当前位置:文档之家› 典型系统动态性能和稳定性分析的电路模拟

典型系统动态性能和稳定性分析的电路模拟

典型系统动态性能和稳定性分析的电路模拟
典型系统动态性能和稳定性分析的电路模拟

典型系统动态性能和稳定性分析的电路模

一、实验目的

1、 学习和掌握动态性能指标的测试方法。

2、 研究典型系统参数对系统动态性能和稳定性的影响。

二、实验内容

观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。

三、实验步骤

1、熟悉实验设备,设计并连接一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路;

2、利用实验设备观测二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间;

3、改变该二阶系统模拟电路的参数,观测参数对系统动态性能的影响,并记录不同参数下的系统输出曲线。 1.开环传递函数为3

2

3

()232

k W s s s s =+++

den=[1,2,3,2];

roots(den)%开换极点 G=tf(3,[1,2,3,2]);

[Gm,Pm,Wcg,Wcp]=margin(G) nyquist(G) bode(G)

grid on

den=[1,2,3,2];

roots(den)%开换极点 ans =

-0.5000 + 1.3229i -0.5000 - 1.3229i -1.0000

-1.5

-1-0.500.51 1.5

-1.5-1

-0.5

0.51

1.5

Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

-150-100

-50

50

M a g n i t u d e (d B )10

-2

10

-1

10

10

1

10

2

-270

-180

-90

P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

G=tf(3,[1,2,3,2]);

[Gm,Pm,Wcg,Wcp]=margin(G)

Gm =

1.3338

Pm =

17.1340 Wcg =

1.7323 Wcp =

1.5599

-3

-2-10123

-3-2

-1

12

3

Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

-100-80-60-40-200

20M a g n i t u d e (d B )10

-2

10

-1

10

10

1

10

2

-270

-180

-90

P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

G=tf(6,[1,2,3,2]);

[Gm,Pm,Wcg,Wcp]=margin(G)

Warning: The closed-loop system is unstable. > In lti.margin at 89 Gm =

0.6669 Pm =

-16.6613

Wcg =

1.7323 Wcp =

1.9682

2.将系统的开环传函改为3

2

3

()(232)

k W s s s s s =+++

den=[1,2,3,2,0];

roots(den)%开换极点 ans =

0 -0.5000 + 1.3229i -0.5000 - 1.3229i -1.0000

-2.5

-2-1.5-1-0.500.5

-30-20

-10

1020

30

Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

-150-100-50050100M a g n i t u d e (d B )10

-2

10

-1

10

10

1

10

2

-360

-270

-180

-90

P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

G=tf(3,[1,2,3,2,0]);

[Gm,Pm,Wcg,Wcp]=margin(G)

Warning: The closed-loop system is unstable. > In lti.margin at 89 Gm =

0.6667 Pm =

-43.5555

Wcg =

1.0000 Wcp =

1.3325

将系统的开环传函改为3

2

3

()(232)

k W s s s s s =

+++

-4.5

-4-3.5-3-2.5-2-1.5-1-0.500.5

-60-40

-20

2040

60

Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

-150-100-50050100M a g n i t u d e (d B )10

-2

10

-1

10

10

1

10

2

-360

-270

-180

-90

P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

G=tf(6,[1,2,3,2,0]);

[Gm,Pm,Wcg,Wcp]=margin(G)

Warning: The closed-loop system is unstable. > In lti.margin at 89 Gm =

0.3333 Pm =

-84.3432

Wcg =

1.0000 Wcp =

1.6697 >> >> 3.2

3

2

3

()(232)

k W s s s s s =

+++

den=[1,2,3,2,0,0]; roots(den)%开换极点 ans =

0 0 -0.5000 + 1.3229i -0.5000 - 1.3229i -1.0000

-600

-500-400-300-200-1000100

-50-40-30-20-10010203040

50Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

-200-100

100

200

M a g n i t u d e (d B )10

-2

10

-1

10

10

1

10

2

-450

-360

-270

-180

P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

G=tf(3,[1,2,3,2,0,0]);

[Gm,Pm,Wcg,Wcp]=margin(G)

Warning: The closed-loop system is unstable. > In lti.margin at 89

Gm =

Inf Pm =

-115.6441

Wcg =

NaN Wcp =

-1200

-1000-800-600-400-2000200

-100-80-60-40-20020406080

100Nyquist Diagram

Real Axis

I m a g i n a r y A x i s

-200-100

100

200

M a g n i t u d e (d B )10

-2

10

-1

10

10

1

10

2

-450

-360

-270

-180

P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

G=tf(6,[1,2,3,2,0,0]);

[Gm,Pm,Wcg,Wcp]=margin(G)

