当前位置:文档之家› 高中物理 第二章 原子结构 第4节 玻尔的原子模型 能级教学案 教科版选修35

高中物理 第二章 原子结构 第4节 玻尔的原子模型 能级教学案 教科版选修35

高中物理 第二章 原子结构 第4节 玻尔的原子模型 能级教学案 教科版选修35
高中物理 第二章 原子结构 第4节 玻尔的原子模型 能级教学案 教科版选修35

第4节 玻尔的原子模型__能级

(对应学生用书页码P26)

一、波尔的原子结构理论

(1)电子围绕原子核运动的轨道不是任意的,而是一系列分立的、特定的轨道,当电子在这些轨道上运动时,原子是稳定的,不向外辐射能量,也不吸收能量,这些状态称为定态。

(2)当原子中的电子从一定态跃迁到另一定态时,才发射或吸收一个光子,其光子的能量hν=E n -E m ,其中E n 、E m 分别是原子的高能级和低能级。

(3)以上两点说明玻尔的原子结构模型主要是指轨道量子化和能量量子化。

[特别提醒] “跃迁”可以理解为电子从一种能量状态到另一种能量状态的瞬间过渡。

二、用玻尔的原子结构理论解释氢光谱

1.玻尔的氢原子能级公式

E n =E 1n

2(n =1,2,3,…),其中E 1=-13.6 eV ,称基态。 2.玻尔的氢原子中电子轨道半径公式

r n =n 2r 1(n =1,2,3,…),其中r 1=0.53×10

-10 m 。

3.玻尔理论对氢光谱解释

按照玻尔理论,从理论上求出里德伯常量R H 的值,且与实验符合得很好。同样,玻尔理论也很好地解释甚至预言了氢原子的其他谱线系。

三、玻尔原子结构理论的意义

1.玻尔理论的成功之处

第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律。

2.玻尔理论的局限性

不能说明谱线的强度和偏振情况;不能解释有两个以上电子的原子的复杂光谱。

1.判断:

(1)玻尔的原子结构假说认为电子的轨道是量子化的。( )

(2)电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态。( )

(3)电子能吸收任意频率的光子发生跃迁。( )

(4)玻尔理论只能解释氢光谱的巴尔末系。( )

答案:(1)√ (2)√ (3)× (4)×

2.思考:卢瑟福的原子模型与玻尔的原子模型有哪些相同点和不同点?

提示:(1)相同点:

①原子有带正电的核,原子质量几乎全部集中在核上。

②带负电的电子在核外运转。

(2)不同点:

卢瑟福模型:库仑力提供向心力,r的取值是连续的。

玻尔模型:轨道r是分立的、量子化的,原子能量也是量子化的。

(对应学生用书页码P26)

对玻尔理论的理解

1.轨道量子化

轨道半径只能够是一些不连续的、某些分立的数值。氢原子各条可能轨道上的半径r n =n2r1(n=1,2,3…)其中n是正整数,r1是离核最近的可能轨道的半径,r1=0.53×10-10m。其余可能的轨道半径还有0.212 nm、0.477 nm…不可能出现介于这些轨道半径之间的其他值。这样的轨道形式称为轨道量子化。

2.能量量子化

(1)电子在可能轨道上运动时,尽管是变速运动,但它并不释放能量,原子是稳定的,这样的状态也称之为定态。

(2)由于原子的可能状态(定态)是不连续的,具有的能量也是不连续的。这样的能量值,称为能级,能量最低的状态称为基态,其他的状态叫做激发态,对氢原子,以无穷远处为势

能零点时,其能级公式E n=1

n2

E1(n=1,2,3…)其中E1代表氢原子的基态的能级,即电子在离

核最近的可能轨道上运动时原子的能量值,E1=-13.6 eV。n是正整数,称为量子数。量子数n越大,表示能级越高。

(3)原子的能量包括:原子的原子核与电子所具有的电势能和电子运动的动能。

3.跃迁

原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射(或吸收)一定

频率的光子,光子的能量由这两种定态的能量差决定,高能级E m 发射光子hν=E m-E n

吸收光子hν= E m-E n低能级E n。

可见,电子如果从一个轨道到另一个轨道,不是以螺旋线的形式改变半径大小的,而是从一个轨道上“跳跃”到另一个轨道上。玻尔将这种现象叫做电子的跃迁。

(1)原子吸收光子能量是有条件的,只有等于某两个能级差时才被吸收发生跃迁。

(2)如果入射光的能量E≥13.6 eV,原子也能吸收,则原子电离。

1.对于基态氢原子,下列说法中正确的是( )

A .它能吸收10.2 eV 的光子

B .它能吸收11 eV 的光子

C .它能吸收14 eV 的光子

D .它能吸收具有11 eV 动能的电子的部分动能

解析:选ACD 由E n =E 1n

2知,氢原子从基态跃迁到n =2、3、4、5,ΔE 1=10.2 eV ,ΔE 2=12.09 eV ,ΔE 3=12.75 eV ,ΔE 4=13.06 eV ,因此,它能吸收10.2 eV 的光子发生跃迁,A 正确;它能吸收14 eV 的光子使其电离,C 正确;电子可以通过碰撞使其部分能量被原子吸收,D 正确。

氢原子能级图及能级跃迁问题

1.能级图

图2-4-1

2.氢原子能级跃迁规律

跃迁是指电子从某一轨道跳到另一轨道,而电子从某一轨道跃迁到另一轨道对应着原子就从一个能量状态(定态)跃迁到另一个能量状态(定态)。

3.氢原子能级跃迁的可能情况

氢原子核外电子从高能级向低能级跃迁时可能直接跃迁到基态,也可能先跃迁到其他低能级的激发态,然后再到基态,因此处于n 能级的电子向低能级跃迁时就有很多可能性,其

可能的值为C n 2即n n -12

种可能情况。 4.实物粒子的碰撞使氢原子发生跃迁

实物粒子与氢原子碰撞时,实物粒子的动能可以全部或部分地被氢原子吸收,因此只要实物粒子的能量大于等于两个能级的能级差,均可能使原子从低能级向高能级跃迁。

5.氢原子不同状态的电离能

从某一状态跃迁到n =∞时所需吸收的能量。其数值等于各定态时的能级值的绝对值。如基态氢原子的电离能是13.6 eV ,氢原子第一激发态(n =2)的电离能为3.4 eV 。

