状态。 (2)径向挤压力。应用卡瓦进行起下钻作业时,由于卡瓦有一定的锥角,在钻柱上引起一定的挤压力。中途测试时,钻柱上也要承受管外液柱的挤压力。 (3)弯曲力矩。弯曲力矩的产生是因钻柱上有弯曲变形存在;引起钻校弯曲变形的主要因素是给定的钻压值超过了钻柱的临界值。在转盘钻井中,钻柱在离心力的作用下,亦会造成弯曲。由于钻柱在弯曲井眼内工作,也将产生弯曲。在弯曲状态,钻柱如绕自身轴线旋转,则会产生交变的弯曲应力。 (4)离心力。钻柱在钻压的作用下会产生弯曲,在一定的条件下,弯曲钻柱会围绕井眼中心线旋转而产生离心力,促使钻柱更加弯曲。 (5)扭矩。钻头破碎岩石的功率是由转盘通过方钻杆传递给钻柱

的。出于钻柱与井壁和钻井液有摩擦阻力,因而钻柱所承受的扭矩井口比井底大。但在使用井底动力钻具(涡轮钻具、迪纳钻具等)时,作用在钻柱上的反扭矩,井底大于井口。 (6)振动载荷。使钻柱产生振动的干扰力也是作用在钻柱的重要载荷(图 2-1)。在钻井过程中,用钻柱将钻头送至井眼底部并向钻头传递动力,靠钻头的牙齿、切削刃和射流破碎岩石形成井筒;通过钻柱中心的圆管向井下传递高压钻井液,靠钻井液的流动把岩石碎屑携至地面并从钻井液中除掉岩屑。为了控制井眼钻进的方向,靠近钻头的一段钻柱外径和抗弯刚度较大,并在一定位置上安放一定规格的稳定器,下部钻柱只有稳定器和钻头接触井壁,钻柱本体则不与井壁接触。由于钻头牙齿间断地与地层接触或岩石的间歇破碎,导致钻头并带动钻柱振动。钻柱振动按形式分为纵向振动、扭转振动和横向振动三类[13]。 (1)纵向振动。纵向振动指的是钻柱沿其轴向的伸缩运动。该种振动产生的原因是井底不平、钻头牙齿间歇压入岩石和岩石间歇破碎。钻头的振动以弹性波的形式通过钻柱向地面传播,到达地面后再沿钻柱向钻头回传。由于钻井液的阻尼作用,在传播的过程中,振动波形逐步变化,振幅逐步减小但是,当钻头振动的频率为钻柱固有频率的整数倍时,钻柱将处于共振状态。钻柱内的交变应力和振幅相当大,导致钻柱断裂或粘扣。研究钻柱的纵向振动对设计钻柱、设计减振器和选择合适的转速有重要的指导意义。 (2)扭转振动。扭转振动指的是钻柱绕其中心线的旋转运动。该

药物稳定性试验统计分析方法

药物稳定性试验统计分析方法 在确定有效期的统计分析过程中,一般选择可以定量的指标进行处理,通常根据药物含量变化计算,按照长期试验测定数值,以标示量%对时间进行直线回归,获得回归方程,求出各时间点标示量的计算值(y'),然后计算标示量(y')95%单侧可信限的置信区间为y'±z ,其中: 2 2 02)()(1X Xi X X N S t z N -∑-+ ??=- (12-21) 式中,t N -2—概率0.05,自由度N-2的t 单侧分布值(见表12-4),N 为数组;X 0—给定自变量;X —自变量X 的平均值; 2 -= N Q S (12-22) 式中,xy yy bL L Q -=;L yy —y 的离差平方和,N y y L yy /)(2 2∑-∑=;L xy —xy 的离差乘 积之和N y x xy L xy /))((∑∑-∑=;b —直线斜率。 将有关点连接可得出分布于回归线两侧的曲线。取质量标准中规定的含量低限(根据各品种实际规定限度确定)与置信区间下界线相交点对应的时间,即为药物的有效期。根据情况也可拟合为二次或三次方程或对数函数方程。 此种方式确定的药物有效期,在药物标签及说明书中均指明什么温度下保存,不得使用“室温”之类的名词。 例:某药物在温度25±2℃,相对温度60±10%的条件下进行长期实验,得各时间的标示量如表12-4。 表12-4 供试品各时间的标示量 时间/月 0 3 6 9 12 18 标示量/% 99.3 97.6 97.3 98.4 96.0 94.0 以时间为自变量(x ),标示量%(y )为因变量进行回归,得回归方程 y= 99.18-0.26x ,r=0.8970,查T 单侧分布表,当自由度为4,P=0.05得 t N -2=2.132 9279.04 444 .32==-= N Q S 210)(2=-∑X X i

