当前位置:文档之家› 清洗剂无机酸清洗剂

清洗剂无机酸清洗剂

清洗剂无机酸清洗剂
清洗剂无机酸清洗剂

无机酸清洗剂

化学清洗常用无机酸和有机酸作清洗剂。无机酸有盐酸、硫酸、硝酸、磷酸、氢氟酸和氨基磺酸等,溶解力强速度快,效果明显,费用低。但即使有缓蚀剂存在,对金属材料的腐蚀性仍很大,易产生氢脆和应力腐蚀,并在清洗过程中产生大量酸雾,造成环境污染。

1.盐酸清洗液

盐酸是清洗水垢最常用的清洗剂。盐酸与铜铁、铁锈、氧化皮反应速度比硫酸、柠檬酸、甲酸快得,而且清洗后表面从常温至60°C均可。盐酸清洗液对碳酸盐水垢和铁垢有效,清洗速度快,又经济,所以工业上清洗换热器、各种反应设备、锅炉均使用盐酸清洗剂。它适用于碳钢、黄铜、紫铜、铜合金等材质。其缺点为:对硅垢溶解能力差;虽然有一定注意温度不能过高;另外,有刺激性气味,对人体有害;最重要的,盐酸不能清洗不锈钢设备,因为它含有氯离子,会使不锈钢产生应力腐蚀。下表为加入不同缓蚀剂的盐酸清洗液的缓蚀效果。

加入不同缓蚀剂的盐酸清洗液的缓蚀效果

2.硫酸清洗液

硫酸多用于处理钢铁表面的氧化皮、铁锈。在化工设备清洗除垢中,逐渐被盐酸代替,原因有三:

1、用硫酸酸洗易产生氢脆;

2、产生的硫酸盐能使脂肪族有机缓蚀剂凝聚、失效;

3、反应物(如CaSO4)溶解度低,易沉积在设备表壁上,酸洗后表面状态不理想。若垢含量低,也可用硫酸除垢。

工业上常用5%~15%H2SO4做清洗液,既可除去多种腐蚀产物及Ca(PO4)2,又可有效地清除铁垢。但是硫酸不可清除硫酸盐水垢,因为会生成难溶的硫酸钙。在硫酸清洗液中加入非离子表面活化剂,可以大大提高除垢能力。硫酸清洗液的清洗温度为50~80°C。硫酸加硝酸可除焦油、焦炭、海藻类生物等一系列的污垢。硫酸对人体和设备均有危险,使用时要注意。下表列出了加入不同缓蚀剂的硫酸清洗液的缓蚀效果。

不同缓蚀剂的硫酸清洗液的缓蚀效果

3.硝酸盐清洗液

硝酸是一种强氧化性的无机酸。低浓度的硝酸对大多数金属均由强烈的腐蚀作用,高浓度的硝酸度i一些金属不腐蚀,有钝化作用。硝酸清洗液除垢去锈速度快,时间短,加入适当缓蚀剂后,对碳钢,不锈钢,铜腐蚀速度极低,缓蚀效果高。只要适用于清洗不锈钢、碳钢、黄铜、铜、碳钢—不锈钢、黄铜-碳钢焊接组合体等材质的设备。可除去碳酸盐水垢,并对α-FE2O3和磁性Fe2O3有良好的溶解力。一般的缓蚀剂容易被硝酸分解而失效,目前多用Lan-5作硝酸缓蚀剂。下表为加入不同缓蚀剂的硝酸清洗液的缓蚀效果。

加入不同缓蚀剂的硝酸清洗液的缓蚀效果

注:Lan-5缓蚀剂是由六次甲基四胺、亚铁氰化钾、苯胺组成的。

硝酸加氢氟酸、硝酸加盐酸酸洗液,清洗效果和作用更理想,凯利清洗会在以后跟大家讲到,请继续关注哟

4.氢氟酸清洗液

氢氟酸和氢氟酸盐一般用于清洗硅酸盐垢及铁垢。在锅炉垢中,硅酸盐垢高达40%~50%,铝和铁的氧化物高达25%~30%,常用氢氟酸清洗液清洗,也可采用氢氟酸加氟化物溶液作清洗液。氢氟酸除硅、铁垢的能力,是目前其他清洗剂无法相比的。

氢氟酸是一种弱的无机酸,在空气中发烟,蒸气中具有强烈的腐蚀性和毒性,对金属的腐蚀能力低于硫酸和盐酸。氢氟酸清洗液的优点:

1、常温下对氧化铁垢、硅垢溶解力强、快,相同低浓度的氢氟酸比盐酸、硫酸、柠檬酸溶解氧化皮能力强得多;可清洗奥氏体不锈钢,不产生应力腐蚀;

2、对金属腐蚀性小,1%~2%的HF加0.5%SH-416缓蚀剂,在50~60°C温度下,对15CrMo 铜腐蚀速率为0.41g/(m2·h),对20#碳钢腐蚀速率66g/(m2·h),缓蚀率99.41%;

3、清洗时间短,约1.5~2h ;

4、清洗效率高,表面状态好。

缺点是有污染。通常,氢氟酸不单独使用呢,而与盐酸或硝酸等混合使用。

氢氟酸和氟化氢铵主要用来清洗硅垢,氢氟酸是唯一能溶解硅垢的清洗剂,但通常不单用。可用5%酸性氯化铵+3%H2O2+非离子表面活化剂酸洗,能除去含有3%的硅垢。至于氧

化铁垢,采用单一的氢氟酸就比盐酸效果好,也可将氟化氢铵、氢氟酸加入盐酸或硝酸中清洗铁锈,效果也很好。

5.盐酸-氢氟酸清洗液

盐酸-氢氟酸清洗液主要用来除去含有硅酸盐水垢及氧化铁的碳酸盐水垢。盐酸溶解盐酸盐水垢速度快,但不能溶解硅酸盐水垢,只有氢氟酸能溶解硅酸盐和氧化铁。氢氟酸虽然是弱酸,低浓度的氢氟酸比盐酸、柠檬酸、硫酸溶解氧化铁的能力强得多。盐酸酸洗液中有时加入氟化氢铵,其原因是氟化氢铵与盐酸反应生成氢氟酸,能加速清洗液对碳酸盐、硅酸盐及铁垢的溶解能力。

6、硝酸-氢氟酸清洗液

硝酸-氢氟酸清洗液对碳酸盐水垢、α-FE2O3、磁性Fe2O3和硅酸盐水垢有良好的溶解力。它去除氧化皮、铁锈及水垢的速度快、时间短,腐蚀速率小,且不产生渗氢,材料来源方便;主要适用于碳钢、不锈钢、合金钢、铜、铜合金、碳钢-不锈钢、碳钢-铜等材质,是目前国内清洗换热器、铜炉及各种化工设备中的碳酸盐、硅酸盐及铁垢的最佳酸洗液。下表是HF、HCL-HF、HNO3-HF酸洗液加入不容缓蚀剂的缓蚀效果。

HF、HCL-HF、HNO3-HF酸洗液加入不容缓蚀剂的缓蚀效果

7.其他含氢氟酸的清洗剂

目前有一种氢氟酸、聚磷酸盐、氟化物加缓蚀剂、渗透剂等组成的清洗液,清洗硅垢效果什么理想。有资料介绍,日本清洗地热发电厂含高硅的垢就是这种清洗剂清洗的;陕西凯利清洗有限公司为某厂清洗汽轮车含硅垢(硅垢含量>80%)时也采用了这种含氢氟酸的清洗剂,其组成如下:

HF 5%~12% Lan-826 0.25%

Na2P2O7·10H2O 2% 渗透剂 0.5

清洗温度为65°C,清洗时间4h,除垢率达80%~99%,腐蚀速率为0.5g/(m2·h)(对20#碳钢)。

8、HNO3-HCL-FeCL3系清洗剂

HNO3-HCL-FeCL3系清洗剂是专门用来清洗18-8不锈钢制品的,能防止不锈钢发生应力腐蚀开裂,代替了过去使用的HF-HNO3-HCL系清洗剂。HNO3-HCL-FeCL3系溶液中,18-8不锈钢一直保持低电位,从而避免了晶间腐蚀。

加入了FeCL3的目的是保持酸洗液长期有效,控制钢件的电位,使其离开晶界腐蚀范围,以避免产生应力腐蚀开裂。

9、氨基磺酸清洗液

氨基磺酸清洗液

氨基磺酸(NH2SO3H)是中等酸性无机酸。氨基磺酸的水溶液具有与盐酸、硫酸等同等的强酸性, 故别名又叫固体硫酸氨基磺酸及其盐类与多种金属化合物都能生成可溶性盐类, 具有在水中溶解高度。

氨基磺酸及其盐类与多种金属化合物都能生成可溶性盐类, 具有在水中溶解高度不析出沉淀而对金属的腐蚀小的特点。作为清洗剂, 氨基磺酸水溶液可去除铁、钢、铜、不锈钢等材料制造的设备表面的铁锈、水垢和腐蚀产物。氨基磺酸清洗剂使用范围很广, 可用于清洗锅炉、冷凝器、换热器、夹套及化工管道。氨基磺酸水溶液对铁的腐蚀产物作用较慢, 可适当地添加一些助剂, 从而有效地溶解铁垢。

特点

1、不挥发,避免因酸挥发而造成的一系列问题,又因是固体物料,所以便于运输,而且只要维持干燥,则比较稳定;

2、水中溶解性能好,清洗时生成的盐易于溶解,不生成盐类沉淀;

3、不含卤素离子,对金属腐蚀性小;

4、只适用于清洗钙、镁碳酸盐、氢氧化物垢,清除铁垢的能力差。

目前仅用于材质为碳钢、不锈钢、铜及其合金等的热交换器、管道等设备的清洗。

氨基磺酸可与氯化钠混合,这样可以慢慢地产生盐酸,从而有效地溶解铁垢。

在氨基磺酸化学清洗工艺中, 采用了柠檬酸低温漂洗方法, 取得了良好的漂洗效果, 低温漂洗在现场实施中利于设备的安全运行。在钝化工艺中, 采用了绿色环保钝化剂双氧水钝化, 针对双氧水不稳定易分解的特性, 通过添加双氧水稳定剂,既减少了双氧水用量又保证了钝化效果。

高分子功能膜材料

第八章高分子功能膜材料 膜是一种能够分隔两相界面,并以特定的形式限制和传递各种物质的二维材料,在自然界中随处可见。天然存在的膜有生物膜,膜也可以人工制作,如高分子合成膜。膜可以是均相的,也可以是非均相的;可以是对称的,也可以是非对称的;可以是固体的,也可以是液体的;可以是中性的,也可以是带电荷的。膜的厚度可从几微米到几毫米不等。 随着科学的发展,越来越多的人工合成膜相继被开发出来,应用到各个行业中,起到分离和选择透过等重要作用。高分子功能膜作为人工合成膜中的重要一员,在药物缓释、膜修饰电极、气体分离等领域表现出特殊的分离功能,并因其广阔的应用前景而受到极大的关注。本章将主要讨论高分子功能膜的分离原理,并以主要的分离膜为代表,介绍其制备方法和应用。 8,1 概述 8.1.1 高分子分离膜的分类 高分子分离膜是具有分离功能,即具有特殊传质功能的高分子材料,又称为高分子功能膜。其形态有固态,也有液态。高分子分离膜的种类和功能繁多,不可能用单一的方法来明确分类,现有的分类既可以从被分离物质的角度分,也可以从膜的形状、材料等角度分,目前主要有以下几种分类方式。 8.1.1.1 按被分离物质性质分类 根据被分离物质的性质可以将分离膜分为气体分离膜、液体分离膜、固体分离膜、离子分离膜和微生物分离膜等。 8.1.1.2按膜形态分类 根据固态膜的形状,可分为平板膜(flat membrane)、管式膜(tubular membrane)、中空纤维膜(hollow fiber)、毛细管膜以及具有垂直于膜表面的圆柱形孔的核径蚀刻膜等。液膜是液体高分子在液体和气体或液体和液体相界面之间形成的膜。 8.1.1.3按膜的材料分类 从膜材料的来源来看,分离膜可以是天然的也可以是合成的,或者是天然物质改性或再生的。不同的膜材料具有不同的成膜性能、化学稳定性、耐酸、耐碱、耐氧化剂和耐微生物侵蚀等,而且膜材料对被分离介质也具有一定的选择性。这类膜可以进一步分为以下几类。 (1)纤维素衍生物类纤维素类膜材料是研究最早、应用最多的高分子功能膜材料之一.主要有再生纤维素、硝酸纤维素、二醋酸纤维素和三醋酸纤维素、乙基纤维素等。 (2)聚烯烃类聚烯烃及其衍生物是重要的高分子聚合物,很多都可以用于制备气体分离膜,如低密度聚乙烯、高密度聚乙烯、聚丙烯、聚4-甲基-1-戊烯、聚氯乙烯、聚乙烯醇、聚丙烯腈等。 (3)聚酯类涤纶、聚碳酸酯、聚对苯二甲酸丁二酯这类树脂强度高、尺寸稳定性好、耐热和耐溶剂性优良,被广泛用于制备分离膜的支撑增强材料。 (4)聚酰(亚)胺类尼龙-6和尼龙-66是这一类分离膜材料的代表,常用于反渗透膜和气体分离膜的支撑底布,芳香族聚酰胺是第二代反渗透膜材料,用于中空纤维膜的制备。含氟聚酰亚胺作为具有实用前景的气体分离膜材料目前处于开发阶段。用聚酰胺类制备的膜,具有良好的分离与透过性能,且耐高压、耐高温、耐溶剂,是制备耐溶剂超滤膜和非水溶液分离膜的首选材料,缺点是耐氯性能较差。 (5) 聚砜类这类材料包括聚砜、聚醚砜、聚芳醚砜、磺化聚砜等,是高机械强度的工程塑料,具有耐酸、耐碱的优点,多用于超滤膜和气体分离膜的制备,较少用于微滤,可在80℃下长期使用,缺点是耐有机溶剂的性能较差。

常见金属表面处理的种类

金属表面处理的种类 电镀 镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。 电泳 电泳是电泳涂料在阴阳两极,施加于电压作用下,带电荷涂料离子移动到阴极,并与阴极表面所产生之碱性作用形成不溶解物,沉积于工件表面。 电泳表面处理工艺的特点: 电泳漆膜具有涂层丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、耐腐、冲击性能、渗透性能明显优于其它涂装工艺。电泳工艺优于其他涂装工艺。 镀锌 镀锌是指在金属、合金或者其它材料的表面镀一层锌以起美观、防锈等作用的表面处理技术。现在主要采用的方法是热镀锌。 电镀与电泳的区别 电镀就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。 电泳:溶液中带电粒子(离子)在电场中移动的现象。溶液中带电粒子(离子)在电场中移动的现象。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。 电泳又名——电着 (著),泳漆,电沉积。 发黑 钢制件的表面发黑处理,也有被称之为发蓝的。其原理是将钢铁制品表面迅速氧化,使之形成致密的氧化膜保护层,提高钢件的防锈能力。