Warning: The closed-loop system is unstable. > In lti.margin at 89 Gm = Inf Pm =

-154.5325

Wcg = NaN

Wcp =1.4900

>>RFFNVUUH

(完整版)武汉理工大学《电路分析(上)》课后简答题

1-1 实际电路器件与理想电路元件之间的联系和差别是什么? 答: (1)联系:理想电路元件是对实际电路器件进行理想化处理、忽略次要性质、只表征其主要电磁性质的所得出的模型。 (2)差别:理想电路元件是一种模型,不是一个实际存在的东西;一种理想电路元件可作为多种实际电路器件的模型,如电炉、白炽灯的模型都是“电阻”。 1-2 (1)电流和电压的实际方向是怎样规定的?(2)有了实际方向这个概念,为什么还要引入电流和电压的参考方向的概念?(3)参考方向的意思是什么?(4)对于任何一个具体电路,是否可以任意指定电流和电压的参考方向? 答: (1)电流的实际方向就是正电荷移动的方向;电压的实际方向(极性)就是电位降低的方向。 (2)对于一个复杂电路,电流、电压的实际方向事先难以确定,而交流电路中电流、电压的实际方向随时间变化,这两种情况下都无法准确标识电流、电压的实际方向,因此需要引入参考方向的概念。 (3)电流(或电压)参考方向是人为任意假定的。按电流(或电压)参考方向列有关方程,可解出电流(或电压)结果。若电流(或电压)结果数值为正,则说明电流(或电压)的实际方向与参考方向相同;若电流(或电压)结果数值为负,则说明电流(或电压)的实际方向与参考方向相反。 (4)可以任意指定电流和电压的参考方向。 1-3 (1)功率的定义是什么?(2)元件在什么情况下是吸收功率的?在什么情况下是发出功率的?(3)元件实际是吸收功率还是发出功率与电流和电压的参考方向有何关系? 答: (1)功率定义为单位时间内消耗(或产生)的能量,即 ()dW p t dt = 由此可推得,某二端电路的功率为该二端电路电压、电流的乘积,即 ()()()p t u t i t = (2)某二端电路的实际是吸收功率还是发出功率,需根据电压、电流的参考方向以及由()()()p t u t i t =所得结果的正负来综合判断,见下表 (3)元件实际是吸收功率还是发出功率与电流和电压的参考方向无关。

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

高考物理动态电路分析完整

电路的动态分析 直流电流 分析思路 长沙四校联考)如图所示,图中的四个电表均为理想电表,当滑动变阻器滑片 1 (多选)(2015· P向右端移动时,下面说法中正确的是() A.电压表V1的读数减小,电流表A1的读数增大 B.电压表V1的读数增大,电流表A1的读数减小 C.电压表V2的读数减小,电流表A2的读数增大 D.电压表V2的读数增大,电流表A2的读数减小 2.(多选) (2015·湖北省公安县模拟考试)如图所示电路中,电源内阻不能忽略,两个电压表 均为理想电表。当滑动变阻器R2的滑动触头P移动时,关于两个电压表V1与V2的示数,下列判断正确的是() A.P向a移动,V1示数增大、V2的示数减小 B.P向b移动,V1示数增大、V2的示数减小 C.P向a移动,V1示数改变量的绝对值小于V2示数改变量的绝对值 D.P向b移动,V1示数改变量的绝对值大于V2示数改变量的绝对值 3.(多选)如图所示,电源的电动势和内阻分别为E、r,R0=r,滑动变阻器的滑片P由a向b缓慢移动,则在此过程中(

A.电压表V1的示数一直增大 B.电压表V2的示数先增大后减小 C.电源的总功率先减小后增大 D.电源的输出功率先减小后增大 含电容器的电路 解决含电容器的直流电路问题的一般方法 (1)通过初末两个稳定的状态来了解中间不稳定的变化过程。 (2)只有当电容器充、放电时,电容器支路中才会有电流,当电路稳定时,电容器对电 路的作用是断路。 (3)电路稳定时,与电容器串联的电路中没有电流,同支路的电阻相当于导线,即电阻 不起降低电压的作用,与电容器串联的电阻为等势体,电容器的电压为与之并联的电阻两端 的电压。 (4)在计算电容器的带电荷量变化时,如果变化前后极板带电的电性相同,那么通过所 连导线的电荷量等于始末状态电容器电荷量之差;如果变化前后极板带电的电性相反,那么通过所连导线的电荷量等于始末状态电容器电荷量之和。 东北三校二模)如图所示,C1=6 μF,C2=3 μF,R1=3 Ω,R2=6 Ω,电源电动1 (多选)(2015· 势E=18 V,内阻不计。下列说法正确的是( ) A.开关S断开时,a、b两点电势相等 B.开关S闭合后,a、b两点间的电流是 2 A C.开关S断开时C1带的电荷量比开关S闭合后C1带的电荷量大 D.不论开关S断开还是闭合,C1带的电荷量总比C2带的电荷量大

放大电路练习题和答案解析

一、填空题 1.射极输出器的主要特点是电压放大倍数小于而接近于1,输入电阻高、输出电阻低。 2.三极管的偏置情况为发射结正向偏置,集电结反向偏置时,三极管处于饱和状态。 3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的输入电阻高。 4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的输出电阻低。 5.常用的静态工作点稳定的电路为分压式偏置放大 电路。 6.为使电压放大电路中的三极管能正常工作,必须选择合适的静态工作点。 7.三极管放大电路静态分析就是要计算静态工作点,即计算、、三个值。 8.共集放大电路(射极输出器)的集电极极是输入、输出回路公共端。 : 9.共集放大电路(射极输出器)是因为信号从发射极极输出而得名。() 10.射极输出器又称为电压跟随器,是因为其电压放大倍数电压放大倍数接近于1 。 11.画放大电路的直流通路时,电路中的电容应断开。

12.画放大电路的交流通路时,电路中的电容应短路。 13.若静态工作点选得过高,容易产生饱和失真。 14.若静态工作点选得过低,容易产生截止失真。 15.放大电路有交流信号时的状态称为动态。 16.当输入信号为零时,放大电路的工作状态称为静态。 17.当输入信号不为零时,放大电路的工作状态称为动态。 18.放大电路的静态分析方法有估算法、图解 法。 ( 19.放大电路的动态分析方法有微变等效电路法、图解法。 20.放大电路输出信号的能量来自直流电源。 二、选择题 1、在图示电路中,已知=12V,晶体管的=100,' R=100k b Ω。当 U=0V时,测得=,若要基极电流=20μA,则为kΩ。 i A A. 465 B. 565 2.在图示电路中,已知=12V,晶体管的=100,若测得=