钻井液性能及井壁稳定问题的几点认识

钻井液性能及井壁稳定问题的几点认识摘要对钻井液中膨润土含量、钻井液密度、抑制性、滤失量、固相控制、处理剂质量和井壁稳定等问题进行了探讨,认为根据具体情况合理控制并提前考虑调整钻井液性能,有利于改善钻井液的稳定性和提高抗温、抗污染能力。并提出在井壁稳定和堵漏处理中要用动态的观念进行分析,以提高措施的针对性和有效性。 关键词钻井流体;膨润土含量;密度;抑制性;滤失量;固相控制;井壁稳定;井漏 目前国内钻井液技术水平虽然可以满足钻井作业要求,但仍然需要不断的完善与提高,通过技术进步使钻井液技术水平再上新台阶。从技术角度来讲,钻井液永远会面临新的问题,要有新思路,在解决问题中不能仅靠经验,更要注重新技术的应用。从钻井液性能来讲,应该从钻井一开始就重视性能调节,做好预处理,这样可以保证全过程性能稳定,产生好的综合效果,而一旦等问题出来再处理不仅会消耗更多的处理剂,而且会产生一系列的复杂情况,不利于节约成本和提高效率。针对钻井液技术现状及现场存在的一些问题,从提高钻井液技术水平的角度出发就有关问题谈几点认识,以供参考。 1主要认识 1.1膨润土含量 膨润土是钻井液中不可缺少的东西,钻井液性能和膨润土密切相关。对于钻井液体系,要重视膨润土含量的控制,膨润土含量的控制要从钻井一开始就考虑。膨润土含量高是钻井液性能不稳定的根源,合理控制膨润土含量可以提高钻井液的高温稳定性和抗盐污染能力。在满足钻井液携砂能力的情况下尽可能降低膨润土含量,这样可以减少处理剂的消耗,减少其他一些不必要的麻烦。特别是钻遇易造浆地层时,更应该注意膨润土含量的控制。从某种意义上讲,膨润土含量的控制是钻井液技术水平提高的具体体现。近年的实践表明,由于现在的钻井液体系膨润土含量控制较好,稀释剂用量已明显减少,甚至不再使用,说明钻井液稠化现象随着膨润土含量的控制已经得到解决。 1.2钻井液密度 密度的确定,首先是满足安全钻井的需要,其次才考虑其他方面。不同地区地质条件不同,对密度要求也不同。通常,降低密度有利于提高钻井速度,减少钻井液的流动阻力和内摩擦力,但有时也不完全是这样,要看地层的稳定性和地层流体的活度哪方面占优势。有一种观念认为密度低可以保护产层,但这是片面的,有时反而需要提高密度形成暂堵层来保护

稳定性分析

Ⅰ形大高宽比屈曲约束钢板剪力墙的试验和理论研究 [摘要]基于普通钢板剪力墙具有易发生平面外屈曲,不能充分发挥钢板剪力墙的承载力;在往复荷载作用下,滞回曲线捏缩效应严重,不利于耗能减震;钢板耐火性能差等主要缺点,提出一种新型大高宽比屈曲约束钢板剪力墙。本文通过缩尺模型试验对4组该屈曲约束钢板剪力墙模型进行单调加载和循环加载试验,并与一组纯钢板剪力墙试验进行对比。试验表明,预制混凝土钢板剪力墙可以有效地对钢板平面外失稳进行约束,从而极大的提高了钢板剪力墙的承载力和耗能性能。同时还推导了这种屈曲约束钢板剪力墙初始刚度和屈服承载力的理论公式,通过与实验结果和有限元分析结果的对比,验证该理论公式的正确性。 [关键词]屈曲约束;钢板剪力墙;缩尺模型试验 Experimental and theoretical study on slim Ⅰ-shape buckling-restrained steel plate shear walls [Abstract]As a promising lateral load resisting elements in new or retrofit construction of building s, buckling-restrainedcomposite steel plate shear wall clamped with concrete plates (BRSP) has gained a g rea t deal of attention ofresearchers and engineers.However , almost all of BRSPs being studied and constructed are in small aspect ratio , ofwhich width is equal or larger than the height .Actually , in some situations, BRSP in large aspect ratio may beserviceable if there do not have enough space to put a wide BRSP .Therefore , several experimental investigationshave been conducted on narrow BRSPs with large aspect ratio , including monotonic loading tests and cyclic loadingtests on four sets of BRSP with different aspect ratio from 2∶1 to 4∶1, as w ell as a comparative test on a normal steelplate shear wall.Form of the walls was modified to improve their energy dissipation.Experimental results areexamined to reveal the wall' s failure mechanics, ductility performance , hysteretic behavior and ultimate load-carryingcapacity .Analytical models have been verified by the experiments and design guidelines have been provided for theapplication of BRSP . [Keywords]buckling-restrained; steel plate shear wall;

