当前位置:文档之家› 透射电镜图TEM制样及碳膜的选择碳膜介绍

透射电镜图TEM制样及碳膜的选择碳膜介绍

透射电镜图TEM制样及碳膜的选择碳膜介绍
透射电镜图TEM制样及碳膜的选择碳膜介绍

透射电镜图T E M制样及

碳膜的选择碳膜介绍 The following text is amended on 12 November 2020.

1.样品制备:

i.准备载玻片,在实验台上,用镊子取铜网正面放于载玻片(或滤纸)上,备

用;

ii.将样品加入背景溶液,调好pH值,超声20 min,然后将样品用塑料滴管滴在载玻片(或滤纸)上;

iii.待样品自然风干后(样品可以保存一定时间,只要在空气中不容易发生各种复杂反应,样品制备好后可以用一个培养皿盖住来保护样品),测定。注:

①当样品颗粒较大或样品浓度较低时,样品可能被载玻片或滤纸吸走,所以

可以使用悬空法滴定样品,借助的仪器为:自锁架;

②样品提前制作时应多做几个浓度梯度,因为样品太稀(太少)或太浓稠

(太多)都会影响测定,拍摄出的图片不利于后面样品分析;

③样品最好是提前制备好,因为现做可能样品不容易干,并且没有多余的时

间和拍摄人员沟通。若特殊原因没有提前制好样,样品可以烘干,但烘干温度不可超过70o C;

④样品拍摄时的注意事项:注重和拍摄人员的沟通,告诉他们哪些结构特征

或样品图是你需要的,拍摄样品时,制样人员尽量都在拍摄者旁边。制样者也应提前查阅相关资料,知道自己的样品大概的形貌。

2.样品保存:样品制备好应放干燥的干燥器等干燥环境保存,否则样品容易生成

铜绿,可能干扰样品观测。

3.样品制作工具准备(样品外送测定):塑料滴定管,铜网,样品液(提前超

声),载玻片,纸巾,蒸馏水、背景溶液或去离子水,手套

4.铜网的特点:一面颜色较浅(红色,光亮的),一面颜色较深(颜色深的一面较

亮,有光泽)。喷了碳的一侧稍暗(看起来像是用铅笔在铜网上涂过一样,为正面,铜网边缘部分反光比较均一),在灯光下晃动有时候会有彩色状,喷碳的目的是为了传输电子,因此样品应滴在含碳膜的一侧。反面的铜网边缘会比较亮比较突出,和中间的部分反光不一致。

5.

6.测样注意事项:铜网很轻,拿样品时别让样品被风吹翻或者掉地上了。

7.样品测试:如果滴样的那一侧(正面)和检测时看得那一侧不一致的,样品杆

送进去测定过程中,万一有东西脱落了会掉到镜筒里,会污染荧光屏和镜筒。

8.铜网选择:低倍放大(样品颗粒较大)-普通铜网(最经济实用),高分辨率放

大(样品颗粒小)-微栅

9.电镜喷碳的目的:当样品放在电镜中观察时,“载网支持膜”在电子束照射

下,会产生电荷积累,引起样品放电,从而发生样品漂移、跳动、支持膜破裂等情况。所以,人们考虑在支持膜上喷碳,提高支持膜的导电性,达到良好的观察效果。这种经过“喷碳的载网支持膜”,简称“碳支持膜”,一般膜厚度为7-10nm。

10.载网:一层金属网

11.载网支持膜:大多数透射电镜样品在制样时,为了确保样品能搭载在“载

网”上,会在“载网”上覆一层有机膜,称为“支持膜”。这种具有支持膜的载网,称为“载网支持膜”。当样品接触载网支持膜时,会很牢固的吸附在支持膜上,不至于从载网的孔洞处滑落,以便在电镜上观察。

12.碳支持膜:为铜网喷碳的支持膜,是人们经常提到的“铜网支持膜”、“碳

支持膜”、“碳膜”、“方华膜”、“铜网”。铜网的孔径相对于纳米材料是巨大的。

13.微栅(lacey support films):是支持膜的一个品种,它是在制作支持膜

时,特意在膜上制作的微孔,所以也叫“微栅支持膜”,它也是经过喷碳的支持膜,一般膜厚度为15-20nm。它主要是为了能够使样品搭载在支持膜微孔的边缘,以便使样品“无膜”观察。无膜的目的主要是为了提高图像衬度,所以,观察管状、棒状、纳米团聚物等,常用“微栅”支持膜,效果很好。特别是观察这些样品的高分辨像时。

