当前位置:文档之家› 概率论与数理统计B

概率论与数理统计B

概率论与数理统计B
概率论与数理统计B

江西财经大学

08-09第二学期期末考试试卷

试卷代码:03054B 授课课时:64 考试用时:110分钟 课程名称:概率论与数理统计 适用对象:2007级

试卷命题人 徐晔 试卷审核人 何明

一、填空题(将答案写在答题纸的相应位置,不写解答过程。每小题3分,共15分)

1. 设随机事件B A ,互不相容,且6.0)(,3.0)(==B P A P ,则=)(A B P _______ 。

2. 设二维随机变量),(Y X 的联合分布函数为),(y x F ,概率),(c Y b X a P ≤≤<可以用

),(y x F 表示为 。

3. 设随机变量X ,Y 相互独立,X 服从]6,0[区间上的均匀分布,Y 服从二项分布

)5.0,10(b 。令Y X Z 2-=,则EZ = ,DZ = 。

4. 设54321,,,,X X X X X 是来自总体)1,0(~N X 的简单随机样本,统计量

()n t X X X X X C ~)

(252

42321+++,则常数=C ,自由度=n 。

5. 若随机变量21,X X 相互独立,且)2,1(~),3,3(~2221N X N X 。令212X X X -=,则

)1(>X P = 。

1. 7

4

2. ),(),(c a F c b F -

3.137-

4.

32

3 5.5.0

二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。答案选错或未选者,该题不得分。每小题3分,共15分)

1.下述函数中,可以作为某个随机变量的分布函数的是( )。

)(A 2

11)(x

x F += )(B 21

arctan 1)(+=x x F π )(C )1(2

1

)(x e x F --= )1)(()()()(==??+∞∞-∞-dx x f dx x f x F D x 其中

2.设321,,X X X 是来自总体X 的一个样本,则当常数=C ( )时, 3212

1

31?CX X X ++=μ 是总体均值μ的无偏估计量。

)(A 2

1 )(B 41 )(C 61 )(D 81

3. 设随机变量X 的数学期望75)(=X E ,方差5)(=X D ,用切比雪夫不等式估计得

{}05.075≤≥-εX P ,则=ε( )

。 )(A 8 )(B 9 )(C 10 )(D 11

4.设总体)2,(~2μN X ,),,,(21n x x x 为来自X 的样本,原假设00μμ=:H ,备择假设01μμ≠:H ,显著性水平α,若在α=0.05下拒绝0H ,则在α=0.10下( )

。 )(A 必拒绝0H )(B 必接受0H )(C 可能接受0H 也可能不接受0H )(D 以上选项都不对

5. 设 ,,,,21n X X X 为独立随机变量序列,且() ,2,,1=i X i 服从参数为λ的泊松分布,

则=??

?

?

???

???????≤-∑=∞→x n n X P n 1i i n λλlim ( )。. )(A )(x λΦ )(B )(x Φ )(C )(x λΦ )(D )(x λΦ

B C C A B

三、计算题(要求在答题纸上写出主要计算步骤及结果。本题10分)

某产品整箱出售,每一箱中20件产品,若各箱中次品数为0件,1件,2件的概率分别为

%80,%10,%10,现在从中任取一箱,顾客随意抽查4件,如果无次品,则买下该箱产品,

如果有次品,则退货,求: (1) 顾客买下该箱产品的概率;(2) 在顾客买下的一箱产品中,确实无次品的概率。

解:设B 表示“顾客买下该箱产品” ,

i A 分别表示“箱中次品数为0件,1件,2件” 2,1,0=i 则

()()(),

1.01

.08.0210===A P A P A P ()()()19

12

5

4

1

420418242041910===

==C C A B P C C A B P A B P

(1) 由全概率公式得:()()()9432.0475

448

2

==

=∑=i i i A B P A P B P (2)由逆概率公式得:()()()

()()

8482.0112

95

2

000==

=

∑=i

i i

A B P A P A B P A P B A P 四、计算题(要求在答题纸上写出主要计算步骤及结果。本题10分)

某码头能容纳一只船,现预知某日将独立地来到甲,乙两船,且在24小时内各时刻来的可能性都相等,如果它们需要停靠的时间分别为3小时及4小时,试求有一船要在江中等待的概率。

解:设X 表示甲船到达码头的时间,Y 表示乙船到达码头的时间。 由题中条件, X 与Y 都服从[]24,0上的均匀分布,概率密度函数分别是:

???

??≤≤=???

