当前位置:文档之家› 产品设计中形位公差的合理选用与正确标注

产品设计中形位公差的合理选用与正确标注

产品设计中形位公差的合理选用与正确标注
产品设计中形位公差的合理选用与正确标注

标准介绍与贯彻

1

产品设计中形位公差的 合理选用与正确标注 

太原重型机械学院 □张敬芳

太原重型机械设计研究院□郝尚清

摘 要 本文针对机械零件的使用功能和设计要求,从形位公差原则的选用、形位公差项目的选择、基准的选用及公差值的给定等方面讨论了在产品设计和应用中的形位公差的合理选用与正确标注。 

关键词 形位公差 公差值 基准 

在具体产品设计应用中对形位公差常有的不正确的选用和错误的标注,对于保证产品设计和制造质量,以达到预期的使用效果十分不利。合理地选用和正确地标注形位公差,将设计意图准确地表达在产品设计图样上,是一项细致的工作,也是保证产品质量的重要技术手段。

选用形位公差,即是在产品设计图样上,根据功能要求,标注出最适合设计要求的形位公差的项目、公差带的形状和方向、公差值的大小以及与基准的位置关系等。当然并不是说,未标注形位公差的零件要素就没有形位公差的要求,而是只有在下列情况下才需标出:

① 规定的未注形位公差等级不能满足功能要求;

② 零件要素的形位公差在相应的标准中没有规定;

③ 图样上给出的尺寸公差等不能满足零件对形状和位置的要求;

④ 装配的互换性要求较高;

⑤ 用来确定统一的基准参数系; ⑥ 为了减少理解上的争论和猜测。

在此,笔者就产品设计中常遇到的一些选用形位公差方面的问题作一点阐述。

1 形位公差项目的选择

首先必须明确所设计零件要素的功能,才能确定为保证这些设计功能必须有的形位公差项目,并以较少的公差项目,最大限度地满足功能上所必需的设计要求。

图1所示为一制动轮零件,根据其功能要求,制动轮端面相对于基准A 轴线的摆动量应控制在一定的范围内。那么,选择哪项形位公差较为合适呢?原设计图样选择了垂直度公差,如图1a )所示,这就造成与实际使用和检测时零件要素的状态不同,而不能达到原设计意图,并影响到使用效果。一般来说,端面相对于直线的垂直度公差,适用于工作状态为静态的零件要素,端面圆跳动和全跳动则适用于动态的零件要素。而端面圆跳动可控制端面上任一直径处的轴向圆跳动,端面全跳动可控制整个端面相对于轴线的轴向跳动量。因此,根据其功能要求该零件要素应选用端面圆跳动,如图1b )所示。若选用端面全跳动,则会给工艺和检测带来不必要的难度。

标准介绍与贯彻

2

图1

由此也可以看出,选择零件要素的形位

公差项目,不仅要从零件的功能出发,还需要了解公差项目的适用场合,这样才能较合理地达到设计目的。

2公差值的给定

根据形状和位置公差之间的关系,某些综合控制的公差项目可以同时控制某些单项误差,位置公差可以控制相应的形状或定向误差。因此在对一个要素给定多项形位公差时应注意它们之间的关系,不要产生干涉。

图2a)给出了两项形位公差要求,其中面的平行度公差已能将表面的平面度误差控制在平行度公差(0.05 mm)之内,故所标注的平面度公差值必须小于平行度公差才合理,否则就会失去给定平面度公差的意义。图2b)给出的圆柱度公差是一项综合控制公差,它能控制诸如圆度、素线直线度、素线间平行度等单项误差,故在给定这几项单项要求时,其公差值也应小于圆柱度公差,否则也无意义。

图2

3基准的选择

零件上基准的选择是设计者根据零件的结构、使用及装配性能要求,即根据零件的功能要求来选择和确定的。基准的选择不同,会产生不同的控制效果。

图3

如图3所示,同轴度公差的基准注法有

两种,一种是以给定的一条轴线为基准,另

标准介绍与贯彻

3

一种是以公共轴线为基准,两种注法对同轴

度误差的控制效果差别较大。当以公共轴线A —B 为基准时,同轴度误差等于φ0.1 mm 公差带应评定合格;若改为以左边实际轴线(即基准轴线A )为基准,评定右边轴线的同轴度误差则已大大超过φ0.1 mm 。

两种基准标注的同轴度公差,反映两种不同的设计功能。以公共轴线为基准反映了被测各轴线具有相同的重要程度,起共同定位的作用,如:箱体上用于支承传动轴的轴承孔,因对轴的支承是各孔共同承担的,没有以某个轴承孔作导向孔,因此选用公共轴线作为同轴度公差的基准比较合理。以某条

轴线作基准的同轴度公差反映了各被测轴线的功能不同,有主定位,有辅定位或辅助装配要求,此时就应选择起定位作用的轴线作为基准,其他轴线作为被测要素。

4 公差原则的选用

公差原则是处理尺寸公差和形位公差之间关系的方法。为了表明尺寸公差与形位公差之间的功能关系,就需要应用公差原则。原则上讲,独立原则应用于那些设计上对尺寸公差和形位公差要求分别满足,不要求两者发生补偿的零件要素,这种应用约占90%以上。而相关要求主要是应用于那些有配合或装配性质要求的场合。

图4

如图4所示,为一立式减速机的箱体与轴的配合部分。轴承外圈的尺寸及公差为 φ40000400.?mm ,与轴承相配的(整体式外壳)