6.氢原子能级跃迁时的能量变化情况

当轨道半径减小时,库仑引力做正功,原子的电势能E p 减小,电子动能增大,原子能量减小。反之,轨道半径增大时,原子电势能增大,电子动能减小,原子能量增大。

一个氢原子从某一轨道向另一轨道跃迁时,可能的情况只有一种,但大量的氢原子就会出现多种情况。

2.已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2

,其中n =2,3…。用h 表示普朗克常量,c 表示真空中的光速。能使氢原子从第一激发态电离的光子的最大波长为( )

A .-4hc 3E 1

B .-2hc E 1

C .-4hc E 1

D .-9hc

E 1 解析:选C 从n =2跃迁到∞,hc λ=E ∞-E 2=-E 14

, 所以λ=-4hc E 1

。 (对应学生用书页码P27)

对玻尔原子结构理论的理解

[例1] A .原子处在具有一定能量的定态中,虽然电子做变速运动,但不向外辐射能量

B .原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的

C .电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子

D .电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率

[解析] A 、B 、C 三项都是玻尔提出来的假设。其核心是原子定态概念的引入与能级跃迁学说的提出,也就是“量子化”的概念,原子的不同能量状态与电子绕核运动不同的圆轨道相对应,是经典理论与量子化概念的结合。电子跃迁辐射的能量为hν=E n -E m 与电子绕核做的圆周运动无关,故D 错。故A 、B 、C 选项正确。

[答案] ABC

氢原子的能级跃迁与电离

[例2] (n =2的能级时,辐射光的波长为656 nm 。以下判断正确的是________。(双选,填正确答案标号)

图2-4-2

A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656 nm

B.用波长为325 nm的光照射,可使氢原子从n=1跃迁到n=2的能级

C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线

D.用波长为633 nm的光照射,不能使氢原子从n=2跃迁到n=3的能级

[解析] 由于n=3与n=2间的能量差为-1.51-(-3.4)=1.89 eV,而n=1与n=2

间的能量差为-3.4-(-13.6)=10.2 eV,根据ΔE=hν=h c

λ

可知,氢原子从n=2跃迁

到n=1的能级时辐射的波长λ=121.6 nm小于656 nm,A错误;同样从n=1跃迁至n=2能级需要的光子的波长也恰好为121.6 nm,B错误;一群处于n=3能级的氢原子向低能级跃迁时可能会出现3种可能,因此会放出3种不同频率的光子,C正确;电子发生跃迁时,吸收或放出的能量一定等于这两个能级间的能量差,为一特定值,大于或小于这个特定的值都不能使之发生跃迁。因此D正确。

[答案] CD

所谓电离,就是使处于基态或激发态的原子的核外电子跃迁到n=∞的轨道,n=∞时,E∞=0,所以要使处于基态的原子电离,电离能为ΔE=E∞-E1=13.6 eV。

(对应学生用书页码P28) 1.关于原子结构的认识历程,下列说法正确的有( )

A.汤姆孙发现电子后猜想出原子内的正电荷集中在很小的核内

B.α粒子散射实验中少数α粒子发生了较大偏转是卢瑟福猜想原子核式结构模型的主要依据

C.对原子光谱的研究开辟了深入探索原子结构的道路

D.玻尔原子理论无法解释较复杂原子的光谱现象,说明玻尔提出的原子定态概念是错误的

解析:选BC 汤姆孙发现电子后猜想原子是枣糕式结构模型,即正电荷均匀地分布在原子内,电子就像枣糕一样镶嵌在原子内,A错误;α粒子散射实验结果是卢瑟福建立原子核式结构模型的依据,B正确;对原子光谱的研究,使人们认识了原子结构的特点,C正确;玻尔原子理论只能解释氢原子光谱,不能解释复杂的原子光谱,只能说明玻尔理论的局限性,

它在一定范围内是正确的,D 错误。

2.关于玻尔的原子模型,下述说法中正确的是( )

A .它彻底否定了卢瑟福的核式结构学说

B .它发展了卢瑟福的核式结构学说

C .它完全抛弃了经典的电磁理论

D .它引入了普朗克的量子理论

解析:选BD 玻尔的原子模型在核式结构模型的前提下提出轨道量子化、能量量子化及能级跃迁,故A 错,B 正确,它的成功就在于引入了量子化理论,缺点是被过多的引入经典力学所困,故C 错,D 正确。

3.如图2-4-3所示为氢原子的四个能级,其中E 1为基态,若氢原子A 处于激发态E 2,氢原子B 处于激发态E 3,则下列说法正确的是( )

图2-4-3

A .原子A 可能辐射出3种频率的光子

B .原子B 可能辐射出3种频率的光子

C .原子A 能够吸收原子B 发出的光子并跃迁到能级E 4

D .原子B 能够吸收原子A 发出的光子并跃迁到能级

E 4

解析:选B 原子A 处于激发态E 2,因此其辐射光子频率数目只能有1种,A 错,原子B 处于n =3的能级C n 2

=3种,B 正确。由氢原子能级的量子性及吸收光子必须满足hν=E m -E n ,可知C 、D 错。

4.氢原子辐射出一个光子后,则( )

A .电子绕核旋转半径增大

B .电子的动能增大

C .氢原子电势能增大

D .原子的能级值增大

解析:选B 由玻尔理论可知,氢原子辐射光子后,应从离核较远的轨道跃迁到离核较近的轨道,在此跃迁过程中,电场力对电子做了正功,因而电势能应减小。另由经典电磁理

论,电子绕核做匀速圆周运动的向心力即为氢核对电子的库仑力:k e 2r 2=m v 2r ,所以E k =12

mv 2=ke 22r

。可见,电子运动半径越小,其动能越大。再结合能量转化与守恒定律,氢原子放出光子,辐射出一定的能量,所以原子的总能量减少,只有B 选项正确。

5.氦原子被电离一个核外电子,形成类氢结构的氦离子。已知基态氦离子能量为E1=-54.4 eV,氦离子能级的示意图如图2-4-4所示。在具有下列能量的光子中,不能被基态氦离子吸收而发生跃迁的是( )