动态电路分析仿真实验

动态电路分析仿真实验 一、实验目的 1、掌握 Multisim 编辑动态电路、设置动态元件的初始条件、掌握周期激励的属性及对动态电路仿真的方法。 2、理解一阶 RC 电路在方波激励下逐步实现稳态充放电的过程。 3、理解一阶 RL 电路在正弦激励下,全响应与激励接入角的关系。 二、实验器材 计算机、Multisim 软件 三、实验内容及分析 RC 一阶动态电路仿真实验 1. 一阶RC 电路的充、放电 在 Multisim 10中,搭建RC 充、放电仿真实验电路,如图2.2.1所示。 当动态元件(电容或电感)初始储能为零(即初始状态为零)时,仅由外加激励产生的响应称为零状态响应;如果在换路瞬间动态元件(电容或电感)已储存有能量,那么即使电路中没有外加激励电源,电路中的动态元件(电容或电感)将通过电路放电,在电路中产生响应,即零输入响应。 在 Multisim 10中,单击图2.2.1所示电路中开关J 1的控制键A ,选择RC 电路分别工作在充电(零状态响应)、放电(零输入响应)状态。 (1)RC 充电(零状态响应) J1 C1 1uF

R110kΩV113 V J1Key = Space C1 1uF IC=13V 3120 7020911022易小辉7020911037谢剑萍 (2)RC 放电(零输入响应) 2. 一阶RC 电路的仿真实验。 当一个非零初始状态的一阶电路受到激励时,电路产生的响应称为全响应。对于线性电路,全响应是零输入响应和零状态响应之和。

R1 10kΩ C11uF 7020911022易小辉7020911037谢剑萍 XFG1 XSC1 A B Ext Trig + + _ _ +_ 1 2 R=4.5K C=1UF

实验四 控制系统的稳定性分析

西京学院实验教学教案实验课程:现代控制理论基础 课序: 4 教室:工程舫0B-14实验日期:2013-6-3、4、6 教师:万少松 一、实验名称:系统的稳定性及极点配置二、实验目的 1.巩固控制系统稳定性等基础知识;2.掌握利用系统特征根判断系统稳定性的方法;3.掌握利用李雅普诺夫第二法判断系统的稳定性的方法;4. 掌握利用状态反馈完成系统的极点配置;5.通过Matlab 编程,上机调试,掌握和验证所学控制系统的基本理论。三、实验所需设备及应用软件序号 型 号备 注1 计算机2Matlab 软件四、实验内容1. 利用特征根判断稳定性;2. 利用李雅普诺夫第二法判断系统的稳定性;3.状态反馈的极点配置;五、实验方法及步骤1.打开计算机,运行MATLAB 软件。2.将实验内容写入程序编辑窗口并运行。3.分析结果,写出实验报告。 语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器

一、利用特征根判断稳定性 用matlab 求取一个系统的特征根,可以有许多方法,如,,,()eig ()pzmap 2ss zp ,等。下面举例说明。 2tf zp roots 【例题1】已知一个系统传递函数为,试不同的方法分析闭环系统的稳定性。()G s 2(3)()(5)(6)(22)s G s s s s s += ++++解:num=[1,3]den=conv([1,2,2],conv([1,6],[1,5]))sys=tf(num,den)(1)() eig p=eig(sys)显示如下:p = -6.0000 -5.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i 所有的根都具有负的实部,所以系统稳定。(2) ()pzmap pzmap(sys) 从绘出的零极点图可看见,系统的零极点都位于左半平面,系统稳定。(3)2()tf zp [z,p,k]=tf2zp(num,den) (4)()roots roots(den)【例题2】已知线性定常连续系统的状态方程为122122x x x x x ==- 试用特征值判据判断系统的稳定性。 解: A=[0,1;2,-1] eig(A)

高考物理模拟题训练电路专题动态电路分析含解析

高考物理模拟题训练电路专题动态电路分析含 解析 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题01 动态电路分析 1.(2017黑龙江大庆一模)如图所示的电路中,电源有不可忽略的内阻,R1、R2、R3为三个可变电阻,电容器C1、C2所带电荷量分别为Q1和Q2,下列判断正确的是() A.仅将R1增大,Q1和Q2都将增大 B.仅将R2增大,Q1和Q2都将增大 C.仅将R3增大,Q1和Q2都将不变 D.突然断开开关S,Q1和Q2都将不变 【参考答案】BC 2.(2016洛阳联考)如图所示电路中,电源的电动势为E,内电阻为r.当变阻器R的滑片P向上移动时,电压表V的示数U和电流表A的示数I变化的情况是

A.U变大,I变大 B.U变小,I变小 C.U变大,I变小 D.U变小,I变大 【参考答案】 C 【名师解析】 当变阻器R的滑片P向上移动时,电流表A的示数I一定减小。外电路总电阻增大,电源输出电流减小,电压表V的示数U一定增大,选项C正确。 3.(2014高考上海物理第18题)如图,电路中定值电阻阻值R大于电源内阻阻值r。将滑动变阻器滑片向下滑动,理想电压表V1、V2、V3示数变化量的绝对值分别为△V1、△V2、△V3,理想电流表A示数变化量的绝对值为△I,则 A.A的示数增大 B.V2的示数增大 C.△V3与△I的比值大于r D.△V1大于△V2 【参考答案】ACD 【名师解析】