定向井随钻操作规程

---定向井公司随钻操作规程 ---钻井总公司 二零零八年五月 ---定向井公司随钻操作规程

---钻井总公司 二零零八年五月 编写: 审核: 审批:

序言 随着无线随钻(MWD)和有线随钻的逐步推广和普及,---定向井技术人员在认真认识学习相关知识,逐步掌握仪器操作和合理使用。但是由于接触时间较短,新进人员较多,从而在施工过程中出现了操作规程不规范,施工责任不明确,仪器维护不到位等问题。为了规范操作规程,准确掌握施工工艺,把握好细节,更好的有针对性地落实和执行技术措施,现将钻井总公司的《关于无线随钻测斜仪器的使用管理规定的通知》和无线、有线随钻施工的作业程序等进行系统的汇总,旨在让广大技术人员和仪器操作人员明确操作规程、落实岗位责任、提高仪器使用率。

无线随钻测斜仪器的使用管理规定 各项目部、定向井技术服务公司、钻井队: 为了确保圆满完成总公司2008年500万米生产任务和提速目标,充分利用先进仪器实现科技提速,提高常规定向井无线随钻侧斜仪器的使用效率,特制定如下规定: 一. 工作职责: ㈠项目部职责: 1.项目部技术办根据井型特点、施工难易程度统一调配辖区内无线随钻测量仪到钻井队使用,充分利用井队搬迁间隙进行合理调整。 ㈡定向井技术服务公司职责: 1.负责无线随钻测斜仪器的保管、发放、日常监管、维护保养、资料收集以及易损件的储备等工作,定期对仪器进行校验和标定,确保仪器的准确率。 2.根据生产需求,科学调配、合理使用仪器,确保仪器及时到井。为水平井、定向井施工轨迹控制提供技术服务。 3.负责仪器的配送、回收和随钻测斜仪器在用期间的随钻测量、故障排除工作。