箱体孔尺寸及公差为φ400H7(057

00

.+)mm 。分析可知,其配合最大间隙为0.097 mm ,最大过盈为0。应该说装配是不会有问题的,但是在实际生产中却往往产生装配困难,不得不采取一定的手段才能将轴承装入。这样既有损于轴承,又影响配合性质,继而对轴承的运转也有一定的影响。之所以这样,主要是由于对箱体孔的形位公差选择不当。如图4b )所示,箱体孔未注形位公差,但其形位误差就应符合未注公差的规定。孔的圆柱度误差分别由横截面内的圆度未注公差(0.057 mm )、轴向截面内素线的直线度未注公差(0.1

mm )来控制。这样,孔的极限作用尺寸=孔

的最大实体尺寸–(圆度公差值+直线度公差值)=400–(0.057+0.1)=399.843 mm ,而加工时总要以要素的最大实体尺寸为目标,所以可能产生的最大过盈为0.157 mm ,这就造成了装配的困难。如果在箱体孔上采用包容要求[如图4c )所示],要求孔的实际尺寸与形状误差的综合效应不得超越最大实体边界,其边界尺寸为最大实体尺寸φ400 mm 。随着孔的实际尺寸不同,允许的形状公差值也不同。尺寸误差偏离最大实体尺寸的值即为所允许的形状公差值,其最大值等于尺寸公差值0.057 mm 。这样,就能够避免轴承的装配困难。

(收稿日期:2002–04–23)

最新形位公差标注示例

形位公差标注示例

8.6.3 形位公差标注示例 形位公差的标注示例如图8.6.2-1、图8.6.2-2所示。 图8.6.2-1 图8.6.2-2 图中各符号的含义为: 框 中的○是圆度的符号,表示在垂直于轴线的任一正截面上,Ф100圆必须位于半径差为格 公差值0.004的两同心圆之间。 框 中的∥是平行度的符号,表示零件右端面必须位于距离为公差值0.01,且平行基准格 平面A的两平行平面之间。 框 中的⊥是垂直度的符号,表示零件上两孔轴线与基准平面B的垂直度误差,必须格 位于直径为公差值0.03的圆柱面范围内。 框 中的◎是同轴度的符号,表示零件上两孔轴线的同轴度误差,Ф30H7的轴线必须格 位于直径为公差值0.02,且与Ф20H7基准孔轴线A同轴的圆柱面范围内。 符号是基准代号,它由基准符号(粗短线)、圆圈、连线和字母组成。圆圈的直径与框格的高度相同。字母的高度与图样中尺寸数字高度相同。 形状和位置公差的通则、定义、符号和图样表示法等,详见国家标准GB/T1182-1996、GB/T1183- 1996、 GB/T1184-1996和GB/T16671-1996。

第四章形状和位置精度设计与检测 要求一般理解与掌握的内容有: 形位公差的基本概念、分类,公差原则中的最小实体要求与可逆要求,形位误差及其检测; 要求深刻理解与熟练掌握的重点内容有: 1、形位公差特征项目的名称和符号; 2、形位公差在图样上的表示方法; 3、形位公差带; 4、公差原则; 难点:公差原则,形位公差的选择。 实验六:学生根据自己的兴趣选择一种零件的形状或位置公差的检测。 学时:8学时=6学时+习题课2学时 零件在加工过程中,由于工件、刀具、夹具及工艺操作等因素的影响,会使被加工零件的各几何要素产生一定的形状误差和位置误差,而几何要素的形位误差会直接影响机械产品的工作精度、运动平稳性、密封性、耐磨性、使用寿命和可装配性等。因此,为了满足零件的使用要求,保证零件的互换性和制造经济性,在设计时应对零件的形位误差给以必要而合理的限制,即应对零件规定形状和位置公差。 为了保证互换性,我国已经把形位公差标准化,颁布了下列国标: GB/T1182-1996《形状和位置公差通则定义符号和图样表示法》 GB/T1184-1996《形状和位置公差未注公差值》 GB/T4249-1996《公差原则》 GB/T16671-1996《形状和位置公差最大实体要求、最小实体要求和可逆要求》 形位误差的产生及其影响: 图样上给出的零件都是没有误差理想几何体,但是,由于加工中机床、夹具、刀具、和工件所组成的工艺系统本身存在各种误差,以及加工过程中存在受力变形、振动、磨损等各种干扰,致使加工后的零件的实际形状和相互位置,与理想几何体的规定形状和线、面相互位置存在差异,这种形状上的差异就是形状误差,而相互位置的差异就是位置误差,统称为形位误差。例如书中图4.1(a),形位误差对零件使用性能的影响如下: 1)影响零件的功能要求

尺寸公差 形位公差关系

同一工件上所标注的尺寸公差要求小还是形位公差要求小? 尺寸公差与形位公差是否有联系? 1.形位公差要小,两都有联系。 2.表面形状公差(t),尺寸公差(T)及表面粗糙度Ra,Rz有一定相互关系的: t≈0.6T 则Ra≤0.05T,Rz≤0.2T; t≈0.4T 则Ra≤0.025T,Rz≤0.1T; t≈0.25T 则Ra≤0.012T,Rz≤0.05T; t<0.25T 则Ra≤0.015T,Rz≤0.06T; 3. 尺寸公差有标准公差\极限公差 形位公差共有14个,根据零件的功能要求,有时尺寸公差与形位公差之间应遵循一些特定的关系,也就是尺寸公差控制形位公差;形位公差补偿给尺寸公差。 图样上给定的每一尺寸和形状\位置要求均是独立的并分别满足要求的原则,这是独立原则 粗糙度是根据配合来定的 4. 除了独立原则和包容原则外还有最大和最小实体要求及其各自的可逆要求.到底使用哪种原则和要求要看具体情况. 对于孔轴配合来说,包容原则和最大最小实体要求都是常用的,这些要求的目的是在保证配合的 同时根据形位误差适当的放宽对尺寸公差的要求,允许部分尺寸超差的零件合格,降低加工难度 和成本. 5.尺寸公差与形位公差的联系要在实践中细细体会。 例如:一、一块矩形板上有四个孔。四个孔的相对位置要求很高(因为相应的装配是一组轴类零件),而孔本身的加工要求不高(相应装配的轴类件其单个的表面精度低或是很松的间隙配合等),这时的形位公差的要求高于尺寸公差的;二、一块板上有一孔。这孔的装配要求很高(装配上相应的轴类零件后要求板与轴件的垂直度相当高),这时尺寸的公差的要求可能就要高于形位公差了。 公差的设计就是要保障装配的实现,本着这个原则就可以了。 6.尺寸分为绝对尺寸和关联尺寸,如果是关联尺寸,就和形位公差挂上钩了哟 7. Sorry,一条好的经验法则:1/3D