图2-4-4

A.40.8 eV B.43.2 eV

C.51.0 eV D.54.4 eV

解析:选B 由于E2-E1=40.8 eV,能被基态氦离子吸收而发生跃迁,A对。E4-E1=51.0 eV能被基态氦离子吸收而发生跃迁,C对;E∞-E1=54.4 eV,能被基态氦离子吸收而发生跃迁(电离),D对;而E3-E1=48.4 eV≠43.2 eV,故不能被基态氦离子吸收而发生跃迁,故选B。

6.氢原子的能级如图2-4-5所示,已知可见光的光子能量范围约为1.62~3.11 eV。下列说法正确的是( )

图2-4-5

A.处于n=3能级的氢原子可以吸收任意频率的紫外线,并发生电离

B.大量氢原子从高能级向n=3能级跃迁时,可能发出可见光

C.大量处于n=4能级的氢原子向低能级跃迁时,可能发出6种不同频率的光

D.一个处于n=3能级的氢原子向低能级跃迁时,最多可能发出3种不同频率的光解析:选AC 由于E3=-1.51 eV,紫外线的能量大于可见光子的能量,即E紫>E∞-E3=1.51 eV,可以使氢原子电离,A正确;大量氢原子从高能级向n=3能级跃迁时,最大能量为1.51 eV,即辐射出光子的能量最大为1.51 eV,小于可见光子的能量,B错误;n=4时跃迁发出光的频率数为C42=6种,C正确;一个处于n=3能级的氢原子向低能级跃迁时最多可能发出(3-1)=2种不同频率的光,D错误。

7.如图2-4-6所示是某原子的能级图,a、b、c为原子跃迁所发出的三种波长的光。在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )

图2-4-6

图2-4-7

解析:选C 解答本题的关键是掌握玻尔原子理论中的公式hν=E m-E n及光的波长与

频率间的关系。根据玻尔的原子跃迁公式h

c

λ

=E m-E n可知,两个能级间的能量差值越大,辐射光的波长越短。从图中可看出,能量差值最大的是E3-E1,辐射光a的波长最短,能量差值最小的是E3-E2,辐射光b的波长最长,谱线从左向右波长依次增大的顺序是a、c、b,选项C正确。

8.氢原子部分能级的示意图如图2-4-8所示,不同色光的光子能量如下表所示:色光红橙黄绿蓝—靛紫

光子能量范围(eV) 1.61~

2.00

2.00~

2.07

2.07~

2.14

2.14~

2.53

2.53~

2.76

2.76~

3.10

图2-4-8

处于某激发态的氢原子,发射的光的谱线在可见光范围内仅有2条,其颜色分别为( )

A.红、蓝—靛

B.黄、绿

C.红、紫

D.蓝—靛、紫

解析:选A 由七种色光的光子的不同能量可知,可见光光子的能量范围在1.61 eV~3.10 eV,故可能是由第4能级向第2能级跃迁过程中所辐射的光子,E1=-0.85 eV-(-3.40 eV)=2.55 eV,即蓝—靛光;也可能是氢原子由第3能级向第2能级跃迁过程中所辐射的光子,E2=-1.51 eV-(-3.40 eV)=1.89 eV,即红光,正确选项为A。

9.氢原子从处于n=a激发态自发地直接跃迁到n=b激发态,已知a>b,在此过程中( )

A.原子要发出一系列频率的光子

B .原子要吸收一系列频率的光子

C .原子要发出某一频率的光子

D .原子要吸收某一频率的光子

解析:选C 原子从高能级向低能级跃迁时,能量减小,以光子的形式辐射出去,辐射光子的频率由两能级的能量差决定即hν=E m -E n ,所以原子发出某一频率的光子。故C 正确。

10.氢原子第n 能级的能量为E n =E 1n 2,其中E 1为基态能量。当氢原子由第4能级跃迁到第2能级时,发出光子的频率为ν1;若氢原子由第2能级跃迁到基态,发出光子的频率为

ν2,则ν1ν2

=________。 解析:解答本题的关键是掌握玻尔原子理论中的公式hν=E m -E n 。根据E n =E 1n

2及hν=E m -E n 可得hν1=E 142-E 122,hν2=E 122-E 1,两式联立解得ν1ν2=14

。 答案:14

11.如图2-4-9所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时:

图2-4-9

(1)有可能放出________种能量的光子。

(2)在哪两个能级间跃迁时,所放出光子波长最长,波长是多少?

解析:(1)N =n n -12=4×4-12

种=6种。 (2)氢原子由第4能级向第3能级跃迁时,能级差最小,辐射的光子波长最长。

由hν=E 4-E 3得:h c λ

=E 4-E 3 所以λ=hc E 4-E 3

= 6.63×10-34×3×108[-0.85--1.51]×1.6×10

-19 m ≈1.88×10-6

m 。

答案:(1)6 (2)第4能级向第3能级跃迁 1.88×10-6 m

12.如图2-4-10所示,现有一群处于n=4能级上的氢原子,已知氢原子的基态能量E1=-13.6 eV,氢原子处于基态时电子绕核运动的轨道半径为r,静电力常量为k,普朗克常量h=6.63×10-34J·s。则:

图2-4-10

(1)电子在n=4的轨道上运动的动能是多少?

(2)电子实际运动中有题中所说的轨道吗?

(3)这群氢原子发光的光谱共有几条谱线?