??≤≤=其他

其他

24024

1

)(0

24024

1)(y y f x x f Y X

因为X 与Y 相互独立,故()Y X ,的联合密度函数为:

??

?

??≤≤≤≤=其他

240240241

),(2

y x y x f

事件{有一只船在江中等待}{}{}34+<<+<<=X Y X Y X Y 其区域如图所示,故所求的概率为:

(){}()S dxdy y x f S Y X P S

?=

=∈??224

1

,, 而 S 的面积为:5.1552

311

==S 于是有一船要在江中等待的概率为27.0245

.1552

=。

五、计算题(要求在答题纸上写出主要计算步骤及结果。本题10分)

设()Y X ,的分布律为:

X Y

1 2 3 0 0.1 0.0 0.3 -1 0.2 0.1 0.0 1

0.1

0.1

0.1

设X

Y

Z =,求Z 的分布律和()Z E 。

解:Z 的分布律:

Z -1

2

1- 0 1 2

1 3

1 P 0.2

0.1 0.4

0.1

0.1 0.1

x

24

4

3 24

y

Y=X+3 X=Y+4

S

故有:15

1

)(-=Z E

六、计算题(要求在答题纸上写出主要计算步骤及结果。本题10分)

设总体X 概率密度为()??

?<<+=其他

1

01)(x x x f θ

θ,1->θ未知,n X X X ,,,21 为来自总

体X 的一个样本. 求(1)未知参数θ的矩估计量 ; (2) 未知参数θ最大似然估计量。

解:(1)由()θθ++=21X E ,得θ的矩估计量X

X M --=112?θ (2)

()n 21n 21x x x X X X ,,,,, 的一组观测值为设样本,则似然函数为

()()??

???<<+=∏-其他

01011

i n

i i x x L θ

θθ

当10<

i i x n L 1

ln 1ln ln θθθ

()()0ln =θ

θd L d ,得θ的最大似然估计值为∑=--=n

i i

L

x

n

1

ln 1?θ,

故θ的最大似然估计量∑=--=n

i i

L

X

n

1

ln 1?θ

七、计算题(要求在答题纸上写出主要计算步骤及结果。本题10分)

对农作物计算了15个地块的亩产量,计算所得的数据(单位:0.5kg )的平均值,

0.425=x ,又()68.100815

12

=-∑=i i x x , 设测定数据来自正态总体 ,试对上述数据求亩产量数

学期望的置信区间(05.0=α) 。

解:方差2σ未知,估计正态总体均值μ置信区间

因为 )1(~*--=n t n S X T μ

由于488.8*,0.425,15===S x ?

??n ,由t 分布临界值表可查得临界值 145.2)14()1(975.012

==--t n t α

所以μ的置信度为95%置信区间为

??? ?

?

?+?-15488.8145.20.425,15488.8145.20.425?? 即()7.429,3.420??,

于是在置信水平95%下亩产量数学期望的置信区间为()7.429,3.420??。

八、计算题(要求在答题纸上写出主要计算步骤及结果。本题10分)

用老工艺生产的零件长度方差较大,抽查了25个,测算得样本修正方差27.62*1=S ,现

改用新工艺生产,也抽查25个零件,测算得样本修正方差98.22

*2=S ,设两种工艺生产的零

件长度都服从正态分布,问新工艺生产的精度是否比老工艺高()05.0=α?

解:

检验2221122210:,:σσσσ>≤H H 等价于检验 22

21122210:,:σσσσ>=H H 构造统计量 )125,125(~02*22*1--=F S S F H 真

0H 的拒绝域:{})24,24(95.0F F W >=,查表得:98.1)24,24(95.0=F

由样本数据算得:98.1)24,24(104.298.227

.695.02*22*1=>===F S S F

拒绝0H ,认为新工艺生产的精度比老工艺高。

九、计算题(要求在答题纸上写出主要计算步骤及结果。本题10分)

为判断消费支出y 与城市居民家庭可支配收入x 之间是否存在线性相关关系,抽查了10个城市的数据,由样本数据算得:

∑=10

1

i i

x

=796,∑=101

i i y =641,∑=101

2i i

x =70196,∑=101

2i i

y =48299,∑=10

1

i i i y x =57915

(1)建立消费支出对城市居民家庭可支配收入的样本线性回归方程;

(2)利用相关系数检验消费支出与城市居民家庭可支配收入是否线性相关。(05.0=α)