形位公差理论和标注实例

形位公差的标注 (1)代号中的指引线箭头与被测要素的连接方法:当被测要素为线或表面时,指引线的箭头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图a。 当被测要素为轴线或中心平面时,指引线的箭头应与该要素的尺寸线对齐,见右图b; 当被测要素为各要素的公共轴线、公共中心平面时,指引线的箭头可以直接指在轴线或中心线上,见右图c。 (2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素,此时基准符号与 基准要素连接的方法: 当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出线标注,并应明显地与尺寸线错开,见下图a。 当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图b。

当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接靠近公共轴线或中心线标注,见上图c。 (3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查看画法)标注,其标注方法与采用基准符号时基本相同,只是此时公差框格应为三格或多格,以填写基准代号的字母,见下图。 (4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。 (5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下图。

(6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。 (7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全长(或整个要素)内的公差值,其标注方法见下图b。

尺寸公差、形位公差、粗糙度数值关系

一、尺寸公差、形位公差、表面粗糙度数值上的关系 1、形状公差与尺寸公差的数值关系 当尺寸公差精度确定后,形状公差有一个适当的数值相对应,即一般约以50%尺寸公差值作为形状公差值;仪表行业约20%尺寸公差值作为形状公差值;重型行业约以70%尺寸公差值作为形状公差值。由此可见.尺寸公差精度愈高,形状公差占尺寸公差比例愈小所以,在设计标注尺寸和形状公差要求时,除特殊情况外,当尺寸精度确定后,一般以50%尺寸公差值作为形状公差值,这既有利于制造也有利于确保质量。 2、形状公差与位置公差间的数值关系 形状公差与位置公差间也存在着一定的关系。从误差的形成原因看,形状误差是由机床振动、刀具振动、主轴跳动等原因造成;而位置误差则是由于机床导轨的不平行,工具装夹不平行或不垂直、夹紧力作用等原因造成,再从公差带定义看,位置误差是含被测表面的形状误差的,如平行度误差中就含有平面度误差,故位置误差比形状误差要大得多。因此,在一般情况下、在无进一步要求时,给了位置公差,就不再给形状公差。当有特殊要求时可同时标注形状和位置公差要求,但标注的形状公差值应小于所标注的位置公差值,否则,生产时无法按设计要求制造零件。 3、形状公差与表面粗糙度的关系 形状误差与表面粗糙度之间在数值和测量上尽管没有直接联系,但在一定的加工条件下两者也存在着一定的比例关系,据实验研究,在一般精度时,表面粗糙度占形状公差的1/5~1/4。由此可知,为确保形状公差,应适当限制相应的表面粗糙度高度参数的最大允许值。 在一般情况下,尺寸公差、形状公差、位置公差、表面粗糙度之间的公差值具有下述关系式:尺寸公差>位置公差>形状公差>表面粗糙度高度参数 从尺寸、形位与表面粗糙度的数值关系式不难看出,设计时要协调处理好三者的数值关系,在图样上标注公差值时应遵循:给定同一表面的粗糙度数值应小于其形状公差值;而形状公差值应小于其位置公差值;位置各差值应小于其尺寸公差值。否则,会给制造带来种种麻烦。可是设计工作中涉及最多的是如何处理尺寸公差与表面粗糙度的关系和各种配合精度与表面粗糙度的关系。 一般情况下按以下关系确定: 1、形状公差为尺寸公差的60%(中等相对几何精度)时,Ra≤0.05IT; 2、形状公差为尺寸公差的40%(较高相对几何精度)时,Ra≤0.025IT; 3、形状公差为尺寸公差的25%(高相对几何精度)时,Ra≤0.012IT; 4、形状公差小于尺寸公差的25%(超高相对几何精度)时,Ra≤0.15Tf(形状

形位误差和形位公差

形位误差和形位公差 吕华福 授课课题:形位误差和形位公差 课题内容:1、形位误差的评定与检测;2、形位公差带定义、特点 本次重点:形位误差的评定、检测;形位公差精度分析 本次难点:形位公差精度分析 教学时间:4课时 教学过程: 实例引入,承上启下 一、形状误差和形状公差(解释概念,明确内容) 1、形状误差:被测实际要素对理想要素的变动量。 2、形状公差:单一实际要素的形状所允许的变动全量。 二、位置误差和位置公差 1、位置误差:关联被测实际要素对其理想要素的变动量。 2、位置公差:关联实际要素的位置对基准所允许的变动全量。 位置公差按几何特征分: *定向公差:具有确定方向的功能,即确定被测实际要素相对基准要素的方向精度。 *定位公差:具有确定位置功能,即确定被测实际要素相对基准要素的位置精度。 *跳动公差:具有综合控制的能力,即确定被测实际要素的形状和位置两方面的综合精度。 (提出问题,引导思考)零件的形位究竟是多少,该如何评定呢? 三、形位误差的评定 形位误差是指被测要素对其理想要素的变动量。 形位误差值小于或等于相应的形位公差值,则认为合格。 1、形状误差的评定 (1)形状误差的评定准则——最小条件 所谓最小条件,是指被测实际要素相对于理想要素的最大变动量为最小,此时,对被测