14.超薄碳膜:也是支持膜的一种,它是在微栅的基础上,叠加了一层很薄的碳

膜,一般为3-5nm。这层超薄碳膜的目的,是用薄碳膜把微孔挡住。这主要是针对那些分散性很好的纳米材料,如:10nm以下的样品,分散性极好,如果用微栅就有可能从微孔中漏出,如果在微栅孔边缘,由于膜厚可能会影响观察。所以,用超薄碳膜,就会得到很好的效果。

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

透射电子显微镜(材料分析方法)

第九章透射电子显微镜 一、透射电子显微镜的结构与成像原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。它由电子光学系统、电源与控制系统及真空系统三部分组成。电子光学系统通常称为镜筒,是透射电子显微镜的核心,它与光路原理与透射光学显微镜十分相似,如图1(书上图9-1)所示。它分为三部分,即照明系统、成像系统和观察记录系统。 图1 透射显微镜构造原理和光路 (a)透射电子显微镜b)透射光学显微镜) (1、照明源2、阳极3、光阑4、聚光镜5、样品6、物镜7、物镜光阑 8、选区光阑9、中间镜10、投影镜11、荧光屏或照相底片) (一)照明系统 照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。其作用是提供一束亮度高、照明孔径角小、平行度好、束流稳定的照明源。为满足明场和暗

场成像需要、照明束可在2°~3°范围内倾斜。电子枪是电镜的照明源,必须有很高的亮度,高分辨率要求电子枪的高压要高度稳定,以减小色差的影响。 1、电子枪 电子枪是透射电子显微镜的电子源,是发射电子的照明源。常用的是热阴极三极电子枪,它由发夹形钨丝阴极、栅极帽和阳极组成,如图2(书上图9-2)所示。(发射电子的阴极灯丝通常用0.03~0.1mm的钨丝,做成“V”形。电子枪的第二个电极是栅极,它可以控制电子束形状和发射强度。故有称为控制极。第三个极是阳极,它使阴极发射的电子获得较高的动能,形成定向高速的电子流。阳极又称加速极,一般电镜的加速电压在35~300kV之间。为了安全,使阳极接地,而阴极处于负的加速电位。由于热阴极发射电子的电流密度随阴极温度变化而波动,阴极电压不稳定会影响加速电压的稳定度。为了稳定电子束电流,减小电压的波动,在电镜中采用自偏压电子枪。) 图a为电子枪的自偏压回路,负的高压直接加在栅极上,而阴极和负高压之间因加上一个偏压电阻,使栅极和阴极之间有一个数百伏的电位差。图b中反映了阴极、栅极和阳极之间的等位面分布情况。因为栅极比阴极电位值更负,所以可以用栅极来控制阴极的发射电子有效区域。当阴极流向阳极的电子数量加大时,在偏压电阻两端的电位值增加,使栅极电位比阴极进一步变负,由此可以减小灯丝有效发射区域的面积,束流随之减小。若束流因某种原因而减小时,偏压电阻两端的电压随之下降,致使栅极和阴极之间的电位接近。此时,栅极排斥阴极发射电子的能力减小,束流又可望上升。因此,自偏压回路可以起到限制和稳定束流的作用。由于栅极的电位比阴极负,所以自阴极端点引出的等位面在空间呈弯曲状。在阴极和阳极之间的某一地点,电子束会汇集成一个交叉点,这就是通常所说的电子源。交叉点处电子束直径约几十个微米。 从图A中看出,自偏压是由束流本身产生的,自偏压U b将正比于束流I b即:U b=RI b。这样如果增加,会导致偏压增加,从而抵消束流的增加,这是偏压电阻引起负反馈的结果。它起着限制和稳定束流的作用。改变偏压电阻的大小可以控制电子枪的发身,当电阻R值增大时,控制极上的负电位增高,因此控制极排斥电子返回阴极的作用加强。在实际操作中,一般是给定一个偏压电阻后,加大灯丝电流,提高阴极温度,使束流增加。开始束流随阴极温度升高而迅速上升,然后逐渐减慢,在阴极温度达到某一数值时,束流不再随灯丝温度或灯丝电流变化而变化。此值称为束流饱和点,它是由给定偏压电子负反馈作用来决定的。在这以后再加大灯丝电流,束流不再增加,只能使灯丝温度升高,缩短灯丝寿命。另一种使束流饱和的方法是固定阴极发射温度,即选定一个灯丝电流值,然后加大偏压电阻,增大负偏压,使束流达到饱和点。当阴极温度比较高时,达到束流饱和所需要的偏压电阻要小些,当偏压电阻较大时,达到饱和所需要的阴极温度要低些。两者合理匹配使灯丝达到