解析:电子绕核运动,由库仑引力提供向心力,则:k e2

r42=m

v2

r4

,又r4

=42r,解得电子绕核运动的动能为E k=ke2

32r

(2)电子绕核运动没有题中所说的轨道。

(3)这群氢原子的能级图如图所示,由图可以判断出,这群氢原子可能发生的跃迁共有6种,所以它们的光谱线共有6条。

答案:(1)ke2

32r

(2)没有(3)6条

高中物理力学模型

╰ α 高中物理力学模型 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物 体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物 体从连接体中隔离出来进行分析的方法。 2斜面模型 (搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tg θ物体沿斜面匀速下滑或静止 μ> tg θ物体静止于斜面 μ< tg θ物体沿斜面加速下滑a=g(sin θ一μcos θ) 3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 杆对球的作用力由运动情况决定 只有θ=arctg(g a )时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? V B =R 2g ?mgR=22 1B mv 假设单B 下摆,最低点的速度整体下摆2mgR=mg 2R +'2B '2A mv 21mv 2 1+ 'A 'B V 2V = ? 'A V =gR 53 ; ' A ' B V 2V == gR 256> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0

第4节 玻尔的原子模型

第4节玻尔的原子模型 [随堂巩固] 1.(对玻尔理论的理解)根据玻尔的原子结构模型,原子中电子绕核运转的轨道半径A.可以取任意值 B.可以在某一范围内取任意值 C.可以取不连续的任意值 D.是一些不连续的特定值 解析按玻尔的原子理论:原子的能量状态对应着电子不同的运动轨道,由于原子的能量状态是不连续的,则其核外电子的可能轨道是分立的,且是特定的,故上述选项只有D正确。 答案 D 2.(对玻尔理论的理解)根据玻尔的氢原子理论,电子在各条可能轨道上运动的能量是指A.电子的动能 B.电子的电势能 C.电子的电势能与动能之和 D.电子的动能、电势能和原子核能之和 解析根据玻尔理论,电子绕核在不同轨道上做圆周运动,库仑引力提供向心力,故电子的能量指电子的总能量,包括动能和势能,所以C选项是正确的。 答案 C 3.(氢原子能级及跃迁)(多选)氢原子能级如图18-4-3所示,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656 nm。以下判断正确的是

图18-4-3 A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656 nm B.用波长为325 nm的光照射,可使氢原子从n=1跃迁到n=2的能级 C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线 D.用波长为633 nm的光照射,不能使氢原子从n=2跃迁到n=3的能级 解析由氢原子能级图可知氢原子从n=2跃迁到n=1的能级的能级差大于从n=3跃 迁到n=2的能级的能级差,根据E n-E m=hν和ν=c λ可知,|E n-E m|=h c λ ,选项A错误;同 理从n=4跃迁到n=2的能级需要的光子能量大约为从n=3跃迁到n=2的能级差的五倍左右,对应光子波长应为从n=3跃迁到n=2的能级辐射光波长的五分之一左右,选项B错误;一群氢原子从n=3跃迁到n=1的能级的能级差最多有三种情况,即对应最多有三种频率的光谱线,选项C正确;氢原子在不同能级间跃迁必须满足|E n-E m|=h c λ ,选项D正确。 答案CD 4.(氢原子能级及跃迁)(多选)用光子能量为E的光束照射容器中的氢气,氢原子吸收光子后,能发射频率为ν1、ν2、ν3的三种光子,且ν1<ν2<ν3。入射光束中光子的能量应是A.hν3B.h(ν1+ν2) C.h(ν2+ν3)D.h(ν1+ν2+ν3) 解析氢原子吸收光子后发射三种频率的光,可知氢原子由基态跃迁到了第三能级,能级跃迁如图所示,由图可知该氢原子吸收的能量为hν3或h(ν1+ν2)。

高中物理选修3-5玻尔的原子模型教案课程设计

第十八章原子结构 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.4 玻尔的原子模型 ★新课标要求 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 ★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 3.卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1.玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可

高中物理典型物理模型及方法

高中典型物理模型及方法 ◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 211212 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N= 2 12 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (20F =就是上面的情 况) F=211221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

对玻尔原子模型的理解

当电子从高能级跃迁到低能级时级时,原子会辐射能量;当电子从低能级跃迁到高能级时,原子要吸收能量.由于电子的能级是不连续的,所以原子在跃迁时吸收或辐射的能量都不是任意的,这个能量等于电子跃迁时始末两个能级间的能量差.能量差值不同,发射的光频率也不同,我们就能观察到不同颜色的光. 一、对玻尔原子模型的理解 1.氢原子的能量 (1)轨道与能量:对氢原子而言,核外的一个电子绕核运行时,若半径不同,则对应着的原子能量也不同.轨道是不连续的,能量也是不连续的,即能量量子化. (2)负能量:若使原子电离,外界必须对原子做功输入能量,使电子摆脱它与原子核之间的库仑力的束缚,所以原子电离后的能量比原子其他状态的能量都高.我们把原子电离后的能量记为0,即选取电子离核无穷远处即电子和原子核间无作用力时氢原子的能量为零,则其他状态下的能量值均为负值. 因此有E 1=-13.6eV ,E n = E 1/n 2 这里E 1和E n 是指电子的总能量,即电子动能与电势能的和. 2.卢瑟福原子模型与玻尔原子模型的相同点与不同点. (1)相同点 ①原子有带正电的核,原子质量几乎全部集中在核上. ②带负电的电子在核外运转. (2)不同点 卢瑟福模型:库仑力提供向力心,r 的取值是连续的. 玻尔模型:轨道r 是分立的、量子化的,原子能量也是量子化的. 二、氢原子的辐射 1.能级的跃迁 根据玻尔模型,原子只能处于一系列的不连续的能量状态中。这些状态分基态和激发态两种,其中原子在基态时是稳定的,原子在激发态时是不稳定的,当原子处于激发态时会自发地向较低能级跃迁,经过一次或几次跃迁到达基态. 所以处于能量较高激发态的一群氢原子,自发地向低能级跃迁时,发射光子的频率数满足2 )1(2-=n n c n . 2.光子的发射 原子能级跃迁时以光子的形式放出能量,原子在始末两个能级E m 和E n (m>n)间跃迁时发射光子的频率可由下式表示:n m E E h -=ν 由上式可以看出,能级差越大,放出光子的频率就越高. 3.光子的吸收 光子的吸收是光子发射的逆过程,原子在吸收了光子后会从较低能级向较高能级跃迁.两个能级的差值仍是一个光子的能量.其关系式仍为n m E E h -=ν. 说明:由于原子的能级是一系列不连续的值,则任意两个能级差也是不连续的,故原子只能发射一些特定频率的光子;同样也只能吸收一些特定频率的光子.但是,当光子能量足够大时,如光子能量E≥13.6 eV 时.则处于基态的氢原子仍能吸收此光子并发生电离. 因此光子的发射和吸收可表示如下