实际要素评定的误差值为最小。 (2)形状误差值的评定 评定形状误差时,形状误差数值的大小可用最小包容区域(简称最小包容区域)的宽度或直径表示。 3个区域比较,引出最小条件、最小区域 的概念,用以评定形状误差。 2、位置误差的评定 *定向误差是被测实际要素对一具有确定方向的理想要素的变动量,该理想要素的方向由基准确定。 定向误差值用定向最小包容区域(简称定向最小区域)的宽度或直径表示。定向最小区域是指按理想要素的方向包容被测实际要素时,具有最小宽度或直径的包容区域。(通过定向误差的评定分析,比较定向最小区域与最小区域的差别。) *定位误差是被测实际要 素对一具有确定位置的理 想要素的变动量。该理想 要素的位置由基准和理论 正确尺寸确定。 定位误差用定位最小包容区域(简称定位最小 区域)的宽度或直径表示。定位最小区域是指以理想要素定位来包容被测实际要素时,具有最小宽度或直径的包容区域。 明确定位最小区域,引出基准的概念*跳动是当被测要素绕基准轴线旋转时,以指示器测量被测实际要素表面来反映其几何误差,它与测量方法有关,是被测要素形状误差和位置误差的综合反映。 跳动的大小由指示器示值的变化确定,例如圆跳动即被测实际要素绕基准轴线作无轴向移动回转一周时,由位置固定的指示器在给定方向上测得的最大与最小示值之差。(跳动先给出概念,在跳动公差中再详细介绍)

机械制图常用形位公差符号表示方法

机械制图常用形位公差符号表示方法

一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 标注符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。

定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差

形位公差理论和标注实例

形位公差的标注 当被测要素为线或表面时,指引线的箭:(1)代号中的指引线箭头与被测要素的连接方法 。头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图a指引线的箭头应与该要素的尺寸线对当被测要素为轴线或中心平面时, 齐,见右图b;指引线的箭头可以当被测要素为各要素的公共轴线、公共中心平面时, c。直接指在轴线或中心线上,见右图对于位置公差还需要用基准符号及连线表明被测要素的基准要素,)(2 此时基准符号与基准要素连接的方法:当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出 a线标注,并应明显地与尺寸线错开,见下图。当基准要素为轴线或中心平面

时,基准符号应与该尺寸线对齐,见上图 。b 当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接 。靠近公共轴线或中心线标注,见上图c (3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查看标注,其标注方法与采用基准符号时基本相同,只是此时公差框格应为三格)画法或多格,以填写基准代号的字母,见下图。 (4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。 (5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下 图。. (6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。

(7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全。b长(或整个要素)内的公差值,其标注方法见下图

机械制图形位公差的标注常识

形位公差的标注 (1)代号中的指引线前头与被测要素的连接方法当被测要素为线或表面时,指引线的箭头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图a。 当被测要素为轴线或中心平面时,指引线的箭头应与该要素的尺寸线对齐,见右图b; 当被测要素为各要素的公共轴线、公共中心平面时,指引线的前头可以直接指在轴线或中心线上,见右图c。 (2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素,此时基准符号与 基准要素连接的方法: 当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出线标注,并应明显地与尺寸线错开,见下图a。 当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图b。 当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接靠近公共轴线或中心线标注,见上图c。 (3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查看画法)标注,其标注方法与采用基准符号时基本相同,只是此时公差框格应为三格或多格,以填写基准代号的字母,见下图。

(4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。 (5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下图。 (6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。

(7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全长(或整个要素)内的公差值,其标注方法见下图b。 形状和位置公差 形状和位置公差的基本概念 零件经加工后,不仅会存在尺寸的误差,而且会产生几何形状及相互位置的误差。如下图所示的圆柱体,即使在尺寸合格时,也有可能出现一端大、另一端小或中间细两端粗等情况,其截面也有可能不圆,这属于形状方面的误差; 再如下图所示的阶梯轴、加工后可能出现各轴段不同轴线的情况,这属于位置方面的误差。

形位公差换算

附录从(圆柱)位置度公差到坐标/从坐标到(圆柱)位置度公差的换算方法 总公差带X .70711 = 总坐标公差带 0.005 总坐标公差或0.0025双向 公差 示例: .007TOL X .70711 = .00495 TO ± 基本原则: 用总公差带乘以0.7(或70%)便转换为非关键性应用,例如,0.7 X .007 = .0049 或0.005 (±.0025) 0.007 总位置度公差带直径 总坐标或双向公差带 总坐标公差带X 1.4142 = 总公差带 示例: 0.005 总坐标公差或0.0025双向公差X 2X 1.4142 = .007 总公差± TO 基本原则:用总公差带乘以1.4就迅速地转换为非关键性应用,例如 USE 1.4 TIMES TOTAL COORD TOL ZONE TO CONVERT QUICKLY IN NON-CRITICAL APPLICATIONS, e.g. 1.4 X .005 = .007TOL

附录 换算表 从 位置度公差到坐标公差 从坐标公差到 位置度公差到 X 坐标 UJ H < Z Q CE o o o > 示例: ?.010直径 位置度公差 = ±.0035坐标公差 坐标总公差带 位置度公差带 位置度公差 Y 坐标

从坐标测量到 位置度定位的换算 实际定位 差值 方程 理想位置 实际定位 直径等量- 基准面 可以用计算器或电脑完成 坐标测量值与位置定位间的换算器 程序: 基准面