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院2008级物理学200801071293黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。图1透射电子显微镜结

第二十五章 透射电子显微镜分析

—1— 第25章 透射电子显微镜 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段。电子显微学是一门探索电子与固态物质结构相互作用的科学,电子显微镜把人眼睛的分辨能力从大约0.2 mm 拓展至亚原子量级(<0.1nm),大大增强了人们观察世界的能力。尤其是近20多年来,随着科学技术发展进入纳米科技时代,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究;没有电子显微镜,开展现代科学技术研究是不可想象的。目前,它的发展已与其他学科的发展息息相关,密切联系在一起。 25.1 基本原理 透射电子显微镜在成像原理上与光学显微镜是类似的(图25-1),所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 理论上,光学显微镜所能达到的最大分辨率d ,受到照射在样品上的光子波长λ以及光学系统的数值孔径N A 的限制: 2sin 2A d n N λ λ α=≈ (25-1) 在20世纪初,科学家就已发现理论上使用电子可以突破可见光的光波波长限制(波长范围400~700nm )。由于电子具有波粒二象性,而电子的波动特性则意味着一束电子具有与一束电磁辐射相似的性质。电子波长可以通过徳布罗意公式使用电子的动能推导出。由于在TEM 中,电子的速度接近光速,需要对其进行相对论修正: e λ≈ (25-2) 式中,h 表示普朗克常数;m 0表示电子的静质量;E 是加速电子的能量;c 为光速。电子显微镜中的电子通常通过电子热发射过程或者采用场电子发射方式得到。随后电子通过电势差进行加速,并通过静电场与电磁透镜聚焦在样品上。透射出的电子束包含有电子强度、相位、以及周期性的信息,这些信息将被用于成像。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚衬度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,衬度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格(Bragg )方程,产生衍射现象,在衍射衬度模式中,像平面上图像的衬度来源于两个方面,一是质量、厚度因素,二是衍射因素;在晶体样品超薄的情况下(如10nm 左右),可使透射电子显微镜具有高分辨成像的功能,可用于材料结构的精细分析,

透射电子显微镜实验讲义

一、实验名称 透射电子显微镜用于无机纳米材料的检测。 二、实验目的 1.认知透射电子显微镜的基本原理,了解有关仪器的主要结构; 2.学习利用此项电子显微技术观察、分析物质结构的方法,主要包括:常规成 像、高分辨成像、电子衍射和能谱分析等; 3.重点帮助学生掌握纳米材料等的微观形貌和结构测试结果的判读,主要包括: 材料的尺寸、大小均匀性、分散性、几何形状,以及材料的晶体结构和生长取向等。 三、实验原理 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段,尤其是近20多年来,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究。 透射电子显微镜在成像原理上与光学显微镜是类似的,所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚忖度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,忖度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格

扫描透射电子显微镜模式分析

A general introduction to STEM detector 1. BF detector It is placed at the same site as the aperture in BF-TEM and detects the intensity in the direct beam from a point on the specimen. 2. ADF detector The annular dark field (ADF) detector is a disk with a hole in its center where the BF detector is installed. The ADF detector uses scattered electrons for image formation, similar to the DF mode in TEM.The measured contrast mainly results from electrons diffracted in crystalline areas but is superimposed by incoherent Rutherford scattering. 3. HAADF detector The high-angle annular dark field detector is also a disk with a hole, but the disk diameter and the hole are much larger than in the ADF detector. Thus, it detects electrons that are scattered to higher angles and almost only incoherent Rutherford scattering contributes to the image. Thereby, Z contrast is achieved.

透射电子显微镜实验报告

透射电子显微镜(TEM)实验报告 学院: 班级: 姓名: 学号: 2016年6月21日

实验报告 一、实验目的与任务 1.熟悉透射电子显微镜的基本构造 2.初步了解透射电镜操作过程。 3.初步掌握样品的制样方法。 4.学会分析典型组织图像。 二、透射电镜的结构与原理 透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。提高加速电压,可缩短入射电子的波长。一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下: 加速电压:80~3000kV 分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm 最高放大倍数:30~100万倍 尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。此外,还包括一些附加的仪器和部件、软件等。有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。以下仅对透射电镜的基本结构作简单介绍。 1.电子光学系统 电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。通常又把电子光学系统分为照明、成像和观察记录部分。 2.真空系统 为保证电镜正常工作,要求电子光学系统应处于真空状态下。电镜的真空度一般应保持在10-5托,这需要机械泵和油扩散泵两级串联才能得到保证。目前的透射电镜增加一个离子泵以提高真空度,真空度可高达133.322×10-8Pa或更高。如果电镜的真空度达不到要求会出现以下问题: 1)电子与空气分子碰撞改变运动轨迹,影响成像质量。