发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种。但常温发黑工艺对于低碳钢的效果不太好。A3钢用碱性发黑好一些。 在高温下(约550℃)氧化成的四氧化三铁呈天蓝色,故称发蓝处理。在低温下(约3 50℃)形成的四氧化三铁呈暗黑色,故称发黑处理。在兵器制 造中,常用的是发蓝处理;在工业生产中,常用的是发黑处理。 采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处理过程称为“发蓝”。黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为氧化亚铁。 发蓝(发黑)的操作流程: 工件装夹→去油→清洗→酸洗→清洗→氧化→清洗→皂化→热水煮洗→检查。 所谓皂化,是用肥皂水溶液在一定温度下浸泡工件。目的是形成一层硬脂酸铁薄膜,以提高工件的抗腐蚀能力。 金属表面着色 金属表面着色,顾名思义就是给金属表面“涂”上颜色,改变其单一的、冰冷的金属色泽,代之以五颜六色,满足不同行业的不同需求。 给金属着色后一般都增加了防腐能力,有的还增加了抗磨能力。但表面彩色技术主要的应用还在装饰领域,即用来美化生活,美化社会。 抛丸 抛丸的原理是用电动机带动叶轮体旋转(直接带动或用V型皮带传动),靠 离心力的作用,将直径约在0.2~3.0的弹丸(有铸钢丸、钢丝切丸、不锈钢丸 等不同类型)抛向工件的表面,使工件的表面达到一定的粗糙度,使工件变得 美观,或者改变工件的焊接拉应力为压应力,提高工件的使用寿命。通过提高工件表面的粗糙度,也提高了工件后续喷漆的漆膜附着力。其寓意即为抛丸处理可以为喷漆工艺的前道工序。 喷砂 喷砂是采用压缩空气为动力,以形成高速喷射束将喷料(铜矿砂、石英砂、金刚砂、铁砂、海南砂)高速喷射到需要处理的工件表面,使工件表面的外 表面的外表或形状发生变化,由于磨料对工件表面的冲击和切削作用,使工件

HLB值及乳化剂的选择

字体大小:大 | 中 | 小 2006-08-09 16:25 - 阅读:6838 - 评论:2 HLB值和乳化剂的选择 2 乳化剂的选择和混合乳化剂配方 现适用于选择乳化剂的方法主要有两种:HLB法(亲水亲油平衡法)和PIT法(相转变温度法).前者适用于各种类型表面活性剂,后者是对前一方法的补充,只适用于非离子型表面活性剂. 2.1 HLB值与乳化剂筛选 一个具体的油-水体系究竟选用哪种乳化剂才可以得到性能最佳的乳状液,这是制备乳状液的关键.最可靠的方法是通过实验筛选,HLB值有助于筛选工作.通过实验发现,作为O/W型(水包油型)乳状液的乳化剂其HLB值常在8~18之间;作为W/O型(油包水型)乳状液的乳化剂其HLB值常在3~6之间.在制备乳状液时,除根据欲得乳状液的类型选择乳化剂外,所用油相性质不同对乳化剂的HLB值也有不同要求,并且,乳化剂的HLB值应与被乳化的油相所需一致.[4]有一种简单的确定被乳化油所需HLB值的方法:目测油滴在不同HLB值乳化剂水溶液表面的铺展情况,当乳化剂HLB值很大时油完全铺展,随着HLB值减小,铺展变得困难,直至在某一HLB值乳化剂溶液上油刚好不展开时,此乳化剂的HLB值近似为乳化油所需的HLB值.这种方法虽然粗糙,但操作简便,所得结果有一定参考价值.

2.2 HLB值与最佳乳化剂的选择 每种乳化剂都有特定的HLB值,单一乳化剂往往很难满足由多组分组成的体系的乳化要求.通常将多种具有不同HLB值的乳化剂混合使用,构成混合乳化剂,既可以满足复杂体系的要求,又可以大大增进乳化效果.欲乳化某一油-水体系,可按如下步骤选择最佳乳化剂. 油-水体系最佳HLB值的确 ①定选定一对HLB值相差较大的乳化剂,例如,Span-60(HLB=4.3)和Tween-80(HLB=15),按不同比例配制成一系列具有不同HLB值的混合乳化剂,用此系列混合乳化剂分别将指定的油水体系制成系列乳状液,测定各个乳状液的乳化效率(可用乳状液的稳定时间来代表,也可以用其他稳定性质来代表),与计算出的混合乳化剂的HLB,作图,可得一钟形曲线,与该曲线最高峰相应的HLB值即为乳化指定体系所需的HLB值.显然,利用混合乳化剂可得到最适宜的HLB 值,但此乳化剂未必是效率最佳者.所谓乳化剂的效率好是指稳定指定乳状液所需乳化剂的浓度最低!价格最便宜.价格贵但所需浓度低得多的乳化剂也可能比价格便宜!浓度大的乳化剂效率高. ②乳化剂的确定 在维持所选定乳化体系所需HLB值的前提下,多选几对乳化剂混合,使各混合乳化剂之HLB 值皆为用上述方法确定之值.用这些乳化剂乳化指定体系,测其稳定性,比较其乳化效率,直到找到效率最高的一对乳化剂为止.值得注意的是,这里未提及乳化剂的浓度,但这并不影响这种选配方法,因为制备一稳定乳状液所要求的HLB值与乳化剂浓度关系不大.在乳状液不

高分子膜材料的制备方法

高分子膜材料的制备 方法 xxx级 xxx专业xxx班 学号:xxxxxxx xxx

高分子膜材料的制备方法 xxx (xxxxxxxxxxx,xx) 摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。 关键词:膜分离,膜材料,膜制备方法 1.引言 膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。 2.膜材料的制备方法 2.1 浸没沉淀相转化法 1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。所谓相转化法

制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。

金属表面处理方式详解

电镀/电泳/锌镀/发黑/金属表面着色/抛丸/喷砂/喷丸/磷化/钝化电镀 镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。 电泳 电泳是电泳涂料在阴阳两极,施加于电压作用下,带电荷之涂料离子移动到阴极,并与阴极表面所产生之碱性作用形成不溶解物,沉积于工件表面。 电泳表面处理工艺的特点: 电泳漆膜具有涂层丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、耐腐、冲击性能、渗透性能明显优于其它涂装工艺。 镀锌 镀锌是指在金属、合金或者其它材料的表面镀一层锌以起美观、防锈等作用的表面处理技术。现在主要采用的方法是热镀锌。 电镀与电泳的区别 电镀就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。 电泳:溶液中带电粒子(离子)在电场中移动的现象。溶液中带电粒子(离子)在电场中移动的现象。利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。 电泳又名——电着 (著),泳漆,电沉积。