附录 示例 换算 产生的孔0.250 (MMC) (公差 带= 010) 实际孔中心 产生的孔255 (MIN MC) (公差带 = 015 (.010 +.005) 实际孔中心 实际测量值实际测量值 (水平方向) 实际 值-基本值=X 0.754-0.750 =0.004 (水平方向) 实际 值-基本值=X 0.756-0.750 =0.006 (垂直方向) 基本 值-实际值=Y 0.600-0.598 =0.002 (垂直方向) 基本 值-实际值=Y 0.600-0.596 =0.004 从上表中可以看出,在横坐标0.004 (X)和纵坐标0.002 (Y) 上产生一个直 径为0.0089的孔,即直径孔的位置在 规定的0.010直径范围内。所以,该孔 的定位是合格的。 从上表中可以看出,横坐标0.006 (X)和纵坐标 0.004 (Y) 产生一个直径为0.0144的孔,即直径 孔的位置在规定的0.015直径范围内。所以,该孔 的定位是合格的。

尺寸公差与相关要求ISO

GB/T 4249-1996:尺寸公差 本标准适用于技术制图和有关文件中的尺寸、尺寸公差和形位公差,以确定零件要素的大小、形状和位置特征。 1. 独立原则 图样上给定的每一个尺寸和形状、位置要求均是独立的,应分别满足要求。如果对尺寸和形状、尺寸与位置之间的相互关系有特定要求应在图样上规定。 独立原则是尺寸公差和形位公差相互关系遵循的基本原则。 2. 尺寸公差 2.1 线性尺寸公差 线性尺寸公差仅控制要素的局部实际尺寸(两点法测量),不控制要素本身的形状误差(如圆柱要素的圆度和轴线直线度误差或平行平面要素的平面度误差)。 形状误差应由单独标注的形状公差、未注形状公差或包容要求控制(见图1)。 标注说明: 实际轴的局部实际尺寸必须位于149.96至150之间;线性尺寸公差(0.04)不控制要素本身的形状误差。如图1b)所示。 2.2 角度公差 角度公差仅控制被测要素之间的角度变动量,不控制被测要素的形状误差,且理想要素的位置应符合最小条件。 角度公差只控制线或素线的总方向,不控制其形状误差。 总方向是指接触线的方向,接触线是与实际线相接触的最大距离为最小的理想直线(见图2)。实际线的形状误差应由单独标注的形状公差或未注形状公差控制。 示例: 标记说明: A、B两被测实际要素分别按最小条件确定其理想要素,该两理想要素间的夹角应在给定的两极限角度之间,角度公差不控制实际要素的形状误差(见图3)。

3 形状和位置公差 不论要素的局部实际尺寸如何,被测要素的均庆位于给定的形位公差带内,并且其形位误差允许达到最大值(见图4)。 示例: 标注说明: 轴的局部实际尺寸应在最大极限尺寸与最小极限尺寸之间,轴的形状误差应在给定的相应形状公差之内。不论轴的局部实际尺寸如何,其形状误差(素线直线度误差和圆度误差包括横截面奇数棱圆误差)允许达到给定的最大值(见图5)。 GB/T 4249-1996:相关要求--尺寸公差与形位公差相互有关的公差要求 1 图样上给定的尺寸公差和形位公差相互有关的公差要求,系指包容要求、最大实体要求(包括可逆要求应用于最大实体要求)和最小实体要求(包括可逆要求应用于最小实体要求)。 1.1 包容要求 包容要求适用于单一要素如圆柱表面或两平行表面。 包容要求表示实际要素应遵守其最大实体边界,其局部实际尺寸不得超出最小实体尺寸。 采用包容要求的单一要素应在其尺寸极限偏差或公差带代号之后加注符号“”(见图6)。 示例: 标注说明:

尺寸链中形位公差的判别与解算

尺寸链中形位公差的判别与解算 杜官将,薛小强 摘要:从零件形位公差要素所采用的公差原则入手,讨论了在尺寸链计算中,是否应该考虑形位公差的影响以及形位公差组成环性质的判别方法,并通过实例加以说明。 关键词:公差原则,形位公差;尺寸链 中囤分类号:TG801 文献标识码:A 0引言 在机械加工或装配的过程中,尺寸链是求解工序尺寸或装配精度的重要手段。在查找尺寸链组成环时,除了零件上的长度尺寸外,还经常涉及到零件上的形位公差。尺寸精度、形位精度是保证机械零件功能要求的基础,二者既相互联系,又相互制约,公差原则是处理尺寸公差与形位公差关系的重要原则。以往在计算尺寸链时,通常把与线性尺寸环相连接的零件要素作为具有理想形状和理想位置来处理,或把形位公差包含在尺寸公差之内处理。随着检测技术以及人们对产品质量要求的不断提高,我们认识到在工程中若回避或忽略形位误差的影响,可能会造成零件的报废或产品不合格,给生产带来不应有的经济损失。 文献[1,2]等对形位公差在尺寸链中的处理作了有益的探索,但主要针对同轴度、对称度等少数形位公差,缺乏较全面的分析。本文从零件形位公差要素所采用的公差原则入手,理清形位公差与尺寸公差之间的关系,从而确定形位公差是否应该计入尺寸链,以及尺寸链中形位公差环性质的判别方法,从而为涉及形位公差的尺寸链的求解提供思路。 1 形位公差作为尺寸链组成环的条件 由于零件功能要求的不同,所采用的公差原则也不同[3]。公差原则分为独立原则和相关原则,相关原则又可分为包容原则和最大实体原则。根据零件尺寸及形位公差所采用的公差原则.在建立尺寸链的过程中,对形位公差的处理方法也有所不同。 1.1 对于按包容要求设计的零件要素 包容要求是被测实际要素处处不得超越最大实体边界的一种要求,它只适用于单一尺寸要素(圆柱面、两平行平面)的尺寸公差与形位公差之间的关系。采用包容要求的尺寸要素,应在其尺寸极限偏差或公差代号后加注符号“E”。包容要求的实质就是用零件的尺寸公差控制其形位公差,因此,形位公差不会对封闭环产生影响,在尺寸链的建立过程中,只需计入零件的尺寸及公差,而相应的形位公差不应计入尺寸链。 1.2对于按独立原则设计的零件要素 独立原则是指图样上给定的各个尺寸和形状、位置要求都是独立的,应该分别满足各