透射电子显微镜原理

第二章透射电子显微镜 【教学内容】 1.透射电子显微镜的构造与成像原理 2.透射电镜图像的成像过程 3.透射电镜主要性能 4.表面复型技术 5.透射电镜观察内容 【重点掌握内容】 1.透射电子显微镜构造 2.表面复型技术 3.复型电子显微镜图像的分析。 【教学难点】 表面复型技术 2.1 透射电子显微镜的结构与成像原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。 There are four main components to a transmission electron microscope: 1.an electron optical column 2. a vacuum system 3.the necessary electronics (lens supplies for focusing and deflecting the beam and the high voltage generator for the electron source) 4.software 电子光学系统(镜筒)(an electron optical column)是其核心,它的光路图与透射光学显微镜相似,如图所示,包括:照明系统,成像系统,观察记录系统。

图2-1 投射显微电镜构造原理和光路 2.1.1 照明系统 组成:由电子枪、聚光镜(1、2级)和相应的平移对中、倾斜调节装置组成。 作用:提供一束亮度高、照明孔径角小、平行度高、束斑小、束流稳定的照明源。为满足明场和暗场成像需要,照明束可在20-30范围内倾斜。 1. 电子枪 电子枪是电镜的电子源。其作用是发射并加速电子,并会聚成交叉点。目前电子显微镜使用的电子源有两类: 热电子源——加热时产生电子,W丝,LaB6 场发射源——在强电场作用下产生电子,场发射电镜FE 热阴极电子源电子枪的结构如图2-2所示,形成自偏压回路,栅极和阴极之间存在数百伏的电位差。电子束在栅极和阳极间会聚为尺寸为d0的交叉点,通常为几十um。栅极的作用:限制和稳定电流。 图2-2 电子枪结构

透射电子显微镜

《材料分析方法》试验报告 透射电子显微镜介绍分析 姓名:杨勇班级:04011507 学号:2015300975日期:2017.11.18 一、试验目的 1.了解透射电子显微镜的结构与成像原理; 2.了解透射电子显微镜的主要功能。 二、仪器介绍: 1.透射电子显微镜简介 透射电子显微镜是一种具有高分辨率,高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。透射电子显微镜的主要特点是可以进行组织形貌与晶体结构同位分析、晶体缺陷分析和晶体结构测定。透射电子显微镜按加速电压分类,通常可分为常规电镜、高压电镜和超高压电镜。提高加速电压,可缩短入射电子的波长,一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力。 图1.透射电子显微镜图2.成像系统结构 2.透射电子显微镜结构 透射电子显微镜由电子光学系统、真空系统、电源与控制系统三部分组成,电子光学系统通常称为镜筒,是投射电子显微镜的核心部分。电子光学系统由照明系统、成像系统和观察记录系统组成。 (1)照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。 ①电子枪是投射电子显微镜的电子源。常用的是热阴极三极电子枪,而在高性能分析性透射电镜中多采用场发射电子枪,它分为冷阴极FEG和热阴极FEG,冷阴极在室温下使用,而热阴极加热到比热发射低的温度使用。 ②聚光镜用来会聚电子枪射出的电子束,以最小的损失照明样品,调节照明强度、孔径角和束斑大小,一般采用双聚光系统。 (2)成像系统主要由物镜、中间镜和投影镜组成。 ①物镜是用来形成第一幅高分辨率电子显微图像或电子衍射花样的透镜。透射电子显微镜分辨率的高低主要取决于物镜。物镜的分辨率主要取决于极靴的

透射电子显微镜的现状与展望

透射电子显微镜的现状与展望 透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射枪扫描透射电镜及能量选择电镜等,透射电镜将又一次面临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射枪扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。 电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖。电子与物质相互作用会产生透射电子,弹性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200—500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子枪类型区分的,如场发射枪电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究。近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有了长足的发展。下面见介绍部分透射电镜和扫描电镜的主要性能 1.高分辨电子显微学及原子像的观察 材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。观察试样中单个原子像是科学界长期追求的目标。一个原子的直径约为1千万分之2—3mm。因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。70年代初形

相关主题
文本预览
相关文档 最新文档