高中物理模型教学的理论研究

高中物理模型教学的理论研究 发表时间:2020-03-11T17:45:22.177Z 来源:《教育学文摘》2020年4月总第334期作者:董英梅[导读] 山东省招远第一中学265400 一、物理模型的定义 物理模型定义为:为了充分了解和研究对象的本质,根据研究对象和问题的特点:通过对所研究的系统比较、等效、综合等的思维方法对所给的系统做简化的描述和模拟。学习竖直上抛时,我们可以把背跃式跳高简化成以重心为研究对象的竖直上抛运动,高台跳水也可简化抽象成竖直上抛,高台跳水可以下落到抛出点以下,发射导弹是斜上抛模型,电场中带电离子在匀强电场中初速度与电场力夹角大于 90°的情景也是斜上抛模型,而初速度和电场力夹角为90°是类平抛,处理方法和平抛相类似。高中阶段学生所学的物理规律和定律都有一定的物理模型相联系。解决物理问题其实就是构建物理模型和应用物理模型的过程。 二、物理模型的分类 1.根据研究对象——对象模型 比如:质点模型、弹簧模型、电容器模型、连接体模型、双星模型、斜面模型、点电荷模型、电场模型、线圈模型、连接体模型、通电导线模型、电阻模型、变压器模型、气体模型、氢原子模型、光子模型、传送带模型、测电阻模型、打点计时器模型、杆+导轨模型等等。 2.根据过程分析——状态模型、过程模型 比如:状态模型:共点力作用下的静态(动态)平衡状态模型、超失重模型、临界状态模型、碰撞模型、爆炸反冲模型等等。过程模型:圆周运动模型、匀变速曲线模型、匀变速直线模型、平抛、类平抛模型、机车启动模型、电路的动态变化模型、电磁感应模型、带电离子在电磁场中的偏转模型、远距离输电模型、气体状态变化模型、核裂变和核聚变模型等等。 3.根据应用规律——方法模型 比如:图像模型、动力学模型、机械能守恒模型,动量守恒模型,万有引力与航天模型,测电阻的方法模型,等效重力场模型,能量守恒模型,动能定理模型,动量定律模型,带电离子在电磁场中的运动模型等等。 模型的划分也不是一成不变的,可根据教学的需要灵活的归类。 三、物理模型的特征 1.抽象性与形象性的统一 如:质点模型,质点实际生活中并不存在,它是一个理想化的模型,但是它们有实际的意义,它是根据研究问题的性质,有时可以忽略物体的大小和形状,将物体抽象成一个有质量的点。与质点相类似的还有电场中的点电荷,气体中的理想气体等等。 2.科学性与假定性的统一 物理的建模过程是学生对所研究的物理过程通过分析抓住它的主要特征,经过比较、抽象、概括、推理、逻辑论证得出的一个具有实际意义的能够解决问题的物理模型,它具有科学性。同时建模的过程要利用抽象思维、直觉思维,对客观事物进行假象,然后通过理论或实验验证它的可靠性,因此,物理模型具有一定的假定性。如:玻尔提出的氢原子模型(能级结构),他是在发现了氢原子的线状谱后,经典的电磁理论无法解释的情况下提出的假设,这一假设能够解释氢原子光谱,该假设一直被应用至今。 3.简洁性与美学性的统一 物理建模的过程对一些复杂的问题进行了抽象化的处理。略去了一些次要的因素,有利于我们抓住事物的本质,让一些复杂的问题变得简单。建模过程中模型的体会和理解被定律的内涵所深深的吸引,体现了物理模型的和谐之美。如:赫兹发现了光电效应的三个现象后,经典的波动理论无法解释该现象。爱因斯坦提出了光子说,强调光子和电子是一一对应的关系,一个光子只能把能量给一个电子,光电子得到能量的过程不需要时间的积累,且光电子从金属逸出的过程遵循能量守恒,即爱因斯坦光电效应方程hv=Wo+EKm。爱因斯坦光子说的提出具有简洁性和美学性。 四、物理模型在高三教学过程中的作用 1.物理模型的建立有利于学生对物理概念,物理定理和物理规律的准确的理解 学生在高一、高二的学习中已经学习了一些物理概念、物理规律和物理定理,已经储备了一些物理的基础知识,只是大部分学生对这些物理概念和定理并不是十分的理解,更不会灵活的应用,只是简单的死记硬背,“复制粘贴”物理题目,被动式学习对一些问题的认识不深刻、理解不透彻,形不成完整的物理知识体系。如:在复习能量部分时,学生对动能定理和机械能守恒定律的理解不够清楚,抓不住动能的变化看合外力做功,机械能的变化看其它力做功,其它力做功不包括重力和系统内的弹簧弹力做功,但合外力做功包括重力和系统内的弹簧弹力做功,本质理解不好,学生通过构建正确的有意义的物理模型,有助于学生抓住一些定理定律的本质,知道了分析物理模型的入手点,不至于只会乱套公式。通过物理模型的教学有利于提高学生的思维品质,提高学生的理解和接收知识,解决问题的能力,且对知识系统的对比理解,更有利于学生对物理基本规律和定理的理解,处理物理问题整体的思路更为清晰、开阔。 2.培养学生的抽象思维能力和创新能力 高中部分许多物理知识比较抽象难懂,学生不易理解和接受,尤其是遇到复杂的物理问题解决起来比较困难时,采用模型教学,突出主要因素,忽略次要因素,引导学生对获取的信息进行物理模型的转化,去粗取精、去伪存真,抓住物理模型的主要特点,建立清晰的物理情景,有助于学生抽象思维的培养。高三学生从思维训练的角度对学生建模能力的培养是对学生进行创新能力的培养,更有助于提高学生的探究能力。

新课标人教版3-5选修三18.4《玻尔的原子模型》WORD教案2

普通高中课程标准实验教科书一物理(选修3- 5)[人教版] 第十八章原子结构 新课标要求 1 ?内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1用录像片或计算机模拟,演示a粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18. 4玻尔的原子模型 ★新课标要求 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 ★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1课时 ★教学过程 (一)引入新课 复习提问: 1.a粒子散射实验的现象是什么? 2 ?原子核式结构学说的内容是什么? 3?卢瑟福原子核式结构学说与经典电磁理论的矛盾 电子绕核运动(有加速度) 辐射电磁波频率等于绕核运行的频率 电子沿螺旋线轨道落入原子核原子光谱应为连续光谱 (矛盾:实际上是不连续的亮线)教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1 ?玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原 子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n)跃迁到另一种定态(设 能量为E m)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即A = E m - E n (h为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核 (针对原子核式模型提