形位公差通用解释

产品计量专业术语表 / WebCode 8718 专业术语表 A Angularity 倾斜度 Angular sector roundness 区域圆度 B Base roughness depth 基本粗糙度深度 C Core roughness 中心粗糙度 Coaxiality 同轴度 Concentricity 同心度 Conicity 锥度 Cutoff 截至波长 Cylindricity 圆柱度 F Flatness 平面度 G General notes on form and location tolerances 形位公差通用解释M Material ratio 材料支撑率 Mean roughness 平均粗糙度 P Parallelism 平行度 Peak count 轮廓峰数量 Peak height 轮廓峰高度 Perpendicularity 垂直度 Profile any line 线轮廓度 Profile any surface 面轮廓度 Position 位置度 Profil depth 轮廓深度 Profil filter 轮廓滤波 R Roughness profile 粗糙度轮廓 Roughness depth 粗糙度深度 Roundness 圆度 Radial run-out 径向跳动 S Skewness 偏斜度 Symmetry 对称度 Straightness 直线度 T Traversing length 扫描长度 Total run-out 全跳动 W Waviness height 波纹度高度

形位公差的通用解释 某个特性(表面、轴、点和中平面等)的形位公差是定义为一个区域,这个特性的所有点都包含在这个区域内。依照该特性的给定公差和它的维数特征,其公差区域是下面中的一个: 圆内区域 两同心圆之间的区域 两平行直线间的区域 两等距线之间的区域 两平行平面间的区域 两等距面间的区域 圆柱内区域 两同轴圆柱之间的区域 平行六面体你的区域 对于位置公差,必须定义一个基准用于决定公差区域的准确位置。基准是一个理论上确切的几何特性(象轴、平面、直线等),基准可以基于一个或者几个基准特性。 除非有更加严格的限制,公差特性可以是公差区域内的任意的形状、位置和方向等。公差的数值 t 用于线性测量时以相同的单位给出。如果没有特殊的说明,公差作用于被标注公差特性的整个范围。 平面度 ISO 1101 (1985-03) 形位公差的通用解释 定义 公差被限制在间隔为t 的两个平行平面区域之间 实例

常用公差标注及形位公差讲解

1.幾何特性名詞與符號 (a) 幾何特性符號 符 號 名 詞 類 別 形體區分 直度,真直度(Straightness) 平面度,真平度(Flatness) 真圓度(Roundness) 圓柱度(Cylindrically) 曲線輪廓度(Profile of a line) 曲線輪廓度(Profile of a surface) 平行度(Parallelism) 垂直度(Perpendicularity) 傾斜度(Angularity) 正位度,位置度(Position) 同心度(Concentricity) 對稱度(Symmetry ) (1982年起由 取代) 圓周偏轉度,圓形偏轉度 (Circular runout) 總偏轉度,全面偏轉度

(b) 其他符號 符 號 名 詞 直徑符號(Diameter symbol) 不考慮形體呎寸加添條件,和特性的尺寸無關 (Regardless of feature size modifier) 最多留料情況之加添條件,最大材料條件 (Maximum material condition modifier) 最小留情況加添條件,最小材料條件 (Least material condition modifier) 基本尺寸,精密尺寸(Basic dimension) 基準形體符號,基準識別符號(Datum feature symbol) 最多留料情況(MMC),Maximum- Material Condition 最多留料情況是指一個形體包容最大的材料量,即零件重量最重的時候。例如最小孔的尺寸或最大軸的尺寸。如下面圖示,直徑為0.490~0.510的銷子,當直徑 為0.510時的重量比直徑為0.490時重。一個零件包含一個直徑為0.490~0.510的孔,則零件當直徑 為0.490時比0.510時,包含更多中更重. .100 -A- A1

形位公差特殊标注方法

名称 标注规定 示例 公共公差带 1.图a 是三个表面 用同一公差带控制以 达到共面要求的示 例,应在公差表格上 方标注“共面” 2.图b 为同一要求 的另一种标注形式, 即公差框格不与被测 要素相连。每一个被 测要素上标以符号及 字母,框格上方标上 被测要素的数量及字 母代号3xA ,并在其 后加注“共面” 3.除“共线”、 “共面”要求外,其 他要素需由公共公差 带控制时,可加注 “公共公差带” 全周符号 1.图a 为外轮廓线 的全周统一要求 2.图b 为外轮廓面 的全周统一要求 对误差值的进一步限制 1.对同一棱滑要 素,如在全长上给出 公差值的同时,又要 求在任一长度上进行 进一步的限制,可同 给出全长上和任意长 度上两项要求,任一 长度的公差值要求用 分数表示,如a 图所 示 同时给出全长和任 一长度上的公差值 时,全长上的公差值 框格并置于任一长度 的公差值框格上面,