滑动变阻器滑片向下滑动,外电路总电阻减小,电流表A 中电流增大,A 的示数增大,V 1中的电流增大,V 1的示数增大,V 3的示数减小。由于电源输出电流增大,路端电压减小,所以V 2的示数减小,选项A 正确B 错误。由于理想电压表V 1、V 3示数之和等于电压表V 2的示数.,△V 1大于△V 2,选项D 正确。由V 1+V 3=E-Ir ,△V 1-△V 3=-△Ir,,3V I ??=r+1V I ??,△V 3与△I 的比值大于r ,选项C 正确。 4。(2013高考江苏物理第4题) (问6)在输液时,药液有时会从针口流出体外,为了及时发现,设计了一种报警装置,电路如图所示。 M 是贴在针口处的传感器,接触到药液时其电阻 R M 发生变化,导致S 两端电压U 增大,装置发出警报,此时 (A )R M 变大,且R 越大,U 增大越明显 (B )R M 变大,且R 越小,U 增大越明显 (C )R M 变小,且R 越大,U 增大越明显 (D )R M 变小,且R 越小,U 增大越明显 【参考答案】C B 5.(2015崇明县一模)(问1/2/6/7)如图所示电路中,已知电阻R 1的阻值大于滑动变阻器R 0的最大阻值.闭合电键S ,当滑动变阻器的滑动臂P 由最上端下滑到最下端的过程中,下列说法中正确的是 ( )

一阶动态电路特性分析与仿真

郑州航空工业管理学院 《电子信息系统仿真》课程设计级专业班级 题目一阶动态电路特性分析与仿真 姓名学号 指导教师 二О一一年十二月八日

内容摘要 本次设计通过MATALAB编程可以对一阶动态电路特性进行可视化的观测与分析,构建各种响应的波形图,其中包括RC串联电路及RL并联电路的零输入响应、零状态响应、正态激励响应、及冲击响应等。MATLAB 的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。通过MATALAB绘制波形图能够更加直观的观测到各个响应的动态工作状况。 关键字 MATLAB;测试和仿真;图形处理;一阶动态电路特性

一、M ATLAB软件简介 MATLAB功能丰富,可扩展性强。MA TLAB软件包括基本部分和专业扩展两大部分的功能。基本部分包括:矩阵的运算和各种变换;代数和超越方程的求解;数据处理和傅立叶变换;数值部分等等,可以充分满足大学理工科本科的计算需要。扩展部分称为工具箱。它实际上是用MATLAB的基本语句辩称的各种子程序集,用于解决某一方面的专门问题,或实现某一类的新算法。 MATLAB 具有以下基本功能: (1)数值计算功能; (2)符号计算功能; (3)图形处理及可视化功能; (3)可视化建模及动态仿真功能。 MATLAB有数百个核心内部函数,数十个形形色色的工具箱。工具箱大致可以分为两大类,——类是学科性工具箱,另一类是功能性工具箱。学科性工具箱大都涵盖了本学科所有的已有的基本概念和基本运算,大都十分专业。如符号数学工具箱,简直就是一个高等数学、工程数学解题器。极限、导数、微分、积分、级数运算与展开、微分方程求解、Laplace变换等应有尽有。还有控制系统、信号处理、模糊逻辑、神经网络、小波分析、统计;优化、金融预测等工具箱,无一不是非常优秀的运算工具。这些工具箱都可以添加自己根据需要编写的函数,用户可以不断更新自己的工具箱,使之更适合于自己的研究和计算

实验二 控制系统的阶跃响应及稳定性分析

实验二 控制系统的阶跃响应及稳定性分析 一、实验目的及要求: 1.掌握控制系统数学模型的基本描述方法; 2.了解控制系统的稳定性分析方法; 3.掌握控制时域分析基本方法。 二、实验内容: 1.系统数学模型的几种表示方法 (1)传递函数模型 G(s)=tf() (2)零极点模型 G(s)=zpk(z,p,k) 其中,G(s)= 将零点、极点及K值输入即可建立零极点模型。 z=[-z1,-z …,-z m] p=[-p1,-p …,-p] k=k (3)多项式求根的函数:roots ( ) 调用格式: z=roots(a) 其中:z — 各个根所构成的向量 a — 多项式系数向量 (4)两种模型之间的转换函数: [z ,p ,k]=tf2zp(num , den) %传递函数模型向零极点传递函数的转换 [num , den ]=zp2tf(z ,p ,k) %零极点传递函数向传递函数模型的转换 (5)feedback()函数:系统反馈连接

调用格式:sys=feedback(s1,s2,sign) 其中,s1为前向通道传递函数,s2为反馈通道传递函数,sign=-1时,表示系统为单位负反馈;sign=1时,表示系统为单位正反馈。 2.控制系统的稳定性分析方法 (1)求闭环特征方程的根(用roots函数); 判断以为系统前向通道传递函数而构成的单位负反馈系统的稳定性,指出系统的闭环特征根的值: 可编程如下: numg=1; deng=[1 1 2 23]; numf=1; denf=1; [num,den]= feedback(numg,deng,numf,denf,-1); roots(den) (2)化为零极点模型,看极点是否在s右半平面(用pzmap); 3.控制系统根轨迹绘制 rlocus() 函数:功能为求系统根轨迹 rlocfind():计算给定根的根轨迹增益 sgrid()函数:绘制连续时间系统根轨迹和零极点图中的阻尼系数和自然频率栅格线 4.线性系统时间响应分析 step( )函数---求系统阶跃响应 impulse( )函数:求取系统的脉冲响应 lsim( )函数:求系统的任意输入下的仿真 三、实验报告要求:

动态电路分析方法

动态电路分析方法 电路的动态分析,是欧姆定律的具体应用,在历年的高考中经常出现。此类问题能力要求较高,同学们分析时往往抓不住要领,容易出错。电路发生动态变化的原因是由于电路中 滑动变阻器触头位置的变化,引起电路的电阻发生改变,从而引起电路中各物理量的变化, 在此将动态电路的分析方法介绍如下。 一、程序法 根据欧姆定律及串、并联电路的性质进行分析。基本思路是:“部分—整体—部分”,即从阻值变化的部分如手,由串并联电路规律判知R总的变化情况,再由欧姆定律判知I总和U端的变化情况,最后由部分电路的欧姆定律得知个部分物理量的变化情况,一般思路是: 1确定电路的外电阻R外总如何变化。 2根据闭合电路的欧姆定律 E I R r 总 外总 确定电路的总电流如何变化。(利用电动势不变) 3由U I r 内内 确定电源内电压如何变化。(利用r不变) 4由U E U 外内 确定电源的外电压如何变化。 5由部分电路的欧姆定律确定干路上某定值电阻两端电压如何变化。 6由部分电路和整体的串并联规律确定支路两端电压如何变化及通过各支路电路如何变化。 二、图像法 电路发生动态变化时,其电路图可等效为如图(1)所示,根据闭合电路的欧姆定律得到 U E Ir,其图像如图(2)中的a,根据部分电路的欧姆定律可知U IR,其导体的 U—I图像如(2)中b,在电源确定的电路中,由图(2)得,当电阻R增大时(即图中的 角度变大),通过R的电流减小,R两端的电压变大,当电阻R减小时(即图中的角度变小),其电流增大,电压减小。 三、“串反并同”法 所谓“串反”,即某一电阻增大(减小)时,与它串联或间接串联的电阻中的电流、两端电 压、电功率都减小(增大)。所谓“并同”,即某一电阻增大(减小)时,与它并联或间接并 联的电阻中的电流、两端电压、电功率都增大(减小)。但须注意的前提有两点:1电路中电源内阻不能忽略;2滑动变阻器必须是限流接法。 四、极限法即因滑动变阻器滑片滑动引起的电路变化问题,可将变阻器的滑动端分别滑至 两个极端讨论。(一般应用于滑至滑动变阻器阻值为零) 例1、在图中电路中,当滑动变阻器的滑动片由a向b移动时,下列说法正确的是:

实验一 典型环节的电路模拟与数字仿真实验

实验一典型环节的电路模拟与数字仿真实验 一实验目的 通过实验熟悉各种典型环节传递函数及其特性,掌握电路模拟和数字仿真研究方法。 二实验内容 1.设计各种典型环节的模拟电路。 2.编制获得各种典型环节阶跃特性的数字仿真程序。 3.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。 4.运行所编制的程序,完成典型环节阶跃特性的数字仿真研究,并与电路模拟研究的结果作比较。 三实验步骤 1.熟悉实验设备,设计并连接各种典型环节的模拟电路; 2.利用实验设备完成各典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响; 3.用MATLAB编写计算各典型环节阶跃特性的数字仿真研究,并与电路模拟测试结果作比较。分析实验结果,完成实验报告。 四实验结果 1.积分环节模拟电路、阶跃响应

仿真结果: 2.比例积分环节模拟电路、阶跃响应 仿真结果:

3.比例微分环节模拟电路、阶跃响应 仿真结果: 4.惯性环节模拟电路、阶跃响应

仿真结果: 5.实验结果分析: 积分环节的传递函数为G=1/Ts(T为积分时间常数),惯性环节的传递函数为G=1/(Ts+1)(T为惯性环节时间常数)。 当时间常数T趋近于无穷小,惯性环节可视为比例环节, 当时间常数T趋近于无穷大,惯性环节可视为积分环节。

实验二典型系统动态性能和稳定性分析的电路模拟与数 字仿真研究 一实验目的 1.学习和掌握动态性能指标的测试方法。 2.研究典型系统参数对系统动态性能和稳定性的影响。 二实验内容 1.观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三实验步骤 1.熟悉实验设备,设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路; 2.利用实验设备观测该二阶系统模拟电路的阶跃特性,并测出其超调量和调节时间; 3.二阶系统模拟电路的参数观测参数对系统的动态性能的影响; 4.分析结果,完成实验报告。 四实验结果 典型二阶系统 仿真结果:1)过阻尼

电路基础-实验3 动态电路暂态过程(仿真实验)