解:(1) 4.6834=xx L 9.7210=yy L 4.6891=xy L

0083.1?1

==xx

xy L L β 164.16??1

0-=-=x y ββ 故所求的样本线性回归方程为x x y 0083.1164.16???10+-=+=ββ (2) 0:10=βH

9817.0?==yy

xx xy L L L ρ

查表得:,632.0)8(05.0=λ

)8(|?|05.0λρ

> 拒绝0H ,即认为消费支出与城市居民家庭可支配收入之间存在线性相关关系

概率论与数理统计期末复习资料(学生)

概率论与数理统计期末复习资料 一 填空 1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______. 3.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______. 4.已知某地区的人群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使人患某种疾病的概率为0.008,不吸烟使人患该种疾病的概率是0.001,则该人群患这种疾病的概率等于______. 5.设连续型随机变量X 的概率密度为? ??≤≤=,,0; 10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______. 6.设随机变量X ~N (1,32 ),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设二维随机变量(X ,Y )的分布律为 则P {X <1,Y 2≤}=______. 8.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______. 9.设随机变量X 服从二项分布)3 1,3(B ,则E (X 2 )= ______. 10.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=n i i X 1 的极限分布是 _________________ 11.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑== 10 110 1 i i x x ,则)(x D = ______.· 12.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则 ∑=5 1 2i i x 服从自由度为______ 的2χ分布. 15.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A B )=__________. 17.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的 概率为_________. 18.设随机变量X 的概率密度?? ???≤≤=,,0; 10 ,A )(2其他x x x f 则常数A=_________.

完整word版,概率论与数理统计(B)试卷及答案,推荐文档

概率论与数理统计(B ) 一.选择题 1. 设事件A 和B 的概率为 12 (),()23 P A P B == 则()P AB 可能为() (A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1到5中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A) 12; (B) 225; (C) 4 25 ; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( ) (A) 518 ; (B) 13; (C) 12 ; (D) 536 4. 设随机变量 X 满足:E(2x )=8,D(X)=4,EX>0,则 EX=( ) (A) 1 ; (B) 2 ; (C) 3 ; (D) 4; 5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球 得5分,摸得白球得2分,则他所得分数的数学期望为( ) (A) 2.5; (B) 3.5; (C) 3.8; (D)4; 6. 设随机变量 X 的密度函数为 f(x)= 20x x A ≤≤???( 0)其他,则A=( ) (A) 1/4; (B) 1/2; (C) 1; (D) 2; 二.填空题 7.设 X~N(μ,2 σ) ,且概率密度2 (2)6f ()x x --=,则μ=_______,σ=________ 8.若事件 A 与B 相互独立,且 P(A)=0.4,P(A ∪B)=0.6, 则 P(B)_______,P(AB)=________ 9.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n=________ 10.若随机变量 X 服从泊松分布,且 P{X=1}=P{X=2},则 P{X=3}=_________ 11.二维随机变量(X,Y)的联合分布律为:P{X=i x ,Y=j y }=1/12,(i=1,2,3,4; j=1,2,3),则 P{X=1x }=_________ 12.设随机变量 X 服从(1,3)上的均匀分布,则,13 ()22 P x ≤≤=___________ 三.计算题 1.某射手有 3 发子弹,射一次命中的概率为 2/3,如果命中了就停止射击,则一直独立地射到 子弹用尽,求(1)耗用子弹 X 的分布列;(2)EX 。

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计(B)卷参考答案

商学院课程考核试卷参考答案与评分标准 (B )卷 课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部各本科专业 考核学期: 一、填空(每小题3分,共30分) 1.0.2; 2. 0.4(2/5); 3. 9 16; 4.(0.5,2); 5.2; 6. 13; 7. 7; 8. 16 ; 9. 45; 10.32 。 二、单项选择(每小题3分,共15分) 1. C .; 2. A .; 3. B .; 4. A .; 5. D .。 三、计算题(第1题10分,其余5小题每题9分,共55分) 1. 设A A ,分别表示生产情况正常和不正常,B 表示产品为次品。那么 8.0)(=A P ,2.0)(=A P ;03.0)|(=A B P ,2.0)|(=A B P 2分 (1)由全概率公式 064.02.02.003.08.0)|()()|()()(=?+?=+=A B P A P A B P A P B P ; 6分 (2)由Bayes 公式 375.0064 .003 .08.0)()|)(()|(=?== B P A B A P B A P 10分 2.(1)由于1)(,0)0(=+∞=F F ,可得1,1-==B A ?? ?≤>-=-0 1)(2x x e x F x 3分 (2)21)1()1(}11{--=--=<<-e F F X P 6分 (3)?? ?≤>='=-0 2)()(2x x e x F x f x 9分 3. (1)14),(== ? ? +∞∞-+∞ ∞ -c dxdy y x f ,所以,4=c 3分 (2)3 24)(1 1 2==??ydy dx x X E ;3 24)(1 21 ==??dy y xdx Y E 9 44)(1 021 2= =? ? dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov 9分 4.先求他等车超过10分钟的概率}10{1}10{≤-=>X P X P 25110 051 1--=- =? e dx e x 3分 所以Y 服从5=n ,2-=e p 的二项分布,),5(~2-e B Y 6分 52)1(1}0{1}1{---==-=≥e Y P Y P 9分