发黑 钢制件的表面发黑处理,也有被称之为发蓝的。其原理是将钢铁制品表面迅速氧化,使之形成致密的氧化膜保护层,提高钢件的防锈能力。发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种。 但常温发黑工艺对于低碳钢的效果不太好。A3钢用碱性发黑好一些。 在高温下(约550℃)氧化成的四氧化三铁呈天蓝色,故称发蓝处理。在低温下(约3 50℃)形成的四氧化三铁呈暗黑色,故称发黑处理。在兵器制造中,常用的是发蓝处理;在工业生产中,常用的是发黑处理。 采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处理过程称为“发蓝”。黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为氧化亚铁。 发蓝(发黑)的操作流程: 工件装夹→去油→清洗→酸洗→清洗→氧化→清洗→皂化→热水煮洗→检查。 所谓皂化,是用肥皂水溶液在一定温度下浸泡工件。目的是形成一层硬脂酸铁薄膜,以提高工件的抗腐蚀能力。 金属表面着色 金属表面着色,顾名思义就是给金属表面“涂”上颜色,改变其单一的、冰冷的金属色泽,代之以五颜六色,满足不同行业的不同需求。给金属着色后一般都增加了防腐能力,有的还增加了抗磨能力。但表面彩色技术主要的应用还在装饰领域,即用来美化生活,美化社会。 抛丸

高分子分离膜在污水处理中的应用

高分子分离膜在水处理中的应用 早在20世纪初已有用天然高分子或其衍生物制透析、电渗析、微孔过滤膜。1953年,美国C.E.里德提出了用致密的醋酸纤维素制的膜将海水分离为水和盐,当时由于水的透过速度极小而未能实用。1960年S.洛布和S.索里拉金成功地开发了各向异性的不对称膜的制备方法。由于起分离作用的活性层极薄,流体通过膜的阻力小,从而开拓了高分子分离膜在工业上的应用。之后出现了中空纤维膜,使高分子分离膜更适于工业用途。70年代以来,气体分离膜、透过蒸发膜、液体膜以及生物医学用膜的研究,开拓了高分子分离膜应用新领域。 高分子分离膜是由聚合物或高分子复合材料制得的具有分离流体混合物功能的薄膜。膜分离过程就是用分离膜作间隔层,在压力差、浓度差或电位差的推动力下,借流体混合物中各组分透过膜的速率不同,使之在膜的两侧分别富集,以达到分离、精制、浓缩及回收利用的目的。单位时间内流体通过膜的量(透过速度)、不同物质透过系数之比(分离系数)或对某种物质的截留率是衡量膜性能的重要指标。分离膜只有组装成膜分离器,构成膜分离系统才能进行实用性的物质分离过程。一般有平膜式、管膜式、卷膜式和中空纤维膜式分离装置。 以高分子分离膜为代表的膜分离技术作为一种新型、高效流体分离单元操作技术,30年来取得了令人瞩目的飞速发展,已广泛应用于国民经济的各个领域。 反渗透膜应用现状 在各种膜分离技术中,反渗透技术是近年来国内应用最成功、发展最快、普及最广的一种。估计自1995年以来,反渗透膜的使用量每年平均递增20%;据保守的统计,1999年工业反渗透膜元件的市场供应量为8英寸膜6000支,4英寸膜26000支。2000年和2010年的市场更为强劲,膜用量一年比一年有较大幅度的提高。据估算,反渗透技术的应用已创造水处理行业全年10亿人民币以上的产值。 国内反渗透膜工业应用的最大领域仍为大型锅炉补给水、各种工业纯水,饮用水的市场规模次之,电子、半导体、制药、医疗、食品、饮料、酒类、化工、环保等行业的应用也形成了一定规模。 反渗透膜最新进展 超低压膜由于节省电耗和降低相关机械部件的压力等级引起材料费下降等优点,自1999年以来超低压膜的应用比重日益增大,这在以使用4英寸膜为主的小型装置中应用最为突出,大型装置中应用超低压膜也呈上升趋势,目前使用超低压膜的最大装置的产水量为650吨/小时。 低污染膜膜污染是反渗透应用中的最大危害。目前已有几种抗污染性能强、使用寿命长、清洗频度低且易清洗的低污染膜问世。

乳化反应的引发剂与乳化剂的种类与选择原则

引发剂: 引发剂,指一类容易受热分解成白由基(即初级白由基)的化合物,可用于引发烯类、双烯类单体的白由基聚合和共聚合反应,也可用于不饱和聚酯的交联固化和高分子交联反应。 引发剂一般是带有弱键、易分解成活性种的化合物,其中共价键有均裂和异裂两种形式。 又称启动剂。能使正常细胞转变为显性肿瘤细胞的化学致癌物。引发剂具有下述特点: 本身有致癌性,必须在促长剂之前给予,单次接触或染毒即可产生作用,其作用可累加,而不可逆,不存在阈量;可产生亲电子物质与细胞大分子(DNA)共价结合,绝大多数为致突变物。 例如,反-4-乙酰氨基茂为引发剂。 引发剂能引发单体进行聚合反应的物质。不饱和单体聚合活性中心有白由基型、阴离子型、阳离子型和配位化合物等,目前在胶黏剂工业中应用最多的是白由基型,它表现出独特的化学活性,在热或光的作用下发生共价键均裂而生成两个白由基,能够引发聚合反应。 引发剂在胶黏剂和密封剂的研究和生产中作用很大,丙烯酸酯溶剂聚合制备压敏胶,醋酸乙烯溶剂聚合制造建筑胶和建筑密封胶,合成苯丙乳液、乙丙乳液、VAE乳液、丁苯胶乳、氯丁胶乳、白乳胶等,接枝氯丁胶黏剂,sBs接枝 胶黏剂,不饱和聚酯树脂交联固化,厌氧胶固化,快固丙烯酸酯结构胶黏剂固化等,都必须璃用引发剂。引发剂可以直接影响聚合反应过程能否顺利进行,也会影响聚合反应速率,还会影响产品的储存期。 编辑本段分类 引发剂种类很多,在胶黏剂中常用的是白由基型引发剂,包括过氧化合物引发剂和偶氮类引发剂及氧化还原引发剂等,过氧化物引发剂又分为有机过氧化物引发剂和无机过氧化物引发剂。[2]

1、有机过氧化物引发剂 有机过氧化合物的结构通式为FHO—O— H或R—O—O-R,R为烷基、酰基、碳酸酯基等。. 有机过氧化合物分为如下6类 (1) 酰类过氧化物(过氧化苯甲酰、过氧化月桂酰)。 (2) 氢过氧化物(异丙苯过氧化氢、叔丁基过氧化氢)。 (3) 二烷基过氧化物(过氧化二叔丁基、过氧化二异丙苯)。 (4) 酯类过氧化物(过氧化苯甲酸叔丁酯、过氧化叔戊酸叔丁基酯). (5) 酮类过氧化物(过氧化甲乙酮、过氧化环己酮)。 (6) 二碳酸酯过氧化物(过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯 )。 有机过氧化物的活性次序为: 二碳酸酯过氧化物>酰类过氧化物>酯类过氧化物>二烷基过氧化物>氢过氧化物。 2、无机过氧化物引发剂 无机过氧化合物因溶于水,多用于乳液和水溶液聚合反应,主要为过硫酸盐类,如过硫酸钾、过硫酸钠、过硫酸铉,其中最为常用的是过硫酸铉和过硫酸钾。 3、偶氮类引发剂 偶氮类引发剂有偶氮二异丁腊、偶氮二异庚腊,属低活性引发剂。常用的为偶氮二异丁腊,使用温度范围50?65C,分解均匀,只形成一种白由基,无其他副反应。比较稳定,纯粹状态可安全储存,但在80?90C也急剧分解。其 缺点是分解速率较低,形成的异了腊白由基缺乏脱氢能力,故不能用作接枝聚合的引发剂。 偶氮二异庚腊活性较大,引发效率高,可以取代偶氮二异丁腊。而偶氮二异丁酸