钻井过程中井壁稳定分析与对策

钻井过程中井壁稳定分析与对策 当前,我国油田开发力度加大,逐步向深层、深海区块延伸,水平井、大位移井等特殊井身 结构钻井应用增多,井壁坍塌等井下事故也相应增加,极易在钻井中出现井壁缩径、坍塌、 地层压裂等情况,坍塌机理比较复杂,很难预防,影响钻井井下安全和钻井持续性。因此, 有必要对井壁稳定性进行分析,有针对性的提出提升井壁稳定性的对策措施。 1 钻井过程中井壁稳定性 1.1钻井井壁稳定性较差和坍塌地层特征 在钻井中,钻遇泥页岩、砂岩、砾岩、煤层、岩浆岩、灰岩等都可能发生井壁坍塌,但90% 以上的坍塌发生在泥页岩地层,缩径一般在盐膏层、浅层泥岩和渗透性较高的砂岩发生。坍 塌可能在各种岩性和粘土矿物含量地层中发生,但坍塌严重地层大多具有以下特征:发育有 层理清晰的裂缝或破碎性较强的岩性地层;泥页岩特别是孔隙压力异常地层;地应力较强、 倾角大易发生井斜地层;厚度较大泥页岩地层;高含水砂岩、泥岩地层等。 1.2井壁稳定性影响因素 井壁稳定性较差原因是钻井液和钻具在地层中作用,压力超过井壁岩层承受强度,以及钻井 液与井壁地层岩石矿物发生物理化学作用,加大坍塌压力、降低破裂压力等引起井壁失稳。 一是力学因素。地层钻开前岩层受上覆压力、水平地应力和孔隙压力作用,压力均衡,钻开 后钻井液对井壁压力替代了钻开岩层对井壁岩层的支撑,破坏了压力平衡状态,使周围地应 力需要重新分布,在地应力超过井壁周围岩层承受强度后会发生剪切破坏,脆性地层会发生 井壁坍塌,塑性地层会发生塑性变形(缩径)。钻井中井壁被剪切破坏临界井眼压力称为坍 塌压力,该状态下钻井液密度为坍塌压力当量钻井液密度。地应力因素上,井壁坍塌以最小 地应力为方向,坍塌压力随地应力及地应力非均匀系数增大而增大。地层强度因素,地层坍 塌压力与井壁周边地层的强度系数和内摩擦角呈反比。孔隙压力因素,地层坍塌和破裂压力 与孔隙压力呈正比,但破裂压力增速比坍塌压力小,随着孔隙压力加大,钻井液密度安全范 围逐步变小。地层渗透性因素,渗透性较强地层钻井液会渗透到井壁周围地层,产生渗透压 力加大井壁周围地层孔隙压力变化率,加大井壁坍塌概率。井径扩大率因素,安全钻井允许 一定程度坍塌,可适当降低钻井液密度。地层破碎程度因素,地层破碎程度越高,钻井液渗 入越强、渗入深度越大,也就增高了坍塌压力。方位角、井斜角及钻井液组成和性能等,都 会对地层坍塌压力产生一定影响。同时,在坍塌层钻进中钻井液密度比地层坍塌压力当量钻 井液密度更低、钻井中钻井液密度异常过高、钻井液密度过低对盐层及含盐含水软泥岩塑性 变形控制性较差、起钻抽吸降低钻井液压力、井喷或井漏降低井筒内液柱压力等,也会引起 井壁坍塌。 二是物理化学因素。从地层构成看,岩石主要由石英、长石、方解石等非粘土矿物,伊利石、伊蒙间层、绿泥石等晶态粘土矿物,以及蛋白石等非晶态粘土矿物构成,不同岩性地层所含 矿物类型、含量存在差异,会影响井壁稳定性。从钻井液渗入地层驱动力看,钻开地层后钻 井液在井筒中与地层孔隙流体间存在化学势差、压差,在这些压力与地层毛细管力综合驱动下,钻井液滤液会渗入地层造成粘土矿物水化膨胀,引起井壁失稳。从粘土水化机理看,粘 土矿物与水接触后会发生离子水化、表面水化、渗透水化,易引发井壁失稳。从地层水化膨 胀看,钻井液与井壁地层接触后会升高孔隙压力、引起近井筒地层力学性质变化,地层水化 膨胀加大井壁失稳概率。 2 钻井井壁失稳控制技术措施 2.1应力因素引起的井壁失稳控制

钻柱分析

钻柱 一、钻柱的作用与组成 二、钻柱的工作状态与受力分析 三、钻柱设计 一、钻柱的组成与功用 (一)钻柱的组成 钻柱(Drilling String)是钻头以上,水龙头以下部分的钢管柱的总称. 它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。 (二)钻柱的功用 (1)提供钻井液流动通道; (2)给钻头提供钻压; (3)传递扭矩; (4)起下钻头; (5)计量井深。 (6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况); (7)进行其它特殊作业(取芯、挤水泥、打捞等); (8)钻杆测试 ( Drill-Stem Testing),又称中途测试。 1. 钻杆 (1)作用:传递扭矩和输送钻井液,延长钻柱。 (2)结构:管体+接头 (3)规范: 壁厚:9 ~ 11mm 外径: 长度: 根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类: 第一类 5.486~ 6.706米(18~22英尺); 第二类 8.230~ 9.144米(27~30英尺); 第三类 11.582~13.716米(38~45英尺)。 常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12 ?丝扣连接条件:尺寸相等,丝扣类型相同,公母扣相匹配。 ?钻杆接头特点:壁厚较大,外径较大,强度较高。 ?钻杆接头类型:内平(IF)、贯眼(FH)、正规(REG); NC系列 ?