高中物理滑块-板块模型(解析版)

滑块—木板模型 一、模型概述 滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。 二、滑块—木板类问题的解题思路与技巧: 1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动); 2.判断滑块与木板间是否存在相对运动。滑块与木板存在相对运动的临界条件是什么? ⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。 ⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。 3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度; 4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移. 5. 计算滑块和木板的相对位移(即两者的位移差或位移和); 6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间; 7. 滑块滑离木板的临界条件是什么? 当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。 【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。下列反映a1和a2变化的图线中正确的是(如下图所示)()

高中物理-玻尔的原子模型达标练习

高中物理-玻尔的原子模型达标练习 1.(多选)关于玻尔的原子模型,下述说法中正确的有( ) A.它彻底否定了卢瑟福的核式结构学说 B.它发展了卢瑟福的核式结构学说 C.它完全抛弃了经典的电磁理论 D.它引入了普朗克的量子理论 解析:玻尔的原子模型在核式结构模型的前提下提出轨道量子化、能量量子化及能级跃迁,故A错误,B正确;它的成功就在于引入了量子化理论,缺点是被过多的引入经典力学所困,故C错误,D正确. 答案:BD 2.(多选)氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是( ) A.核外电子受力变小 B.原子的能量减少 C.氢原子要吸收一定频率的光子 D.氢原子要放出一定频率的光子 解析:由玻尔理论知,当电子由离核较远的轨道跃迁到离核较近的轨道上时,要放出能量,故要放出一定频率的光子;电子的轨道半径减小了,由库仑定律知它与原子核之间的库仑力增大了.故A、C错误,B、D正确. 答案:BD 3.(多选)如图所示给出了氢原子的6种可能的跃迁,则它们发出的光( ) A.a的波长最长 B.d的波长最长 C.f比d的能量大 D.a频率最小 解析:能级差越大,对应的光子的能量越大,频率越大,波长越小. 答案:ACD

4.(多选)根据玻尔理论,氢原子能级图如图所示,下列说法正确的是( ) A.一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出6种频率不同的光子 B.一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出3种频率不同的光子 C.一个原处于n=4能级的氢原子回到n=1的状态过程中,最多放出6种频率不同的光子 D.一个原处于n=4能级的氢原子回到n=1的状态过程中,最多放出3种频率不同的光子 解析:由于处在激发态的氢原子会自动向低能级跃迁,所以一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出C24=6种频率不同的光子,故A正确,B错误;一个原处于n=4能级的氢原子回到n=1的状态过程中,只能是4→3→2→1或4→2→1或4→1三种路径中的一种路径,可知跃迁次数最多的路径为4→3→2→1,最多放出3种频率不同的光子, 故C错误,D正确. 答案:AD 5.如图所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为2.49 eV的金属钠.下列说法正确的是( ) A.这群氢原子能发出3种不同频率的光,其中从n=3跃迁到n=2所发出的光波长最短B.这群氢原子能发出6种不同频率的光,其中从n=3跃迁到n=1所发出的光频率最小C.这群氢原子发出不同频率的光,只有一种频率的光可使金属钠发生光电效应 D.金属钠表面发出的光电子的最大初动能为9.60 eV 解析:一群氢原子处于n=3的激发态,可能发出C23=3种不同频率的光子,n=3和n=2间能级差最小,所以从n=3跃迁到n=2发出的光子频率最低,根据玻尔理论hν=E2-E1=hc 可知,光的波长最长,选项A错误.因为n=3和n=1间能级差最大,所以氢原子从n=3跃λ 迁到n=1发出的光子频率最高.故B错误.当入射光频率大于金属钠的极限频率时,金属钠能

高中物理人教版选修3-5第十八章第4节玻尔的原子模型同步练习(I)卷

高中物理人教版选修3-5第十八章第4节玻尔的原子模型同步练习(I)卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共6题;共12分) 1. (2分) (2019高二下·洛阳期中) 下列说法正确的是() A . 光子的能量由光的频率所决定 B . 结合能越大的原子核越稳定 C . 氡的半衰期为3.8天,若取4个氡原子核,经7.6天后就一定剩下1个原子核了 D . 按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子动能减小,电势能增大,原子的总能量减小 2. (2分) (2020高二下·顺德期中) 如图所示为氢原子的能级图,按照玻耳理论,下列说法正确的是() A . 当氢原子处于不同能级时,核外电子在各处出现的概率是一样的 B . 一个氢原子从n=4能级向基态跃迁,最多可辐射6种不同频率的光子 C . 处于基态的氢原子可以吸收14 eV的光子而发生电离 D . 氢原子从高能级跃迁到低能级,核外电子的动能减少,电势能增加 3. (2分)(2019·宝坻模拟) 下列说法中正确的是() A . 光电效应说明光具有粒子性的,它是爱因斯坦首先发现并加以理论解释的 B . 235U的半衰期约为7亿年,随着地球环境的变化,半衰期可能变短 C . 卢瑟福通过对α粒子散射实验的研究,揭示了原子核的结构 D . 据波尔理论可知,氢原子辐射出一个光子后,氢原子的电势能减小,核外电子的动能增大 4. (2分) (2020高二下·天津期末) 处于激发态的氢原子向基态跃迁时() A . 辐射光子,原子能量增加 B . 辐射光子,原子能量减少 C . 吸收光子,原子能量增加 D . 吸收光子,原子能量减少 5. (2分)(2019·大余模拟) 2019年2月14日消息,科学家潘建伟领衔的中国“墨子号”量子科学实验卫星科研团队获得了克利夫兰奖.有关量子理论,下列说法正确的是() A . 量子理论是普朗克首先提出的,光量子理论则是爱因斯坦首先提出的 B . 光的强度越大,则光子的能量也就越大