图9-1 一阶RC 电路 实验三 一阶动态电路暂态过程的研究 [实验目的] (1)研究一阶RC 电路的零输入响应、零状态响应和全响应的变化规律和特点。 (2)研究一阶电路在阶跃激励和方波激励情况下,响应的基本规律和特点。测定一阶电路的时间常数t ,了解电路参数对时间常数的影响。 (3)掌握积分电路和微分电路的基本概念。 (4)学习用示波器观察和分析电路的响应。 [实验原理与说明] (1电路,为一阶电路。图9-1所示为一阶RC 电路。首先将开关S 置于1使电路处于零状 态。在t=0时刻由1扳向2,电路对激励U s 的响应为零状态响应,有 RC t s s c e U U t u --=)( 这一暂态过程为电容充电的过程,充电曲线如图12-2(a )所示。电路的零状态响应与激励成正比。 若开头S 首先置于2使电路处于稳定 状态,在t=0时刻由2扳向1,电路为零输 入响应,有 RC t s c e U t u -=)( 这一暂态过程为电容放电过程,放电曲线如图9-2(b)所示。电路的零输入响应与初始状态成正比。 动态电路的零状态响应与零输入响应之和称为全响应。全响应与激励不存在简单的线性关系。 (a )充电曲线 (b)放电曲线 图9-2 一阶RC 电路的电容电压的充放电曲线及时间常数 (2)动态电路在换路以后,一般经过一段时间的暂态过程后便达到稳态。由于这一过程不是重复的,所以不易用普通示波器来观察其动态过程。可由方波激励实现一阶RC 电路重复出现的充放电过程。其中方波激励的半周期T/2与时间常数τ(=RC)之比保持在5:1左右的关系,可使电容每次充、放电的暂态过程基本结束,再开始新一次的充、放电暂态过程(图9-3)。其中充电曲线对应图9-1所示电路的零状态响应,放电曲线对应该电路的零输入响应。

高考物理 43变压器交流动态电路精解分析

高考题精解分析:43变压器交流动态电路 高频考点:变压器交流动态电路 动态发布:2011山东理综卷第20题、2011福建理综第15题、2010全国理综2第19题、2010天津理综物理第7题、2010山东理综第19题 命题规律:变压器交流动态电路是高考考查的重点和热点,考查变压器交流动态电路为选择题,难度中等。 命题分析 考查方式变压器交流动态电路 【命题分析】变压器交流动态电路主要有两种情况:一是负载电阻不变,原副线圈电压、电流、功率随匝数比变化而变化;二是匝数比不变,原副线圈电压、电流、功率随负载变化而变化。解决变压器交流动态电路问题首先要明确变量之间的相互制约关系。在理想变压器中,负线圈的输出电压U2由原线圈的输入电压U1和匝数比决定,与负载电阻无关,即输入电压U1决定输出电压U2;在原线圈输入电压U1和匝数比确定的情况下,原线圈的输入电流由副线圈输出电流决定,副线圈输出电流由负载确定,即负载决定输入电流;变压器输入功率由输出功率确定,即输出功率决定输入功率。分析变压器交流动态电路的思路是:由输入电压和匝数比得出输出电压,由输出电压和负载得出输出电流,最后由输出功率得出输入功率。考查变压器交流动态电路的试题难度中等。 例1(2011山东理综卷第20题)为保证用户电压稳定在220V,变电所需适时进行调压,图甲为调压变压器示意图。保持输入电压u1不变,当滑动接头P上下移动时可改变输出电压。某次检测得到用户电压u2随时间t变 化的曲线如图乙所示。以下正确的 是 A、u2πt)V B、u2πt)V C、为使用户电压稳定在220V,应将P适当下移 D、为使用户电压稳定在220V,应将P适当上移 【解析】:由于用户电压u2随时间t变化的曲线周期为0.02s,所以u2πt)V,选项B正确A错误;为使用户电压稳定在220V,由变压器变压公式可知应减小变压器原线圈

东北电力大学电路分析考研模拟试题3套及答案

东北电力大学电路分析考研模拟试题(Ⅰ) 二. 填空(每题1分,共10分) 1.KVL体现了电路中守恒的法则。 2.电路中,某元件开路,则流过它的电流必为。 3.若电路的支路数为b,节点数为n,则独立的KCL方程数为。 4.在线性电路叠加定理分析中,不作用的独立电压源应将其。 5.如果两个单口网络端口的完全相同,则这两个单口网络等效。 6.若一阶电路电容电压的完全响应为uc(t)= 8 - 3e-10t V,则电容电压的零输入响应为。 7.若一个正弦电压的瞬时表达式为10cos(100πt+45°)V,则它的周期T 为。 8.正弦电压u1(t)=220cos(10t+45°)V, u2(t)=220sin(10t+120°)V, 则相位差φ12=。 9.若电感L=2H的电流i =2 cos(10t+30°)A (设u ,i为关联参考方向),则它的电压u为。 10.正弦稳态电路中,若无源单口网络吸收的复功率S~=80+j60 VA,则功率因数λ=。 *11.L1=5H, L2=2H, M=1H 的耦合电感反接串联的等效电感为。三.求下图单口网络的诺顿等效电路,并画等效电路图。(15分) a b 四.用结点分析法,求各结点电位和电压源功率。(15分) 1 2

五.一阶电路如图,t = 0开关断开,断开前电路为稳态,求t ≥ 0电感电流i L(t) ,并画出波形。(15分) 六.含理想变压器正弦稳态相量模型电路如图,Us=100∠0°V,求U3。(15分) *七.含空心变压器正弦稳态电路如图,u S(t)=102cos ( 5t + 15°)V, 求电流i1(t), i2(t)。(15分) 东北电力大学电路分析考研模拟试题(Ⅱ) 一.单项选 D.10∠180°V 二. 填空(每题1分,共10分) 1.电路的两类约束是。 2.一只100Ω,1w的电阻器,使用时电阻上的电压不得超过 V。 3.含U S和I S 两直流电源的线性非时变电阻电路,若I S单独作用时, R 上的电流为I′,当U S单独作用时,R上的电流为I",(I′与I" 参考方向相同),则当U S和I S 共同作用时,R上的功率应为。

电路仿真实验报告

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。 (5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。

四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化 曲线。 曲线如图: 直流扫描分析的输出波形 3、数据输出为: V_Vs1 I(V_PRINT1)