内平式:主要用于外加厚钻杆。特 点是钻杆通体内径相同,钻井液 流动阻力小;但外径较大,容易 磨损。 贯眼式:主要用于内加厚钻杆。其 特点是钻杆有两个内径,钻井液 流动阻力大于内平式,但其外径 小于内平式。 正规式:主要用于内加厚钻杆及钻 头、打捞工具。其特点是接头内 径<加厚处内径<管体内径,钻井 液流动阻力大,但外径最小,强 度较大。 三种类型接头均采用V型螺纹, 但扣型、扣距、锥度及尺寸等都 有很大的差别。 NC型系列接头NC23,NC26,NC31,NC35,NC38,NC40,NC44,NC46,NC50,NC56,NC61,NC70,NC77 NC—National Coarse Thread,(美国)国家标准粗牙螺纹。 xx—表示基面丝扣节圆直径,用英寸表示的前两位数字乘以10。 如:NC26表示的节圆直径为2.668英寸。 NC螺纹也为V型螺纹, 表2-17所列的几种NC型接头与旧API标准接头有相同的节圆直 2. 钻铤 结构特点:管体两端直接车制丝扣,无专门接头;壁厚大(38-53毫米), 重量大,刚度大。 主要作用:(1)给钻头施加钻压; (2)保证压缩应力条件下的必要强度; (3)减轻钻头的振动、摆动和跳动等,使钻头工作平稳; (4)控制井斜。 类型:光钻铤、螺旋钻铤、扁钻铤。 常用尺寸:6-1/4〃,7 〃,8 〃,9 〃 3.方钻杆 类型:四方形、六方形 特点:壁厚较大,强度较高 主要作用:传递扭矩和承受钻柱的全部重量。 常用尺寸:89mm(3.5英寸),108mm (4.5英寸),133.4mm (5.5英寸)。 4.稳定器 类型:刚性稳定器、不转动橡胶套稳定器、滚轮稳定器。

钻柱设计

第二节钻柱与下部钻具组合设计 一、钻柱设计与计算 合理的钻柱设计是确保优质、快速、安全钻井的重要条件。尤其是对深井钻井,钻柱在井下的工作条件十分复杂与恶劣,钻柱设计就显得更加重要。 钻柱设计包括钻柱尺寸选择和强度设计两方面内容。在设计中,一般遵循以下两个原则: 第一,满足强度(抗拉强度、抗击强度等)要求,保证钻柱安全工作; 第二,尽量减轻整个钻柱的重力,以便在现有的抗负荷能力下钻更深的井。 (一)钻柱尺寸选择 具体对一口井而言,钻柱尺寸的选择首先取决于钻头尺寸和钻机的提升能力。同时,还要考虑每个地区的特点,如地质条件、井身结构、钻具供应及防斜措施等。常用的钻头尺寸和钻柱尺寸配合列于表2-21供参考。 表2-21 钻头尺寸与钻柱尺寸配合 从上表可以看出,一种尺寸的钻头可以使用两种尺寸的钻具,具体选择就要依据实际条件。选择的基本原则是: 1.钻杆由于受到扭矩和拉力最大,在供应可能的情况下,应尽量选用大尺寸方钻杆。 2.钻机提升能力允许的情况下,选择大尺寸钻杆是有利的。因为大尺寸钻杆强度大,水眼大,钻井液流动阻力小,且由于环空较小,钻井液上返速度高,有利于携带岩屑。入境的钻柱结构力求简单,以便于起下钻操作。国内各油田目前大都用127mm(5 in)钻杆。 3.钻铤尺寸决定着井眼的有效直径,为了保证所钻井眼能使套管或套铣筒的顺利下入,钻铤中最下部一段(一般应不少一立柱)的外径应不小于允许最小外径,其允许最小钻铤外径为 允许最小钻铤外径=2×套管接箍外径-钻头直径 当钻铤柱中采用了稳定器,可以选用稍小外径的钻铤。钻铤柱中选用的最大外径钻铤应以保证在可能发生的打捞作业中能够被套铣为前提。 在大于241.3mm的井眼中,应采用复合钻铤结构。但相邻两段钻铤的外径一般以不超过25.4mm为宜。 4.钻铤尺寸一般选用与钻杆接头外径相等或相近的尺寸,有时根据防斜措施来选用钻铤的直径。近些年来,在下部钻具组合中更多的使用大直径钻铤,因为使用大直径钻铤具有下列优点: 1)用较少的钻铤满足所需钻压的要求,减少钻铤,也可减少起下钻时连接钻铤的时间; 2)高了钻头附近钻柱的刚度,有利于改善钻头工况; 3)铤和井壁的间隙较小,可减少连接部分的疲劳破坏; 4)利于放斜。 (二)钻铤长度的确定 钻铤长度取决于钻压与钻铤尺寸,其确定原则是:保证在最大钻压时钻杆不承受压缩载