第一章 概率论与数理统计1

概 率 论 第一章 随机事件与概率 例1 设B A ,为随机事件,已知() 4.0,6.0)(, 5.0)(===A B P B p A P ,求 1) )(B A P + 2) )(B A P 3) ()B A P 4) )(B A P - 5) )(B A P + 例2 6个不同的球,投入编号为1到7的7个空盒中,求下列事件的概率:1) 1号到6号盒中各有一个球 2) 恰有6个盒中各有1个球 3) 1号盒内有2个球 例3 袋中有两个5分的,三个贰分的,五个1分的钱币。任取其中5个,求钱额总数超过壹角的概率。 例4 验收一批共有60件的可靠配件,按验收规则,随机抽验3件,只要3件中有一件不合格就拒收整批产品,假设,检验时,不合格品被误判为合格品的概率为0.03 ,而合格品被判为不合格品的概率为0.01,如果在60件产品中有3件不合格品,问这批产品被接收的概率是多少? 例5 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有2件残品,且含0,1和2件残品的箱各占80%,15%和5%。现随意抽取一箱,从中随意检验4只,若未发现残品则通过验收,否则逐一检验并更换。试求:1)一次通过验收的概率 2)通过验收的箱中确无残品的概率。 例6 一个医生已知某疾病的自然痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定10人中至少有4人治好,则认为这种药有效,反之,则无效,求:1)虽然新药有效,且把痊愈的概率提高到35%,但经过验收被否定的概率;2)新药完全无效,但经过试验被认为有效的概率。 例7 设B A ,是两个事件,0)(,0)(21>=>=P B P P A P ,且121>+P P ,证明:1 211)(P P A B P --≥ 例8 已知161)()(,0)(,41)()()(==== ==BC P AB P AB P C P B P A P ,求C B A ,,全不发生的概率。 例9 在长度为a 的线段内任取两点,将其分成三段,求它们能构成三角形的概率。 例10 设有三门炮同时对某目标射击,命中的概率分别为0.2,0.3,0.5,目标命中一发被击毁的概率是0.2,命中两发被击毁的概率为0.6,命中三发被击毁的概率为0.9,求三门炮在一次射击中击毁目标的概率。 例11 假设一厂家生产的仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,调试后以概率0.80可以出厂,并以概率0.20定为不合格品而不能出厂。现该厂生产了) 2n(n ≥

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论与数理统计(B卷)

二、多项选择题(从每题后所备得5个选项中,选择至少2个正确得并将代码填题后得括号内,每题1分,本题满分5分) 16、如果事件A、B相互独立,且P(A)=0、40,P(B)=0、30,那么【】。 (1)P=0、72 (2)P(AB)=0、58 (3)P(AB)=0、28 (4)P(AB)=0、12 (5)P(A/B)=0、40 17、设随机变量~(20,0、70),那么以下正确得有【】。 (1)=14 (2)最可能取到14与13 (3)= 4、2 (4)= (5)最可能取到15 18、随机变量,那么【】。 (1)=12 (2) (3) (4) (5) 19、设,且X与Y独立,则【】。 (1) (2) (3) (4) (5)~ 20、以下关于置信区间得说法中,正确得有【】。 (1)置信度越高,准确性越高(2)置信度越高,准确性越低 (3)用对称位分位数构造得区间最短(4)用对称位分位数构造得区间最长 (5)置信度越高,误差越大 三、判断题每题1分,本题满分15分) 【】21、互相对立得事件A,B 之间不一定互斥。 【】22、,那么。 【】23、概率为1就是事件为必然事件得充分条件。 【√】24、分布相同得随机变量数字特征相等,数字特征相等得随机变量分布必相同。【】25、设随机变量(4,12 ),则。 【√】26、设随机变量X ~ N ( ,),则。 【√】27、棣莫佛—拉普拉斯定理表明,离散型分布可以转换为连续型分布。【√】28、若,那么。 【√】29、如果,那么。 【】30、离散型随机变量与连续型随机变量得数学期望有着本质区别。 【√】31、点估计得优越性主要体现在简单直观、易于被人理解。

概率论与数理统计答案精选

习 题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大 号码,写出随机变量X 的分布律. 【解】 故所求分布律为 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 4.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N ,

试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33 (0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时 间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率.