如b 图所示 2.对被测要素形状误差的变化方向有进一步限制要求时,应在公差值后加注限定符号。图c 表示该 平面的平面度误差只允许两边高中间低,即外边向中心凹下。图d 表示该圆柱面的圆柱度误差只允许从左端向右端减小 说明性内容 表示被测要素的数量,应注在框格的上 方,其他说明性内容应注在框格的下方。但也允许例外的情况,如上方或下方没有位置标注时,可注在框格的周围或指引线上 螺纹 一般情况下,以螺 纹的中径轴线作为被测要素或基准要素时,不需另加说明 如需以螺纹大径或小径作为被测要素或基准要素时,应在框格下方或基准符号中的圆圈下方加注“ MD ”或“LD ” 齿轮、花键 由齿轮和花键作为被测要素或基准要素时,其分度圆轴线用 “PD ”表示。大径(对外齿轮是顶圆直径,内齿轮是根圆直径)轴线用“MD ”表

尺寸公差、形位公差、表面粗糙度三者的关系

尺寸公差、形位公差、表面粗糙度三者的关系 A.尺寸公差、形位公差、表面粗糙度数值上的关系 1、形状公差与尺寸公差的数值关系 当尺寸公差精度确定后,形状公差有一个适当的数值相对应,即一般约以50%尺寸公差值作为形状公差值;仪表行业约20%尺寸公差值作为形状公差值;重型行业约以70%尺寸公差值作为形状公差值。由此可见.尺寸公差精度愈高,形状公差占尺寸公差比例愈小所以,在设计标注尺寸和形状公差要求时,除特殊情况外,当尺寸精度确定后,一般以50%尺寸公差值作为形状公差值,这既有利于制造也有利于确保质量。 2、形状公差与位置公差间的数值关系 形状公差与位置公差间也存在着一定的关系。从误差的形成原因看,形状误差是由机床振动、刀具振动、主轴跳动等原因造成;而位置误差则是由于机床导轨的不平行,工具装夹不平行或不垂直、夹紧力作用等原因造成,再从公差带定义看,位置误差是含被测表面的形状误差的,如平行度误差中就含有平面度误差,故位置误差比形状误差要大得多。因此,在一般情况下、在无进一步要求时,给了位置公差,就不再给形状公差。当有特殊要求时可同时标注形状和位置公差要求,但标注的形状公差值应小于所标注的位置公差值,否则,生产时无法按设计要求制造零件。 3、形状公差与表面粗糙度的关系 形状误差与表面粗糙度之间在数值和测量上尽管没有直接联系,但在一定的加工条件下两者也存在着一定的比例关系,据实验研究,在一般精度时,表面粗糙度占形状公差的1/5~1/4。由此可知,为确保形状公差,应适当限制相应的表面粗糙度高度参数的最大允许值。 在一般情况下,尺寸公差、形状公差、位置公差、表面粗糙度之间的公差值具有下述关系式:尺寸公差>位置公差>形状公差>表面粗糙度高度参数 从尺寸、形位与表面粗糙度的数值关系式不难看出,设计时要协调处理好三者的数值关系,在图样上标注公差值时应遵循:给定同一表面的粗糙度数值应小于其形状公差值;而形状公差值应小于其位置公差值;位置各差值应小于其尺寸公差值。否则,会给制造带来种种麻烦。可是设计工作中涉及最多的是如何处理尺寸公差与表面粗糙度的关系和各种配合精度与表面粗糙度的关系。 一般情况下按以下关系确定: 1、形状公差为尺寸公差的60%(中等相对几何精度)时,Ra≤0.05IT; 2、形状公差为尺寸公差的40%(较高相对几何精度)时,Ra≤0.025IT; 3、形状公差为尺寸公差的25%(高相对几何精度)时,Ra≤0.012IT; 4、形状公差小于尺寸公差的25%(超高相对几何精度)时,Ra≤0.15Tf(形状公差值)。 最简单的参考值:尺寸公差是粗糙度的3-4倍,这样最为经济。

形位公差定义

形状公差和位置公差简称为形位公差 (1)形状公差:构成零件的几何特征的点,线,面要素之间的实际形状相对与理想形状的允许变动量。给出形状公差要求的要素称为被测要素。 (2)位置公差:零件上的点,线,面要素的实际位置相对与理想位置的允变动量。用来确定被测要素位置的要素称为基准要素。 形位公差的研究对象是零件的几何要素,它是构成零件几何特征的点,线,面的统称.其分类及含义如下: (1) 理想要素和实际要素 具有几何学意义的要素称为理想要素.零件上实际存在的要素称为实际要素,通常都以测得要素代替实际要素. (2) 被测要素和基准要素 在零件设计图样上给出了形状或(和)位置公差的要素称为被测要素.用来确定被 测要素的方向或(和)位置的要素,称为基准要素. (3) 单一要素和关联要素 给出了形状公差的要素称为单一要素.给出了位置公差的要素称为关联要素. (4) 轮廓要素和中心要素 由一个或几个表面形成的要素,称为轮廓要素.对称轮廓要素的中心点,中心线,中心面或回转表面的轴线,称为中心要素 形状公差有直线度,平面度,圆度和圆柱度.其含义和标注如下: 1) 直线度 2) 平面度 平面度公差带只有一种,即由两个平行平面组成的区域,该区域的宽度即为要求的公差值. 3) 圆度 在圆度公差的标注中,箭头方向应垂直于轴线或指向圆心. 4) 圆柱度