井壁稳定研究

1、地层孔隙压力计算 根据处理得到地层声波时差资料,采用Eaton 法进行地层压力计算。Eaton 法地层压力计算模型如下: ()()n p op op w n G G G t t ρ=--?? 式中,p G —井深H 处的地层孔隙压力,g/cm 3; o p G —井深H 处的上覆岩层压力梯度,g/cm 3; w ρ—井深H 处的地层水密度,g/cm 3; n t ?—井深 H 处的正常压实时的声波时差值,/s ft μ; t ?—井深H 处的实测声波时差值,/s ft μ; n —Eaton 指数。 经试算分析得到了适用于泌阳区块的Eaton 指数n =0.2,取地层水密度w ρ=0.991 g/cm 3。

安3006井地层孔隙压力图 2、地层分层地应力计算模型 地应力是影响地层破裂压力的一个重要因素,它是一个客观存在的岩石内应力,它来源于上覆地层的自重和地质构造力。对于不同井深及不同力学性质的地层,地应力的值是不同的。采用下列地应力计算模型: ?? ? ??? ?+-???? ??+-=+-??? ? ??+-=P P P P p v h p p v H αασωμμσαασωμμσ)(1)(121 式中:ωω12,—构造应力系数;

v h H σσσ,,——水平最大、最小地应力和上覆压力; p P ——孔隙压力;μ——地层泊松比; α——有效应力系数。 泌阳凹陷的地层构造应力系数w 1=0.64,w 2=0.34。(按照压裂数据估算) 3、用库仑——摩尔强度准则计算坍塌压力 式(4-13)中的r ''σσθ和分别为井壁坍塌处的最大和最小有效主应力,将它们代入库仑—摩尔强度条件(4-8)式,便可求得保持井壁稳定所需的钻井液密度计算公式为: 2 122 (3)2(1) 100 ()h h p m C K ap K K H ησσρη--+-= ?+ )245cot(Φ- ?=K 式中,H ——井深,m ; m ρ——钻井液密度,g/cm 3 4、地层破裂压力的确定方法 破裂压力是井眼裸露地层在井内泥浆柱压力作用下使其起裂或原有裂缝重新开启的压力,它是由于井内泥浆密度过大使井壁岩石所受的周向应力超过岩石的抗拉强度造成的。 假设井眼处于平面应变状态,根据岩石力学理论,可求得非均匀地应力作用下井壁产生拉伸破裂时的井内泥浆柱压力即破裂压力的计算模型为: ()21f V p p t P Q P P S μσααμ??=--++ ?-?? ;H P f f = ρ 式中:f P —地层破裂压力(MPa);f ρ—地层破裂压力梯度(g/cm 3); 213??-=Q —构造应力系数;p P —地层孔隙压力; t S —地层抗拉强度;V σ—上覆地层压力; μ—泊松比;α—有效应力系数。