概率论与数理统计教学大纲(48学时)

概率论与数理统计课程教学大纲(48学时) 撰写人:陈贤伟编写日期:2019 年8月 一、课程基本信息 1.课程名称:概率论与数理统计 2.课程代码: 3.学分/学时:3/48 4.开课学期:4 5.授课对象:本科生 6.课程类别:必修课 / 通识教育课 7.适用专业:软件技术 8.先修课程/后续课程:高等数学、线性代数/各专业课程 9.开课单位:公共基础课教学部 10.课程负责人: 11.审核人: 二、课程简介(包含课程性质、目的、任务和内容) 概率论与数理统计是描述“随机现象”并研究其数量规律的一门数学学科。通过本课程的教学,使学生掌握概率的定义和计算,能用随机变量概率分布及数字特征研究“随机现象”的规律,了解数理统计的基本理论与思想,并掌握常用的包括点估计、区间估计和假设检验等基本统计推断方法。该课程的系统学习,可以培养学生提高认识问题、研究问题与处理相关实际问题的能力,并为学习后继课程打下一定的基础。 本课程主要介绍随机事件及其概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验等。 体现在能基于随机数学及统计推断的基本理论和方法对实验现象和数据进行分析、解释,并能对工程领域内涉及到的复杂工程问题进行数学建模和分析,且通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、数学运算能力、综合解题能力、数学建模与实践能力以及自学能力。 三、教学内容、基本要求及学时分配 1.随机事件及其概率(8学时) 理解随机事件的概念;了解样本空间的概念;掌握事件之间的关系和运算。理解概率的定义;掌握概率的基本性质,并能应用这些性质进行概率计算。理解条件概率的概念;掌握概率的加法公式、乘法公式;了解全概率公式、贝叶斯公式;理解事件的独立性概念。掌握应用事件独立性进行简单概率计算。理解伯努利试验;掌握二项分布的应用和计算。 2.随机变量及其分布(6学时) 理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质;掌握应用概率分布计算简单事件概率的方法,掌握二项分布、泊松分布、正态分布、均匀分布和指数分布和应用,掌握求简单随机变量函数的概率分布的方法。 3.多维随机变量及其分布(7学时)

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( ) (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( ) 3311() () () ()32 8 168 A B C D (3)),4,(~2 μN X ),5,(~2 μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p > (4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )? - =-a dx x f a F 0 )(1)( (B )?-= -a dx x f a F 0 )(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F (5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记50 11,50i i X X ==∑ 则 50 21 1()4i i X X =-∑服从分布为( ) (A )4(2, )50N (B) 2 (,4)50 N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分) (1) 4.0)(=A P ,3.0)(=B P ,4.0)(=?B A P ,则___________)(=B A P (2) 设随机变量X 有密度? ??<<=其它01 0,4)(3x x x f , 则使)()(a X P a X P <=> 的常数a = (3) 设随机变量),2(~2 σN X ,若3.0}40{=<

概率论与数理统计B复习题

概率论与数理统计B 复习题 一、填空: 1、设A 、B 、C 是三个随机事件。试用A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生。 2)A 、B 、C 中恰有一个发生。 3)A 、B 、C 中最多有一个发生。 2、已知8.0)(,6.0)(,5.0)(===B A P B P A P ,则=)(B A P 。 3、若事件A 和事件B 相互独立,α=)(A P ,3.0)(=B P ,7.0)(=?B A P ,则α=。 4、设随机变量X ~),4(~),,2(p b Y p b ,若,1)(=X E 则=)(Y E 。 5、设随机变量).1,3(~),1,2(~N Y N X -且X 与Y 独立,若Y X Z 32-=则 ~Z (Z 服从何种分布)。 6、设,5.0,9)(,4)(===XY Y D X D ρ则D (3X -2Y )= 。 7、设随机变量序列 ,2,1,)(,,,21==k X E X X X k n μ布,且相互独立并服从同一分, 则=? ?? ?? ?<∑-=∞ →εμn k k n X n P 11lim 。 8、设总体),(~2σμN X ,则样本容量为n 的样本均值X ~。 9、设估计量∧ θ是未知参数θ的无偏估计量,则=∧ )(θE 。 10、设总体),(~2σμN X ,现从总体X 中抽取一个容量为16的样本,算得2,10==s x 。若,2=σ 则μ的置信水平为0.95的置信区间是;若σ未知,则μ的置信水平为0.95的 单侧置信下限是,σ的置信水平为0.95的置信区间是。 二、10把钥匙中有3把能打开门,今任取两把,求:1、不能打开门的概率2、恰有一把能打开门的概率 三、仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂, 乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品。 1、求取得次品的概率。 2、如果已知取到的是一件次品,求它是乙厂生产的概率。