高分子分离膜材料的结构与性能(精)

膜材料的结构与性能 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

膜材料的结构与其性能之间的关系,是膜研究的重要内容。对于分离膜,其分离性能中的透过率和选择性分别依赖于膜的孔径和材料性质、被分离物的体积和性质以及二者之间的相互作用。根据材料微观和宏观结构,从以下几个层次对分离膜结构与性能之间的关系进行分析。 1.化学组成 化学元素及化学基团是物质组成的基础,决定了物质的基本性质,如氧化还原性、酸碱性、极性、溶解性和物理形态等。化学组成还决定了分离膜材料的化学稳定性,亲水性或亲油性,以及对被分离材料的溶解性等,直接影响膜的透过性、溶胀性、毛细作用等性质。在分子结构中增强极性基团,如羟基、羧基、磺酸基,膜的亲水性会改善;以氧原子、硫原子等引入到聚合物主链中,或将极性较大的基团,如三氟甲基接枝在聚合物主链上,聚合物的柔性会增加,分子量增大,在气体分离膜应用过程中有利于气体的透过。 2.高分子链段 构成高分子分离膜材料的单体和链段的结构,对聚合物的结晶性、溶解性、溶胀性等性质起主要作用,也在一定程度上影响分离膜的力学性能和热学性能。对于均聚物,单体的结构最重要,其次包括聚合度、分子量、分子量分布、分支度、交联度等。对共聚物,链段结构,如嵌段共聚、无规共聚、接枝共聚等因素直接影响分离膜的各种性质,包括立体效应和化学效应的产生。 3.高分子立体构象 聚合物分子的微观结构,多与分子间的作用力相关,如范德华、氢键力、静电力。这直接影响膜制备的粘度、溶解度,也与成膜后的力学性能和选择性密切关系。聚合物分子间作用力的增加则倾向于形成结晶度高的分离膜。 4.聚集态和超分子 聚合物高分子的排列方式和结晶度,以及晶胞的尺寸、膜的孔径和分布等因素,与膜材料的使用范围、透过性能、选择性等密切相关。高分子材料的聚集态结构和超分子结构与分离膜的制备条件和方法以及后处理工艺等更是相互联系。 5.分离膜的形态 目前常见分离膜的形态主要有管状膜、中空纤维膜、平板(平面)膜。管状分离膜便于清洗,适合连续操作和动态研究分析,多用于高浓度料液或污物较多的物料分离,缺点是能耗大,有效分离面积小;中空纤维膜的力学性能强,适合高压场合的分离操作,缺点是容易被污染且难以清洗;平板膜是宏观结构最简单的一种,适用于各种分离形式,制作简单,使用方便,成本低廉,适用性最广泛。

HLB值及乳化剂的选择

HLB值和乳化剂的选择 字体大小:大| 中| 小2006-08-09 16:25 - 阅读:6838 - 评论:2 HLB值和乳化剂的选择 2 乳化剂的选择和混合乳化剂配方 现适用于选择乳化剂的方法主要有两种:HLB法(亲水亲油平衡法)和PIT法(相转变温度法).前者适用于各种类型表面活性剂,后者是对前一方法的补充,只适用于非离子型表面活性剂. 2.1 HLB值与乳化剂筛选 一个具体的油-水体系究竟选用哪种乳化剂才可以得到性能最佳的乳状液,这是制备乳状液的关键.最可靠的方法是通过实验筛选,HLB值有助于筛选工作.通过实验发现,作为O/W型(水包油型)乳状液的乳化剂其HLB值常在8~18之间;作为W/O型(油包水型)乳状液的乳化剂其HLB值常在3~6之间.在制备乳状液时,除根据欲得乳状液的类型选择乳化剂外,所用油相性质不同对乳化剂的HLB值也有不同要求,并且,乳化剂的HLB值应与被乳化的油相所需一致.[4]有一种简单的确定被乳化油所需HLB值的方法:目测油滴在不同HLB值乳化剂水溶液表面的铺展情况,当乳化剂HLB值很大时油完全铺展,随着HLB值减小,铺展变得困难,直至在某一HLB值乳化剂溶液上油刚好不展开时,此乳化剂的HLB值近似为乳化油所需的HLB值.这种方法虽然粗糙,但操作简便,所得结果有一定参考价值.

2.2 HLB值与最佳乳化剂的选择 每种乳化剂都有特定的HLB值,单一乳化剂往往很难满足由多组分组成的体系的乳化要求.通常将多种具有不同HLB值的乳化剂混合使用,构成混合乳化剂,既可以满足复杂体系的要求,又可以大大增进乳化效果.欲乳化某一油-水体系,可按如下步骤选择最佳乳化剂. 油-水体系最佳HLB值的确 ①定选定一对HLB值相差较大的乳化剂,例如,Span-60(HLB=4.3)和 Tween-80(HLB=15),按不同比例配制成一系列具有不同HLB值的混合乳化剂,用此系列混合乳化剂分别将指定的油水体系制成系列乳状液,测定各个乳状液的乳化效率(可用乳状液的稳定时间来代表,也可以用其他稳定性质来代表),与计算出的混合乳化剂的HLB,作图,可得一钟形曲线,与该曲线最高峰相应的HLB值即为乳化指定体系所需的HLB值.显然,利用混合乳化剂可得到最适宜的HLB值,但此乳化剂未必是效率最佳者.所谓乳化剂的效率好是指稳定指定乳状液所需乳化剂的浓度最低!价格最便宜.价格贵但所需浓度低得多的乳化剂也可能比价格便宜!浓度大的乳化剂效率高. ②乳化剂的确定 在维持所选定乳化体系所需HLB值的前提下,多选几对乳化剂混合,使各混合乳化剂之HLB 值皆为用上述方法确定之值.用这些乳化剂乳化指定体系,测其稳定性,比较其乳化效率,直到找到效率最高的一对乳化剂为止.值得注意的是,这里未提及乳化剂的浓度,但这并不影响这种选配方法,因为制备一稳定乳状液所要求的HLB值与乳化剂浓度关系不大.在乳状液不稳

HLB值及乳化剂的选择

字体大小:大| 中| 小2006-08-09 16:25 - 阅读:6838 - 评论:2 HLB值和乳化剂的选择 2 乳化剂的选择和混合乳化剂配方 现适用于选择乳化剂的方法主要有两种:HLB法(亲水亲油平衡法)和PIT法(相转变温度法).前者适用于各种类型表面活性剂,后者是对前一方法的补充,只适用于非离子型表面活性剂. 2.1 HLB值与乳化剂筛选 一个具体的油-水体系究竟选用哪种乳化剂才可以得到性能最佳的乳状液,这是制备乳状液的关键.最可靠的方法是通过实验筛选,HLB值有助于筛选工作.通过实验发现,作为O/W型(水包油型)乳状液的乳化剂其HLB值常在8~18之间;作为W/O型(油包水型)乳状液的乳化剂其HLB值常在3~6之间.在制备乳状液时,除根据欲得乳状液的类型选择乳化剂外,所用油相性质不同对乳化剂的HLB值也有不同要求,并且,乳化剂的HLB值应与被乳化的油相所需一致.[4]有一种简单的确定被乳化油所需HLB值的方法:目测油滴在不同HLB值乳化剂水溶液表面的铺展情况,当乳化剂HLB值很大时油完全铺展,随着HLB值减小,铺展变得困难,直至在某一HLB值乳化剂溶液上油刚好不展开时,此乳化剂的HLB值近似为乳化油所需的HLB值.这种方法虽然粗糙,但操作简便,所得结果有一定参考价值.