定向井问题及解决

定向井托压问题原因分析及解决措施 王伟忠庞永海张琦 随着陆地油气的不断开发,今后在浅海及陆地上大位移、大井斜井将不断增多,在油田进入后期及采收水平的不断发展,陆地上的一些老井要进行二次开发,所以开窗侧钻井的不断增加也是钻探的一个必然趋势。大港油田从2003年开始在油区内布水平井和大井斜井也在逐年增加,为了确保施工的顺利,减少事故复杂,这对钻井液技术水平的要求更加严格,大井斜、大位移的定向井及水平井在除了对润滑防卡、井壁稳定等要求更加严格以外,对定向井定向过程中托压问题的解决也是我们目前施工中存在且迫切要求解决的一个重要问题。在定向井的施工中托压的产生不仅严重影响钻井队的施工进度而且很容易造成压差卡钻,给施工造成重大的经济损失。 施工统计:2004年泥浆二中队施工井情况 托压产生在直井反扣或定向井多次反扣的定向过程中、开窗侧钻井开窗侧钻,定向中、水平井70-90度的定向过程中;托压由于井眼轨迹以及各种阻力的原因使得钻具加压后,压力很难传递到钻头;从综合录井仪器及指重表看,就是在钻压不断增加的前提下,钻头的位置不变、没有进尺,泵压不升高、不憋泵,在钻压继续增加的时可能会突然憋泵。定向井托压一方面影响正常的定向施工,另一方面如操作不当易产生卡钻。 二、原因分析: 1、井眼轨迹差: 定向中的托压与施工的井眼轨迹有很大的关系,在施工井中每年定向井占60%、直井40%,在实际施工中其中有一部分直井或定向井都会因为地层或施工的原因造成井眼轨迹偏离设计,这时就要进行导向反扣钻进,而且一部分井会因为某种原因进行反扣几次,从而造成井眼轨迹不好。在井眼轨迹不好的前提下改变钻具结构进行反扣定向时,由于钻具刚性的问题在加压时钻具的某一点会支撑在井壁上此时往往会出现托压现象。由于井眼轨迹差造成的托压,在加压后上提的过程中上提的附加拉力不会很大,即和平时的附加拉力相差不多,一般不会超过下压的压力。 定向井的井眼轨迹与造斜率有一定的关系,造斜率越小井眼轨迹就越平滑施工中产生托压的现象就少,在水平井的施工中,长半径的水平井较中半径、短半径水平井产生托压的几率要小的多。 2、井眼不干净,有岩屑床的存在: 造成定向井定向过程中、直井反扣过程中托压的另一个原因是井眼不干净,下井壁有岩屑床的存在。 造成井眼不干净的原因主要有以下几点: (1)、泥浆的本身流变性能不好,不能满足携带岩屑的需求; (2)、泥浆泵排量不能满足要求使得钻井液在井眼中的上返速度达不到要求; (3)、在钻进的过程中长时间或长的井段不进行短起下作业及时挂拉井壁这些都是造成井壁不干净岩屑不能及时被清除的原因; (4)、指地面的净化设备差,即地面净化设备对被泥浆携带的有害固相、岩屑等清除的能力差,使得有害固相又重新进入井内。

药物稳定性试验指导原则(2015版药典)分析

范围:药物制剂。 责任:检验员、QA监控员、化验室主任、质保科科长、质量部负责人。 内容: 稳定性试验的目的是考察原料药或药物制剂在温度、湿度、光线的影响下随时间变化的规律,为药品的生产、包装、贮存、运输条件提供科学依据,同时通过试验建立药品的有效期。 稳定性试验的基本要求是:(1)稳定性试验包括影响因素试验、加速试验与长期试验。影响因素试验用1批原料药进行。加速试验与长期试验要求用3批供试品进行。(2)原料药供试品应是一定规模生产的。供试品量相当于制剂稳定性实验所要求的批量,原料药物合成工艺路线、方法、步骤应与大生产一致。药物制剂的供试品应是放大试验的产品其处方与生产工艺应与大生产一致。药物制剂如片剂、胶囊剂,每批放大试验的规模,片剂至少应为10 000片,胶囊剂至少应为10 000粒。大体积包装的制剂如静脉输液等,每批放大规模的数量至少应为各项试验所需总量的10倍。特殊剂型、特殊品种所需数量,根据具体情况另定。(3)供试品的质量标准应与临床前研究及临床试验和规模生产所使用的供试品质量标准一致。(4)加速试验与长期试验所用供试品的包装应与上市产品一致。(5)研究药物稳定性,要采用专属性强、准确、精密、灵敏的药物分析方法与有关物质(含降解产物及其他变化所生成的产物)的检查方法,并对方法进行验证,以保证药物稳定性试验结果的可靠性。在稳定性试验中,应重视降解产物的检查。(6)由于放大试验比规模生产的数量要小,故申报者应承诺在获得批准后,从放大试验转入规模生产时,对最初通过生产验证的3批规模生产的产品仍需进行加速试验与长期稳定性试验。 本指导原则分两部分,第一部分为原料药,第二部分为药物制剂。 1.原料药 原料药要进行以下试验。 1.1影响因素试验 此项试验是在比加速试验更激烈的条件下进行。其目的是探讨药物的固有稳定性、了解影响其稳定性的因素及可能的降解途径与降解产物,为制剂生产工艺、包装、贮存条件与建立降解产物的分析方法提供科学依据。供试品可以用一批原料药进行,将供试品置适宜的开口容器

相关主题
文本预览
相关文档 最新文档