概率论与数理统计课后习题及答案-高等教育出版社

概率论与数理统计课后习题答案 高等教育出版社 习题解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点 数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1(ΛΛΛΛ=Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1(Λ=+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下 事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -.

概率论与数理统计期末考试卷答案

《概率论与数理统计》 试卷A (考试时间:90分钟; 考试形式:闭卷) (注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效) 一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B = U () A 、A B B 、A B C 、A B D 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示( ) A 、A , B , C 中有一个发生 B 、A ,B ,C 中恰有两个发生 C 、A ,B ,C 中不多于一个发生 D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =, 则( )成立 A 、()0.32P A B = B 、()0.2P A B = C 、()0.4P B A -= D 、()0.48P B A = 4、设A ,B 为任二事件,则( ) A 、()()()P A B P A P B -=- B 、()()()P A B P A P B =+U C 、()()()P AB P A P B = D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是() A 、A 与 B 独立 B 、A 与B 独立 C 、()()()P AB P A P B = D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =() A 、0 B 、0.3 C 、0.8 D 、1 7、设离散型随机变量X 的密度函数为4,[0,1] ()0, cx x f x ?∈=??其它 ,则常数c = () A 、 15 B 、1 4 C 、4 D 、5

概率论与数理统计B试题及答案

一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23 P A P B == 则()P AB 可能为(D ) (A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为 (D) (A) 12; (B) 225; (C) 425 ; (D)都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( A ) (A) 518; (B) 13; (C) 12 ; (D)都不对 4.某一随机变量的分布函数为()3x x a be F x e +=+,(a=0,b=1)则F (0)的值为( C ) (A) 0.1; (B) 0.5; (C) 0.25; (D)都不对 5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为(C ) (A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对 二.填空题(每小题3分,共15分) 1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = 0.85 . 2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =__5____. 3.随机变量ξ的期望为() 5E ξ=,标准差为()2σξ=,则2()E ξ=___29____. 4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。设两人的射击是相互独立的,则目标被射中的概率为____0.94_____. 5.设连续型随机变量ξ的概率分布密度为2()22a f x x x =++,a 为常数,则P (ξ≥0)=___3/4____. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 把4个球随机放入5个盒子中共有54 =625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P (A )=5/625=1/125------------------------------------------------------5分 (2) 5个盒子中选一个放两个球,再选两个各放一球有 302415=C C 种方法----------------------------------------------------7分 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故 125 72625360)(== B P --------------------------------------------------10分

概率论与数理统计1_8课后习题答案

第一章 思 考 题 1.事件的和或者差的运算的等式两端能“移项”吗?为什么? 2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个 能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率ΛΛ1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把 它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表: 67 5844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗? 答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等, 或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗? 5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不 相容事件又有何区别和联系? 6.条件概率是否是概率?为什么? 习 题 1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次 答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次 答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω== (3)调查城市居民(以户为单位)烟、酒的年支出 答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时, 样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥ 2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB (4) “三人中恰好有一人中靶”: ;C B A C B A C B A Y Y (5)“ 三人中至少有一人中靶”: ;C B A Y Y

概率论与数理统计第一章

一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 6.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 7.设A 、B 、C 为三个事件,已知()()0.6,0.4P B A P C AB ==,则()P BC A =( ) .A .B .C .D 8.设A ,B 是两个随机事件,且00,)|()|(A B P A B P =,则必有 ( ) (A ))|()|(B A P B A P = (B ))|()|(B A P B A P ≠ (C ))()()(B P A P AB P = (D ))()()(B P A P AB P ≠

相关主题
文本预览
相关文档 最新文档