高中物理-原子结构教案

高中物理-原子结构教案 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.2 原子的核式结构模型 ★新课标要求 (一)知识与技能 1.了解原子结构模型建立的历史过程及各种模型建立的依据。 2.知道α粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。 (二)过程与方法 1.通过对α粒子散射实验结果的讨论与交流,培养学生对现象的分析归纳中得出结论的逻辑推理能力。 2.通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用。 3.了解研究微观现象的方法。 (三)情感、态度与价值观 1.通过对原子模型演变历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神。 2.通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。 ★教学重点

1.引导学生小组自主思考讨论:对α粒子散射实验的结果分析从而否定枣糕模型,得出原子的核式结构; 2.在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法; ★教学难点 引导学生小组自主思考讨论:对ɑ粒子散射实验的结果分析从而否定枣糕模型,得出原子的核式结构 ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 讲述:汤姆生发现电子,根据原子呈电中性,提出了原子的枣糕模型。 学生活动:师生共同得出汤姆生的原子枣糕模型。 点评:用动画展示原子的枣糕模型。 (二)进行新课 1.α粒子散射实验原理、装置 (1)α粒子散射实验原理: 汤姆生提出的枣糕原子模型是否对呢? 原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击。而α粒子具有足够的能量,可以接近原子中心。它还可以使荧光屏物质发光。如果α粒子与其他粒子发生相互作用,改变了运动方向,荧光屏就能够显示出它的方向变化。研究高速的α粒子穿过原子的散射情况,是研究原子结构的有效手段。 学生:体会α粒子散射实验中用到科学方法;渗透科学精神(勇于攀登科学高峰,不怕苦、不怕累的精神)的教育。 教师指出:研究原子内部结构要用到的方法:黑箱法、微观粒子碰撞方法。 (2)α粒子散射实验装置

【优教学】第4节玻尔的原子模型

【优教学】第4节玻尔的原子模型 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.仔细观察氢原子的光谱,发现它只有几条分离的不连续的亮线,其原因是( ) A .氢原子只有几个能级 B .氢原子只能发出平行光 C .氢原子有时发光,有时不发光 D .氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的 2.对于玻尔理论,下列说法中不正确的是( ) A .继承了卢瑟福的原子模型,但对原子能量和电子轨道引入了量子化假设 B .原子只能处于一系列不连续的状态中,每个状态都对应一定的能量 C .用能量守恒定律建立了原子发光频率与原子能量变化之间的定量关系 D .氢原子中,量子数n 越大,核外电子的速率越大 3.处于n=5能级的大量氢原子,向低能级跃迁时,辐射光的频率有( ) A .6种 B .8种 C .10种 D .15种 4.一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中( ) A .可能吸收一系列频率不同的光子,形成光谱中的若干条暗线 B .可能发出一系列频率不同的光子,形成光谱中的若干条亮线 C .只吸收频率一定的光子,形成光谱中的一条暗线 D .只发出频率一定的光子,形成光谱中的一条亮线 5.原子从a 能级跃迁到b 能级时辐射波长为λ1的光子,原子从b 能级跃迁到c 能级时吸收波长为λ2的光子,已知λ1>λ2.那么原子从a 能级状态跃迁到c 能级状态时将要( ) A .辐射波长为1212 λλλλ-的光子 B .辐射波长为λ1-λ2的光子 C .吸收波长为λ1-λ2的光子 D .吸收波长为1212 λλλλ-的光子 6.如图所示为氢原子的能级示意图,锌的逸出功是3.34eV ,下列对氢原子在能级跃迁过程中发射或吸收光子的特征认识正确的是:( )

玻尔的原子模型教案

第4节 玻尔的原子模型 2014年5月9日星期五 主讲:方树君 教学内容 高二物理选修3-5第十八章第四节《玻尔的原子模型》 三维目标 1.知识与技能 (1)了解玻尔原子结构假说的主要内容。知道轨道量子化、能级、能量量子化以及基态、激发态的概念;知道原子跃迁的频率条件。 (2)了解玻尔理论对氢光谱的解释。 (3)了解玻尔模型的局限性。 2.过程与方法 学生通过对玻尔理论的学习,探索经典物理学无法解释的两个问题的答案。 3.情感、态度与价值观 培养学生对科学的探究精神,让学生养成敢于提出问题,勇于探索答案的科学习惯。 教学重点 玻尔的原子结构假说的两个内容: (1)轨道量子化与定态; (2)频率条件。 教学难点 1.原子的能量包括哪些;原子能量、动能、势能的变化。 2.玻尔理论对氢光谱的解释。 教学方法 教师引导、讲解,学生讨论、交流。 教学过程 一、引入 汤姆孙发现电子:原子是可分割的―→汤姆孙的“西瓜模型”或“枣糕模型” ―→卢瑟福α粒子散射实验:否定了汤姆孙的原子模型―→提出原子核式结构模型―→经典物理学无法解释:① 原子的稳定结构;② 原子光谱的分立特征。 二、玻尔原子结构假说的内容 1.轨道量子化与定态 (1)电子的轨道是量子化的,必须满足:12r n r n (n=1,2,3……) 电子在这些轨道上绕核转动是稳定的,不产生电磁辐射,所以原子是稳定的。电子的轨道半径只可能取某些分立的数值。如氢原子:r 1=0.053nm ,r 2=0.212nm ,r 3=0.477nm ……轨

道半径不可能介于这些数值中间的某个值。 请举例说明物体的位置可以是不连续的? ①人在楼梯走动时脚停留的位置; ②棋盘上棋子的摆放位置。 电子绕核运动轨道与卫星的运动轨道是不一样的。卫星绕地球转动的轨道半径可按需要去任意值,轨道半径是连续的。 (2)定态 在不同轨道上运动,原子的状态是不同的,原子有不同的能量。轨道是量子化的,原子的能量也是量子化的,满足:121E n E n = (n=1,2,3……) 问题:原子的能量包括哪些? ① 电子绕核运动的动能;r v m r e k 2 22= mr ke v 2 = ② 电子——原子核这个系统具有的势能。 能级:这些量子化的能量值叫做能级。 定态:原子中这些具有确定能量的稳定状态,称为定态。 基态:能级最低的状态叫做基态。 激发态:其他的状态叫做激发态。 以氢原子为例,基态::E 1=-13.6eV 代表电子在最靠近原子核的轨道上运动时整个原子的能量,此时原子是最稳定的。 问题:原子的能量为什么是负值? 激发态:n=2,E 2=-3.4eV ;n=3,E 3=-1.51eV ;n=4,E 4=-0.85eV ;……此时原子比较不稳定。 综上:轨道量子化与定态,解释了为什么原子是稳定的。 氢原子能级图 2.频率条件 问题:电子在定态轨道上运动,不会发生电磁辐射,为什么我们会观察到原子光谱? (1)跃迁:原子由一个能量态变为另一个能量态,称为跃迁。 ①高―→低:放出光子νh (自发的) ②吸收光子νh :低―→高