0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00 从图中可得到IRL与US1的函数关系为: IRL=1.4+(1.2/12)US1=1.4+0.1US1 五、思考与讨论 1、根据仿真结果验证基尔霍夫定律 根据图1-1,R1节点:2A+2A=4A,R1,R2,R3构成的闭合回路:1*2+1*4-3*2=0,满足基尔霍夫定律。 U呈线性关系,3R I=1.4+(1.2/12) 1S U=1.4+0.11S U,式中1.4A表2、由图1-3可知,负载电流与1S U置零时其它激励在负载支路产生的响应,0.11S U表示仅保留1S U,将其它电源置零(电示将1S 压源短路,电流源开路)时,负载支路的电流响应。 3、若想确定节点电压Un1随Us1变化的函数关系,应如何操作? 应进行直流扫描,扫描电源Vs1,观察Un1的电压波形随Us1的变化,即可确认其函数关系! 4、若想确定电流Irl随负载电阻RL的变化的波形,如何进行仿真? 将RL的阻值设为全局变量var,进行直流扫描,观察电流波形即可。 六、实验心得 1、由实验图形和数据可知实验中的到的曲线满足数据变化规律,得到的函数关系式是正确的。 2、通过仿真软件可以很方便的求解电路中的电流电压及其变化规律。 实验二戴维南定理和诺顿定理的仿真 一、实验目的 (1)进一步熟悉仿真软件中绘制电路图,初步掌握符号参数、分析类型的设置。学习Probe窗口的简单设置。 (2)加深对戴维南定理与诺顿定理的理解。 二、原理与说明 戴维南定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电压源与电阻的串联的支路来代替,该电路的电压等于原网络的开路电压,电阻等于原网络的全部独立电压源置零后的输入电阻。诺顿定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电流源与电导的并联的支路来代替,该电路的电流等于原网络的短路电流,电导等于原网络的全部独立电源置零后的输入电导。。

自动控制实验报告一控制系统稳定性分析

实验一控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.自动控制系统实验箱一台 2.计算机一台 三、实验内容 系统模拟电路图如图 系统模拟电路图 其开环传递函数为: G(s)=10K/s(0.1s+1)(Ts+1) 式中 K1=R3/R2,R2=100KΩ,R3=0~500K;T=RC,R=100KΩ,C=1μf或C=0.1μf两种情况。 四、实验步骤 1.连接被测量典型环节的模拟电路。电路的输入U1接A/D、D/A卡的DA1输出,电路的 输出U2接A/D、D/A卡的AD1输入,将纯积分电容两端连在模拟开关上。检查无误后接通电源。 2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 3.在实验项目的下拉列表中选择实验三[控制系统的稳定性分析] 5.取R3的值为50KΩ,100KΩ,200KΩ,此时相应的K=10,K1=5,10,20。观察不同R3 值时显示区内的输出波形(既U2的波形),找到系统输出产生增幅振荡时相应的R3及K值。再把电阻R3由大至小变化,即R3=200kΩ,100kΩ,50kΩ,观察不同R3值

时显示区内的输出波形, 找出系统输出产生等幅振荡变化的R3及K值,并观察U2的输出波形。 五、实验数据 1模拟电路图 2.画出系统增幅或减幅振荡的波形图。 C=1uf时: R3=50K K=5:

R3=100K K=10 R3=200K K=20:

等幅振荡:R3=220k: 增幅振荡:R3=220k:

R3=260k: C=0.1uf时:

电路计算机电路仿真分析实验报告

电路计算机仿真分析实验报告 学院:电气工程学院 班级: xx级电气xx班 学号: xxxxxxxxxxxxx 姓名: xxx 20xx年xx月xx日

预备实验 Orcad Pspice的基本操作 一、实验目的 熟悉Orcad Pspice的操作和分析过程 二、实验内容 1、了解pspice的启动,电路图的绘制; 2、修改元器件的标号和参数; 3、设置分析功能; 4、仿真前的准备工作; 5、仿真过程; 6、了解库、库元件; 7、了解分析设置的方法。 实验一直流电路工作点分析和直流 一、实验目的 1、学习使用PSPICE软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 2、学习用PSPICE进行直流工作点分析和直流扫描分析的操作步骤。 二、实验原理 对于电阻电路,可以用直观法(支路电流法、节点电压法、回路电流法)列写电路方程,求解电路中各个电压和电流。PSPICE软件是采用节点电压法对电路进行分析的。 使用PSPICE软件进行电路的计算机辅助分析时,首先在capture环境下编辑电路,用PSPICE的元件符号库绘制电路图并进行编辑、存盘。然后调用分析模块、选择分析类型,就可以‘自动’进行电路分析了。需要强调的是,PSPICE软件是采用节点电压法“自动”列写节点电压方程的。因此,在绘制电路图时,一定要有参考节点(即接地点)。 三、实验操作步骤 1、电路1 R2 图1 (1)建立电路 A、启动Orcad Capture,新建工程Proj1,选项框选择Analog or Mixed A/D。类型选择为create a blank project。 B、在原理图界面上点击Place/Part或右侧快捷键。 C、首先增加常用库,点击Add Library,将常用库添加进来。本例需添加Analog(包含电阻、电容等无源器件),Source(包含电压源、电流源等电源器件),special(包含虚拟打