形位公差的标注应注意以下问题: (1) 形位公差内容用框格表示,框格内容自左向右第一格总是形位公差项目符号,第二格为公差数值,第三格以后为基准,即使指引线从框格右端引出也是这样. (2) 被测要素为中心要素时,箭头必须和有关的尺寸线对齐.只有当被测要素为单段的轴线或各要素的公共轴线,公共中心平面时,箭头可直接指在轴线或中心线,这样标注很简便,但一定要注意该公共轴线中没有包含非被测要素的轴段在内. (3) 被测要素为轮廓要素时,箭头指向一般均垂直于该要素.但对圆度公差,箭头方向必须垂直于轴线. (4) 当公差带为圆或圆柱体时,在公差数值前需加注符号"Φ",其公差值为圆或圆柱体的直径.这种情况在被测要素为轴线时才有.同轴度的公差带总是一圆柱体,所以公差值前总是加上符号"Φ";轴线对平面的垂直度,轴线的位置度一般也是采用圆柱体公差带,需在公差值前也加上符号"Φ". (5) 对一些附加要求,常在公差数值后加注相应的符号,如(+)符号说明被测要素只许呈腰鼓形外凸,(-)说明被测要素只许呈鞍形内凹,(>)说明误差只许按符号的小端方向逐渐减小.如形位公差要求遵守最大实体要求时,则需加符号○M.在框格的上,下方可用文字作附加的说明.如对被测要素数量的说明,应写在公差框格的上方;属于解释性说明(包括对测量方法的要求)应写在公差框格的下方.例如:在离轴端300mm处;在a,b范围内等.

形位公差定义及检测方法

形位公差定义及检测方法 一、 直线度的定义及检测方法 定义:直线度是指零件被测的线要素直不直的程度。 检测方法概述: ㈠.将平尺(小零件可用刀口尺)与被测面直接接触并靠紧。此时平尺与被测面之间的最大间隙即为该检测面的直线度误差。一般公用检测器具-塞尺。(图片) 按此方法检测若干条素线,取其中最大误差值作为该件的直线度误差。 ㈡.将被测件放在平台上,并靠紧方箱或直角尺(或者将被测件放置在等高V 型铁上)。用杠杆表在被测素线的全长范围内测量,同时记录检测数值,最大数值与最小数值之差即为该条素线直线度误差。(简图): 按上述方法测量若干条素线,并计算,取其中最大的误差值,作为被测零部件的直线度误差。 ㈢将被测零部件用千斤顶支起,利用杠杆表将被测素线的两端点调整到与平台平行,在被测素线的全长范围内测量,同时记录,读数,最大值与最小值之差即为该素线的直线度误差,按同样方法测量若干条素线,取其中最大的误差值作为该被测件的直线度误差。 ㈣综合量规:综合量规的直径等于被测零件的实效尺寸,综合量规必须通过被测零件。 二、平面度定义及检验方法 平面度是指零件被测表面的要素平不平得程度。 ㈠将被测件用千斤顶支撑在平台上,调整被测表面最远的三点A,B,C ,(利用杠杆表或高度尺)使其与平台平行,然后用测头在整个实际表面上进行测量,同时记录读数,其最大与最小读数之差,即为被测件平面度误差。 ㈡用刀口尺(小型件)或平尺(较大型件)在整个被测平面上采用“米”字型或栅格型方法进行检测,用塞

尺进行检验,取其塞尺最大值为该被测零件得平面度误差。 ㈢环类垫圈类零件 将被测件的被测面放在平台上,压紧,然后用塞尺检测多处,其塞入的最大值即为该件的平面度误差。(或者将被测件的被测面用三块等高垫铁在平台上均分支撑,然后用杠杆表在被测面的多处进行检测,取其最大与最小读数的差作为该件的平面度误差。 三、圆度定义及测量方法 定义:圆度是指具有圆柱面(包括圆锥面)的零件在同一横剖面内的实际轮廓不圆的程度。 测量方法: ㈠轴类件:将被测件用偏摆仪顶紧,将杠杆表的测头压到被测面上,在被测件回转一周过程中指示表读数的最大差值之半,即为单个测量面上的圆度误差。按上述方法在被测件轴向上测量若干个截面,取各截面上测得的跳动量中的最大误差值(取各截上指示表的最大与最小读数差之半中的最大数值),作为该零件的圆度误差。 ㈡两点测量法也称直径法: 用千分尺(内径表)直接测量被测轴(孔)的直径,在被测件的同一截面内按多个方向测量直径的变化情况,寻求各个方向测得读数中的最大差值之半(最大值减最小值之半)即为该被测截面的单个圆度误差。按同样方法在轴向上测若干个截面,取各截面上测得差值中最大的差值之半,作为该零件的圆度误差。 四、圆柱度定义及测量方法 定义:圆柱度是控制圆柱的纵、横剖面及轴线等的圆度、直线度、和平行度的综合指标。 测量方法如下: ㈠将被测件放在平台上并靠紧在方箱根部,杠杆表测头压到被测件表面上,在被测零件回转一周过程中,测量一个横截面上的最大与最小读数,按上述方法在件的轴向上测量若干个横截面,然后取各截面内所测得的所有读数中的最大与最小读数的差值之半,作为该零件的圆柱度误差。

形位公差实例详解

形位公差的标注
(1)代号中的指引线箭头与被测要素的连接方法:当被测要素为线或表面时,指引线的箭 头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图 a。
当被测要素为轴线或中心平面时, 指引线的箭头应与该要素的尺寸线对 齐,见右图 b; 当被测要素为各要素的公共轴线、公共中心平面时,指引线的箭头可以 直接指在轴线或中心线上,见右图 c。 (2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素, 此时基准符号与 基准要素连接的方法: 当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出 线标注,并应明显地与尺寸线错开,见下图 a。 当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图 b。

当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接 靠近公共轴线或中心线标注,见上图 c。 (3)当基准符号不便直接与框格相连时,则采用基准代号 (点击此处查看 画法)标注, 其标注方法与采用基准符号时基本相同, 只是此时公差框格应为三格 或多格,以填写基准代号的字母,见下图。
(4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基 准时,就不再画基准符号,两边都用箭头表示,见下图。
(5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可 以将这些框格画在一起,共用一根指引线箭头,见下图。

(6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从 框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。
(7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见 图 a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全 长(或整个要素)内的公差值,其标注方法见下图 b。

相关主题
文本预览
相关文档 最新文档