(完整版)高中物理模型及方法

◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 211212 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N= 2 12 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (20F =就是上面的情 况) F=211221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

玻尔的原子模型能级

玻尔的原子模型能级 [知识内容及要求] 1.了解玻尔理论的内容----三个假设; 2.了解能级的概念及氢原子的能级公式; 3.了解玻尔理论对氢光谱的解释和它的局限性。 [教学过程设计] 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 新课讲解: (一)原子核式结构跟经典电磁理论的矛盾 1.原子将是不稳定的 按照经典理论,绕核加速运动的电子应该辐射出电磁波,因此它的能量逐渐减小,随着能量的减小,电子绕核运动的半径也要减小,电子将沿着螺旋线的轨道落入原子核而使原子“坍塌”。这样原子是不稳定的。 2.大量原子的光谱将是包含一切频率的连续光谱。 实际上原子是稳定的,原子光谱是由一些不连续的亮线组成的明线光谱。 这些矛盾表明从宏观现象总结出的电磁理论不适用于原子产生的微观现象。为了解决这些矛盾,丹麦的物理学家玻尔提出了较好的解决办法。 (二)玻尔的原子模型理论的主要内容 1.玻尔理论的基础及实验依据: (1)在卢瑟福核式结构学说的基础上 (2)普朗克的量子理论:E=

(3)光谱学,特别是氢光谱实验中测得的各种数据 2.三个假设: (1)能级假设(定态假设) 原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外辐射能量。这些状态叫定态。 (2)跃迁假设 原子从一种定态(设能量为E2)跃迁到另一种定态(设能量为E1)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即=E2-E1 若E1>E2,则=E1-E2,它吸收一定频率的光子; 若E2>E1,则=E2-E1,它辐射能量,且能量以光子的形式辐射出去,即原子发光。 可见:原子的吸能和放能都不是任意的,而为某两个能级的能量差。所以原子的光谱为线状谱,且原子线状谱中的亮线和吸收谱中的暗线一一对应。 (3)轨道假设 原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的。因此电子的可能的轨道分布也是不连续的。 (三)有关氢原子中电子运动的两个公式 玻尔在上述假设的基础上,利用经典电磁理论和牛顿力学,及计算出了氢的电子的各条可能轨道的半径和电子在各条轨道上运动时的能量(动能和势能)。 1.轨道半径公式:r n =n2r1 n=1,2,3,… r1=0.53×10-10m代表第一条(即离核最近)可能轨道的半径。n是正整数,叫做量子数。 2.能级公式: E n=E1/n2,n=1,2,3…. E1=-13.6eV,是电子在第一条轨道上运动时的能量。 注:原子的能量为电子的动能和电势能的总和,为负值。

高中物理选修3-5教学设计 2.3 玻尔的原子模型 教案

2.3 玻尔的原子模型 知识与技能 (1)了解玻尔原子理论的主要内容; (2)了解能级、能量量子化以及基态、激发态的概念。 过程与方法:通过玻尔理论的学习,进一步了解氢光谱的产生。 情感、态度与价值观:培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 教学重点:玻尔原子理论的基本假设。 教学难点:玻尔理论对氢光谱的解释。 教学方法:教师启发、引导,学生讨论、交流。 课时安排 2课时 教学过程 引入新课: 1、α粒子散射实验的现象是什么? 2、原子核式结构学说的内容是什么? 3、卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 新课教学: 1、玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的) (2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量)(本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可 能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径: 12r n r n =

高中物理建模论文

运动模型的应用 内容摘要:中学物理教材中无论哪一部分的内容都是以物理模型为基础向学生传达物理知识的。物理模型是中学物理知识的载体,通过对其进行分析与讲解,是学生获得物理知识的一种基本方法,更是培养学生创造思维能力的重要途径。本文拟从习题教学中浅谈提高运动模型的建模能力。 关键词:运动模型、匀速圆周运动 学好物理,关键是学习物理思想和物理方法。常有高中学生说,物理听课易懂,做题难。难就难在对物理模型的应用上,也就是学生在解题过程中往往存在一些问题,读不懂题或做题过程思维混乱。这在很大程度上是由于学生不良解题习惯、建模能力差造成的。据对学生的调查,发现大多数学生的解题模式是: 一般来说,较为有效的解决物理问题的思维流程应该是通过审题先确定研究对象,对其进行抽象建立物理模型,再应用模型知识求解。此过程大致可以归纳为: 求解 读题 想公式

如果在解题过程中快速准确地建立起与题目相符合的物理模型是至关重要的。这个解题流程学生容易模仿,如果说正确识别或建立物理模型是正确解题的前提,那么在解决具有物理过程的物理习题时,学生头脑中对物理过程的一个清晰的图景则是解决此类物理问题的关键和保证。下面以力学中运动模型的应用为例。 一、 基本模型 1. 两种直线运动模型 匀速直线运动:00,v v t v x == 匀变速直线运动:at v v at t v x +=+=0221 0,(特例:自由落体运动: gt v gt h ==,221 ) 2. 两种曲线运动模型 平抛运动: 水平方向为匀速直线运动 竖直方向为自由落体运动 匀速圆周运动:r T m r mw r mv ma F F n 22 22n 4π=====合(天体运动:物理解释 数学演算 数学抽象 科学抽象 一个具体的物理问题 物理模型 数学方程(物理问题的数学表达式) 方程的数学解 物理问题之解

相关主题
文本预览
相关文档 最新文档