2.2 HLB值与最佳乳化剂的选择 每种乳化剂都有特定的HLB值,单一乳化剂往往很难满足由多组分组成的体系的乳化要求.通常将多种具有不同HLB值的乳化剂混合使用,构成混合乳化剂,既可以满足复杂体系的要求,又可以大大增进乳化效果.欲乳化某一油-水体系,可按如下步骤选择最佳乳化剂. 油-水体系最佳HLB值的确 ①定选定一对HLB值相差较大的乳化剂,例如,Span-60(HLB=4.3)和 Tween-80(HLB=15),按不同比例配制成一系列具有不同HLB值的混合乳化剂,用此系列混合乳化剂分别将指定的油水体系制成系列乳状液,测定各个乳状液的乳化效率(可用乳状液的稳定时间来代表,也可以用其他稳定性质来代表),与计算出的混合乳化剂的HLB,作图,可得一钟形曲线,与该曲线最高峰相应的HLB值即为乳化指定体系所需的HLB值.显然,利用混合乳化剂可得到最适宜的HLB值,但此乳化剂未必是效率最佳者.所谓乳化剂的效率好是指稳定指定乳状液所需乳化剂的浓度最低!价格最便宜.价格贵但所需浓度低得多的乳化剂也可能比价格便宜!浓度大的乳化剂效率高. ②乳化剂的确定 在维持所选定乳化体系所需HLB值的前提下,多选几对乳化剂混合,使各混合乳化剂之HLB 值皆为用上述方法确定之值.用这些乳化剂乳化指定体系,测其稳定性,比较其乳化效率,直到找到效率最高的一对乳化剂为止.值得注意的是,这里未提及乳化剂的浓度,但这并不影响这种选配方法,因为制备一稳定乳状液所要求的HLB值与乳化剂浓度关系不大.在乳状液不稳

金属表面处理

金属表面喷漆 发生在我们周围的腐蚀现象是指各类材料在环境作用下(有化学、电化学和若干物理因素的综合作用)发生损坏,性能下降或状态的劣化。而在金属表面喷漆涂装则是一种很重要的金属防腐蚀保持手段。良好的喷漆涂装保护层保持连续完整无损,结合良好,能够成为抑制腐蚀介质侵入的屏障。但是由于腐蚀是不可逆转的自发过程,即使是优质的喷漆涂装保持层,也难于保护金属不发生腐蚀,尤其是当金属表面喷漆涂装层结合不良,受到损坏,或有针孔,鼓泡、龟裂、脱落等缺陷,喷漆涂层的保护作用将大大下降,甚至造成金属腐蚀加剧的恶果。所以对喷漆涂装金属腐蚀因素进行认真分析,并采取有效的对策预防是十分必要的。 2、喷漆涂装金属腐蚀机理 一般讲,金属的腐蚀是多种因素共同作用的结果,而其中某种因素在腐蚀过程中起着重要的作用。金属表面喷漆形成涂装保护层,其金属发生腐蚀的区域是在涂装漆膜与金属表面的界面区域,并不断向金属基体深处侵蚀扩张。 若金属表面喷漆涂装层能够有效地隔离水,氧以及电子、杂散离子等的渗透,就可以大大减缓或避免发生涂装金属的腐蚀,若隔离效果不佳,则涂装保持层对金属的防腐抗蚀保护作用就不好。生产实践表明,喷漆涂装保护层对水的渗透率严重影响金属喷漆涂装表层的附着力,而氧的渗透率则很大程度上影响金属的腐蚀性能。喷漆涂装金属的腐

蚀形式多种多样,但根本原因,腐蚀的发生都与化学和电化学作用有着密切的关系。 3、喷漆涂装金属腐蚀因素分析和预防对策 3.1 金属材质等因素的影响 喷漆涂装金属的腐蚀与金属材质本身耐蚀性有很大关系。用于以喷漆涂装的金属有钢铁材料,铝合金,铜合金或镁合金等,无疑金属材质的不同,金属喷漆涂装的抗蚀防腐性能也不尽相同。金属材料表面状态的差异,经喷漆涂装,其涂层的防腐抗蚀保护效果有明显的不同。比如将经喷砂净化处理的钢板材零件和自然锈蚀的同牌号钢板零件进行同类喷漆涂装保护,由于锈蚀的不利影响,天然锈蚀钢板零件较经喷砂的钢板零件其腐蚀速率高出数十倍,其抗蚀防护效果明显低于后者。金属表面所存在的缺陷如夹杂、微裂、应力等和大气中水分及活性离子(Cl-、Br-等)的吸附都会不同程度地影响甚至加速喷漆涂装金属的腐蚀。 金属表面喷漆涂装前的净化脱脂,活化除锈等前处理及表面处理工艺的应用都可以有效地改善喷漆涂装金属的防腐抗蚀性能。生产实践证明喷漆涂装金属防腐性的优劣与其涂装前基体前处理质量的好坏影响极大,金属(尤其是铸件)表面涂装前所进行的有效除油脱脂,除锈或采用喷砂喷丸等可以引起净化活化表面,保证涂装漆膜与基体金属良好的结合力,对提高喷漆涂装金属的耐腐蚀性能是十分有益的。钢铁材料涂装前处理工序的磷化处理是广泛地做为喷漆涂装的底层,对提高涂装层附着力和提高涂装金属的防腐抗蚀性能是无可非议的。

金属表面处理

金属表面处理.txt41滴水能穿石,只因为它永远打击同一点。42火柴如果躲避燃烧的痛苦, 它的一生都将黯淡无光。金属表面处理 1. 镀锌对照: NO 韩国标准中国标准备注 符号含义符号含义 1 MFZnⅠ-CY 镀彩锌3 um以上 EP?Zn 3? c2C 镀彩锌3 um 以上 2 MFZn Ⅱ-CY 镀彩锌5 um以上 EP?Zn 5?c2C 镀彩锌5 um 以上 3 MFZn Ⅲ-CY 镀彩锌10 um以上 EP?Zn 10?c2C 镀彩锌10 um以上 2. 金属镀覆和化学处理的表示方法 2.1金属镀覆规定的符号按下表顺序: / ? ? 例如:Fe/Ep?Zn7?c2C (基体材料为钢材,电镀锌7um以上,彩虹铬盐处理2级C型) 2.2化学处理和电化学处理规定的符号按下表顺序: / ? ? 例如:Al/Et?A?Cl (BK) (基体材料为铝材,电化学处理,阳极氧化,着黑色,对阳极氧化方法无特定要求) 3. 镀覆方法和处理方法的表示符号见下表: 方法名称英文符号 电镀 electroplating Ep 化学镀 autocatalytic plating Ap 电化学处理 electrochemical treatment Et 化学处理 chemical treatment Ct 3.1化学处理和电化学处理名称的表示符号见下表: 处理名称英文符号 钝化 passivaing P 氧化 oxidation O 电解着色 autocatalytic colouring Ec 磷化磷酸盐处理磷酸锰盐处理manganese phosphate treatment MnPh 磷酸锌盐处理 zinc phosphate treatment ZnPh 磷酸锰锌盐处理 manganese zinc phosphate treatment MnZnPh 磷酸锌钙盐处理 zinc calcium phosphate treatment ZnCaPh 处理名称英文符号 阳极氧化硫酸阳极氧化 slphuric acid anodizing A(S) 铬酸阳极氧化 chromic acid anodizing A(Cr) 磷酸阳极氧化 phosphoric acid anodizing A(P) 草酸阳极氧化 oxalic acid anodizing A(O) 注:对磷化及阳极氧化无特定要求时,允许只标注Ph(磷酸盐处理符号)或A(阳极氧化符 号)。 3.2镀覆层特征、处理特征的表示符号见下表:

高分子分离膜材料综述

《功能材料》课程论文考核表

高分子分离膜材料的研究进展 应用化学1005410220 袁强 摘要:高分子分离膜是用高分子材料制作而成的具有选择性透过功能的半透性薄膜。本文将简单介绍高分子分离膜材料的起源、发展史,重点介绍高分子分离膜材料的应用前景和研究现状。 关键词:高分子材料;高分子分离膜;分离;材料 1.高分子分离膜概述 高分子分离膜(polymeric membrane for separation),是由聚合物或高分子复合材料制得的具有分离流体混合物功能的薄膜。膜分离过程就是用分离膜作间隔层,在压力差、浓度差或电位差的推动力下,借流体混合物中各组分透过膜的速率不同,使之在膜的两侧分别富集,以达到分离、精制、浓缩及回收利用的目的。单位时间内流体通过膜的量(透过速度)、不同物质透过系数之比(分离系数)或对某种物质的截留率是衡量膜性能的重要指标。 2.高分子分离膜的起源和发展史 2.1.国外高分子分离膜发展史 1849年,德国学者惠柏思用硝基纤维素制成第一张高分子膜。 1920年,麦克戈达开始观察和研究反渗透现象。 1930年,人们将纤维素膜用于超滤分离。 1940年,离子交换膜开发和利用电渗析方法建立。 1950年,加拿大学者萨利拉简研究反渗透。 1960年,洛萨和萨利拉简成功制备了具有完整表皮和高度不对称的第一张高效能反渗透膜,为该法奠定了基础。 1970年以来。超滤膜、微滤膜成功开发和应用,有支撑的液膜和乳液膜及气体分离膜也相继问世。 2.2.国内高分子分离膜发展史 我国的膜科学技术的发展是从1958年研究离子交换膜开始的,六十年代进入开创阶段。1965年着手反渗透技术的探索。1967年开始全国的海水淡化会战。大大促进了我国膜技术的发展。70年代进入开发阶段。这时期,微滤、电渗析、反渗透和超滤等各种膜和组器件都相继研究开发出来,80年代跨入推广应用阶段。80年代又是气体分离和其他膜的开发阶段。 3.高分子分离膜所用到的材料 最初用作分离膜的高分子材料是纤维素酯类材料。后来,又逐渐采用了具有各种不同特性的聚砜、聚苯醚、芳香族聚酰胺(见芳香族聚酰胺纤维)、聚四氟乙烯(见氟树脂)、聚丙烯、聚丙烯腈、聚乙烯醇、聚苯并咪唑、聚酰亚胺等。高分子共混物和嵌段、接枝共聚物(见聚合物)也越来越多地被用于制分离膜,使

化妆品中的乳化剂

化妆品乳化剂的选择方法 乳状化妆品是化妆品中最广的一种剂型,从稀薄的流体到粘稠的膏霜。因此,乳状化妆品的乳化剂的选用对于化妆品的研究与生产以及保存和使用都有着极其重要的意义。 两个不相混溶的纯液体不能形成稳定的乳状液,必须要加入第三组分(起稳定作用),才能形成乳状液。例如,将菜籽油和水放在烧杯里,无论怎样用力摇荡,静止后菜籽油和水很快就会分离。但是,如果将烧杯里加一点洗洁精,再摇荡时就会形成象牛奶一样的乳白液体,而且这种乳状液可在相当长时间内保持稳定。这里称形成乳状液的过程为乳化。而制备稳定的乳状液(乳状化妆品)的一个关键问题就是如何选择一种合适的乳化剂,使产品(化妆品)符合要求,这是本文所要讨论的问题。 制备乳状液时,通常乳状液的一相是水,另一相是极性小的有机液体,习惯上统称为“油”。根据内相外相的性质,乳状液主要有两种类型,一类是油分散在水中,简称为水包油型乳状液,用O/W 表示;另一类是水分散在油中,简称为油包水型乳状液,用W/O 表示。这里要指出的是,上述的油、水两相不一定是单一的组分,经常是每一相都可能包含有多种成分。除了上述两种基本乳状液外,还有两种复合乳状液,其分散相本身就是乳状液,如将一个O/W 的乳状液分散到连续的油相中,形成一种复合(O/W)/O 型的乳状液;或者将一个W/O 的乳状液分散到连续的水相中,形成一种复合的(W/O)/W 的乳状液。 在油相、水相的性质确定后,制备较稳定(比如放置三年)的乳状液最重要的条件是乳化剂的选择。在诸多类型的乳化剂中,以表面活性剂的应用最为广泛。 一、乳化剂选择的一般原则 因油、水相成分的诸多变化性(如赋予不同功效诉求),以及要求形成乳状液的类型的多样性和特殊性[如是透明啫喱型(油水两相折光率相同时)还是白色乳霜型,是油包水型还是水包油型等],实际上不可能找到一种通用的“万能”乳化剂。因此,只能在指定油相、水相组成与性质及所要求的乳状液类型后通过适当的方法选择相对最优良的乳化剂。具体选择原则如下: (1)界面张力越大,两种液体越 不相溶,所以乳化剂要具有良好的表面活性和降低表面张力的能力。 (2)乳化剂分子或与其他添加物 在界面上能形成紧密排列的凝聚膜,在这种膜中分子有强烈的定向吸附性。(3)乳化剂的乳化能力与其和油 相或水相的亲合能力有关。亲油性越强的乳化剂越易得到W/O 型乳状液,亲水性越强的乳化剂越易得到O/W 型乳状液。亲油性强的乳化剂和亲水性强的乳化剂混合使用时可以达到更佳的乳化效果。与此相应,油相极性越大,要求乳化剂的亲水性越大;油相极性越小,要求乳化剂的疏水性越强。 (4)适当的外相粘度以减小液滴 的聚集速度。V=2r2(ρ1 -ρ2)g/9η这里v 为液滴的沉降速度,r 为分散相液滴的半径,ρ1 、ρ2 为分散相和分散介质(连续相)的密度,η 为分散介质(连续相)的粘度。由此公式可以得出,乳状液分散相和分散介质(连续相)的粘度越大,则分散相液滴运动的速度愈慢,这有利于乳液的稳定。因此往往在连续相