基本放大电路仿真实验

实验报告四 一、实验目的 1、通过仿真电路掌握单管共射电路的静态分析和动态分析; 2、通过对共射电路的仿真实验,分析静态工作点队对电路输出的影响; 二、实验内容 1.测量NPN管分压偏置电路的静态工作点并与估算值进行比较; 2.测量放大电路性能指标; 3.分析放大电路交流特性; 4.通过仿真测试理解单管共射放大电路静态工作点对电路输出的影响; 三、实验环境 计算机、MULTISIM仿真软件 四、实验电路 1.实验电路 1.1静态分析 静态工作点仿真结果: 从仿真结果可知:

544127 = 1.7991.1690.63=5.21.16()=8.52BQ EQ BEQ BQ EQ BQ b b CC CQ C CEQ CC CQ c e V V V V V V V V V V V I A R R V V I mA R V V I R R V μ==-=-=--= =≈-+因此: 动态分析: 由仿真所得的数据可得: ip 421.405 ==-38.710.896 op v V A V = - 仿真波形: 1、

因此:ip i sp ip 10.642 = (1) 3.04814.13310.642 s V R R K K V V ≈?Ω≈Ω-- 2、oLp V 仿真 op V 仿真 因此:op oLp 836.417 =( 1)( 1)2 1.967421.691 o L V R R K K V -≈-?Ω≈Ω 放大电路交流仿真分析

3、通过仿真测试理解单管共射放大电路静态工作点对电路输出的影响; 在电路图中放入探针 从图中可以得出,此时:919 A ==42.521.6 V 打开示波器,图形显示: 从图中的显示数据可以知道,输出波形已有部分失真 ; 1、增大b R (增大至75K )

高中物理专题复习——电路分析与计算

专题七电路分析与计算 高考形势分析及历年部分省市高考试题分布: 本专题是高考的热点,历年都有高考试题,本专题的高考热点是部分电路欧姆定律、闭合电路欧姆定律,串并联电路和实验题,以及电路在电磁感应和交流电中的应用,万用表的使用多次成为高考的热点,掌握各种仪表的操作规程和使用方法是高考考查的重点。对于选择题,通过某一新颖的物理情景,考查考生的理解能力和逻辑推理能力;对于填空题,多是通过对电路的分析和计算,对电压、电流、电阻等物理量的测量,来考查考生的分析综合能力和不太复杂的运算能力;对于实验题,通过对教材能容的翻新设疑,考查考生对基本实验方法的迁移和灵活运用能力,特别是电阻的测定,题目虽然新颖独特,但原理均来源于课本的加工和深化,它是一种高层次能力的考核,真正的题在书外而理在书中,它将实验考查推向了更新的高度。 对于电磁感应中的闭合回路问题:电磁感应过程中要产生感应电流,从而使产生感应电动势的导体受到磁场力作用,继而影响其切割磁感线的加速度和速度,而速度的变化又影响导体中产生的感应电动势和感应电流,于是就形成了一个复杂的动态循环过程,且在这一复杂的动态循环过程中,要涉及闭合电路中各用电器的消耗功率的变化,存在多种形式能量的转化。对此类问题的处理,既要弄清楚变化的物理过程中各物理量的相互依存又相互制约的关系,又要弄清楚变化的物理过程中参与转化的能量种类及能量转化的方向。这对提高学生综合分析问题的能力,养成对物理过程和物理情景分析的习惯,是大有帮助的。因此,此类问题历来备受高考命题人关注。在近几年的高考中,涉及此类问题的题目中,既有难度中等的选择题,也有难度中等偏上的计算题,特别在倡导考查学生综合能力的当今高考形势下,此类问题会更加受到青睐,在今后高考中考查的频率和力度,都将有所提高,例如2007年天津卷计算题24题就考查了这方面的问题。 历年高考中电路分析和计算题分布情况:2005年高考电学考察情况:北京理综,选择题18题考查交流电路中的欧姆定律;22题考查多用表探测黑盒子问题;全国理综III,实验题22题利用所给元件测量电压表内阻;全国理综II,实验题是测量毫安表的内阻和实物连线题;全国理综I实验题考查测量电源电动势和内阻问题,25题考查含容电路和粒子在电场中偏转的问题。广东高考实验题考查了电路中传感器的应用,一选择题还考查了示波器的按钮使用。2006年高考电学考察情况:江苏高考计算题考查了电学与生活的应用(电热毯、电饭锅),四川高考理综,计算题考查含容电路和带电粒子在平行板电容器中的匀变速运动。重庆高考理综计算题考查闭合电路欧姆定律及其电路节能问题。浙江高考一选择题考查了电路故障,实验题22(2)考查了螺旋测微器的读数、电路元件的选择以及实物连图题。广东高考实验题考查测定电源电动势和内阻,其中考查到产生误差的原因,要求写出实验步骤,根据1/I—R图像求电动势和内阻。云南高考实验考查了力电传感器。2007年高考电学考察情况:全国卷I、湖北卷和湖南高考实验题考查示波器面板按钮的使用,北京卷选择题17题,考查交流电路中的欧姆定律及交流电的有效值,山东卷实验题23题考查电路和元件的选择,还考查电阻丝的电阻率的测定和实物连图,全国卷II实验题22题考查元件的选择和实验偏差。上海高考A类题3题考查部分电路欧姆定律,B类题的3题考查交流电路电压电流的有效值,实验题15题考查电阻的测量,16题考查闭合电路中输出功率随外电阻的变化情况。天津高考选择题16题考查交流电路中欧姆定律的应用,实验题22题(3)考查的是示波器按钮的使用,计算题24题考查的是电磁感应和含容电路相结合的问题。海南省高考选择题5题考查用电器消耗的电功率,实验题13题考查电阻的测量和实物连图。

相关主题
文本预览
相关文档 最新文档