常用金属表面处理方式

表面处理方式: 金属: 1.喷砂 喷砂是利用压缩空气把石英砂高速吹出去对零件表面进行清理的一种方法。工厂里也叫吹砂,不仅去锈,还可以顺带除油,对涂装来说非常有用。常用于零件表面除锈;对零件表面修饰(市场卖的小型的湿式喷砂机就是这个用途,砂粒通常是刚玉,介质是水);在钢结构中,应用高强螺栓进行联接是一种比较先进的方法,由于高强联接是利用结合面之间的摩擦来传力的,所以对结合表面的质量要求很高,这时必须用喷砂对结合表面进行处理。 喷砂用于形状复杂,易于用手工除锈,效率不高,现场环境不好,除锈不均匀。 一般的喷砂机都有各种规格的喷砂枪,只要不是特别小的箱体,都可以把枪放进去打干净。压力容器的配套产品—封头采用喷砂方式清除工件表面的氧化皮,石英砂的直径为1.5m m~3.5mm. 有一种加工就是利用水作载体,带动金刚砂来加工零件的,就是一种喷砂。 2.喷塑 喷塑是为了提高防腐蚀能力,与喷砂结合更好,主要是因为结合力提高了导致质量提高。可以增加防锈和美观效果 3.氮化和软氮化 氮化包括气体氮化、辉光离子氮化和软氮化,软氮化是一种通俗的叫法,严格的讲,软氮化是一种以渗氮为主的低温氮碳共渗,主要特点是渗速快(2-4h),但渗层薄(一般在0.4以下),渗层梯度陡,硬度并不低,如果是液体氮化,硬度甚至略高于气体氮化。 气体氮化可以做到深渗层,它的硬度梯度缓,比软氮化承受的载荷高,外观漂亮,缺点是周期长,表面有脆性相,一般要有一道精加工(加工余量很小,一般1丝到2丝)。 辉光离子氮化有气体氮化的优点,在0.4㎜渗层以下,渗速比气体氮化快的多,而且表面不会有脆性相,可以局部氮化,缺点是成本略高,对形状复杂或带长孔的工件效果不好。 变形方面应该是辉光离子氮化变形最小,实际中相差很小,很多时候几乎一样。 为了缩短氮化周期,并使氮化工艺不受钢种的限制,在近年间在原氮化工艺基础上发展了软氮化和离子氮化两种新氮化工艺。 软氮化实质上是以渗氮为主的低温氮碳共渗,钢的氮原子渗入的同时,还有少量的碳原子渗入,其处理结果与一般气体氮化相比,渗层硬度较氮化低,脆性较小,故称为软氮化。 1、软氮化方法分为:气体软氮化、液体软氮化及固体软氮化三大类。目前国内生产中应用最广泛的是气体软氮化。气体软氮化是在含有活性氮、碳原子的气氛中进行低温氮、碳共渗,常用的共渗介质有尿素、甲酰胺、氨气和三乙醇胺,它们在软氮化温度下发生热分解反应,产生活性氮、碳原子。 活性氮、碳原子被工件表面吸收,通过扩散渗入工件表层,从而获得以氮为主的氮碳共渗层。气体软氮化温度常用560-570℃,因该温度下氮化层硬度值最高。氮化时间常为2-3小时,因为超过2.5小时,随时间延长,氮化层深度增加很慢。 2、软氮化层组织和软氮化特点:钢经软氮化后,表面最外层可获得几微米至几十微米的白亮层,它是由ε相、γ`相和含氮的渗碳体Fe3(C,N)所组成,次层为的扩散层,它主

高分子膜材料

高分子膜材料 姓名:*** 指导老师:** 专业:高分子材料2011年6月8号

摘要:高分子膜材料具有制备简单、性能稳定以及与指示剂相容性好等特点。本文介绍高分子膜材料的分类、性能以及高分子膜材料在工业、农业以及日常生活中的应用,主要是论述高分子膜材料的研究进展以及发展前景等。 前言:高分子膜材料虽然很早就出现,但是对它的研究还是近些年来才开始。在上世纪20年代,由于石油工业的发展促进了三大合成材料品种的不断增多,高分子膜材料的应用范围也在逐渐扩大。由包装膜开始,在30年代已经将纤维膜应用于超滤分离;40年代则出现了离子交换膜和点渗析分离法;50年代出现了饭渗透法膜分离技术;60年代又加拿大和美国学者分别成功的制造出了高效能膜和超过滤膜,总之,国外高分子膜材料技术的发展是迅速的。近年来,我国的科研工作者也开始重视这方面的研究,膜的汇总类及应用范围在不断扩大,其中用量最大的是选择性分离膜,如离子交换膜、微孔过滤膜、超过滤膜、液膜、液晶膜等等。目前已应用的领域有核燃料及金属提炼、气体分离、海水淡化、超纯水制备、污废处理、人工脏器的孩子早、医药、食品农药、化工等各个方面。

众所周知,进入二十一世纪以后,环境已经成为制约各国发展的重要因素,各种各样的工业废水、废气以及工业垃圾对环境造成了巨大破坏。而高分子膜材料以其独特的微处理性可以很好的清除废水、废气以及工业垃圾中所含有的有毒重金属、有机物和矿物质等物质,因而在新世纪高分子膜材料必然迎来新的发展。

目录 第一节:高分子膜材料的研究分类 (2) 第二节:各种高分子膜材料的的介绍 (3) 第三节:高分子膜材料的发展前景 (5) 第四节:高分子膜材料的性能 (6) 第五节:高分子膜材料的应用 (8) 参考文献 (11)

几种常见金属表面处理工艺

金属表面处理种类简介 电镀 镀层金属或其他不溶性材料做阳极,待镀的工件做阴极,镀层金属的阳离子在待镀工件表面被还原 形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液, 以保持镀层金属阳离子的浓度不变。电镀的目的是在基材上镀上金属镀层,改变基材表面性质或尺寸。 电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。 电泳 电泳是电泳涂料在阴阳两极,施加于电压作用下,带电荷涂料离子移动到阴极,并与阴极表面所产生之碱性作用形成不溶解物,沉积于工件表面。 电泳表面处理工艺的特点: 电泳漆膜具有涂层丰满、均匀、平整、光滑的优点,电泳漆膜的硬度、附着力、耐腐、冲击性能、渗 透性能明显优于其它涂装工艺。电泳工艺优于其他涂装工艺。 镀锌 镀锌是指在金属、合金或者其它材料的表面镀一层锌以起美观、防锈等作用的表面处理技术。现 在主要采用的方法是热镀锌。 电镀与电泳的区别 电镀就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。 电泳:溶液中带电粒子(离子)在电场中移动的现象。溶液中带电粒子(离子)在电场中移动的现象。利 用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。 电泳又名——电着 (著),泳漆,电沉积。 发黑 钢制件的表面发黑处理,也有被称之为发蓝的。其原理是将钢铁制品表面迅速氧化,使之形成致密的氧化膜保护层,提高钢件的防锈能力。 发黑处理现在常用的方法有传统的碱性加温发黑和出现较晚的常温发黑两种。但常温发黑工艺对于低碳钢的效果不太好。A3钢用碱性发黑好一些。 在高温下(约550℃)氧化成的四氧化三铁呈天蓝色,故称发蓝处理。在低温下(约 3 50℃)形成的四氧化三铁呈暗黑色,故称发黑处理。在兵器制造中,常用的是发蓝处理;在工业生产中,常用的是 发黑处理。 采用碱性氧化法或酸性氧化法;使金属表面形成一层氧化膜,以防止金属表面被腐蚀,此处理 过程称为“发蓝”。黑色金属表面经“发蓝”处理后所形成的氧化膜,其外层主要是四氧化三铁,内层为 氧化亚铁。 发蓝(发黑)的操作流程:

相关主题
文本预览
相关文档 最新文档