当前位置:文档之家› 环氧酮肽类蛋白酶体抑制剂的研究进展

环氧酮肽类蛋白酶体抑制剂的研究进展

环氧酮肽类蛋白酶体抑制剂的研究进展
环氧酮肽类蛋白酶体抑制剂的研究进展

酪氨酸激酶抑制剂类抗肿瘤药物研究方法进展

现代生物医学进展https://www.doczj.com/doc/9a10973696.html, Progress in Modern Biomedicine Vol.10NO.16AUG.2010 酪氨酸激酶抑制剂类抗肿瘤药物研究方法进展* 刘振凯1艾 菁2耿美玉1,2△ (1中国海洋大学医药学院山东青岛266003;2中国科学院上海药物研究所上海201203) 摘要:酪氨酸激酶(protein tyrosine kinases,PTKs )在肿瘤细胞的增殖、分化、迁移、侵袭等相关信号通路中起到了关键的调控作用,已经成为肿瘤靶向性治疗的重要靶点。本文对靶向酪氨酸激酶的小分子抑制剂的筛选和评价方法进行综述,以期促进酪氨酸激酶抑制剂类抗肿瘤药物的研究。 关键词:酪氨酸激酶;抗肿瘤药物;小分子抑制剂;抑制剂筛选 中图分类号: R730.5,R915文献标识码:B 文章编号:1673-6273(2010)16-3134-04Advances in Research of Protein-tyrosine Kinases Inhibitors as Anticancer Drug* LIU Zhen-kai 1,AI Jing 2,GENG Mei-yu 1,2△ (1Marine drug and food Institute,Ocean university of China,Qingdao,266003,China;2Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai,201203,China ) ABSTRACT:Protein tyrosine kinases (PTKs)have long been recognized as promosing therapeutic targets involved in a variety of human diseases and in particular several types of cancer.They play important roles in regulating intracellular signal transduction path-ways closely associated with the invasion,metastasis and angiogenesis of many tumors.An effort towards the development of new and more effective PTK inhibitors represents an attractive therapeutic strategy for cancer therapy.In this paper,we review the screening and evaluation methods of small-molecule inhibitors of PTKs with a view to promote the study of PTKs. Key words:Protein-tyrosine kinases;Antitumordrugs;Small-molecule inhibitors;Inhibitors screening Chinese Library Classification (CLC ):R730.5R915Document code:B Article ID:1673-6273(2010)16-3134-04 *基金项目:国家杰出青年科学基金资助(No 30725046) 作者简介:刘振凯(1983-),男,硕士。研究方向:分子药理学。E-mail :lzkai111@https://www.doczj.com/doc/9a10973696.html, △通讯作者:耿美玉(1963-),研究员、博士生导师。E-mail :mygeng@https://www.doczj.com/doc/9a10973696.html, (收稿日期:2010-05-07接受日期:2010-06-01) 恶性肿瘤是严重威胁人类生命和健康的疾病。目前,临床上常用的抗肿瘤药物主要是细胞毒类药物,这类药物大多存在难以避免的选择性差、毒副作用强、易产生耐药等缺点[1]。近年来,随着生命科学研究的飞速发展,恶性肿瘤细胞内的信号转导、 细胞周期的调控、细胞凋亡的诱导、血管生成以及细胞与胞外基质的相互作用等各种基本过程正在被逐步阐明,给抗肿瘤药物的研发理念带来了巨大转变。以一些与肿瘤细胞分化增殖相关的细胞信号转导通路的关键酶/蛋白作为药物靶点,筛选发现选择性强、高效、低毒的新型抗癌药物已成为当今抗肿瘤药物研究开发的重要方向[2]。 蛋白酪氨酸激酶是一类具有酪氨酸激酶活性的蛋白质,它们能催化ATP 分子上的γ-磷酸基转移到底物蛋白的酪氨酸残基上,使其发生磷酸化。酪氨酸激酶分为受体型和非受体型两种。受体酪氨酸激酶是一种单次跨膜蛋白,目前至少已有近六十种分属20个家族的受体酪氨酸激酶被识别。不同的受体酪氨酸激酶和配体结合后,受体自身发生二聚化或结构重排,并进一步使受体胞内区特异的酪氨酸残基发生自身磷酸化或交叉磷酸化,从而激活下游的信号转导通路[3]。它们在信号由胞外转导至胞内的过程中发挥重要的作用。而非受体酪氨酸激酶是一种胞浆蛋白,现已经确认的有约30种,分为10大家族。蛋白酪氨酸激酶在细胞信号转导通路中占据了十分重要的地位, 调节细胞生长、分化、死亡等一系列生理生化过程。蛋白酪氨酸激酶功能失调则引发生物体内一系列疾病。大量资料表明,超过50%的原癌基因和癌基因产物都具有蛋白酪氨酸激酶活性,它们的异常激活或过度表达将导致细胞无限增殖,周期紊乱,最终导致肿瘤的发生发展[4]。 同时,酪氨酸激酶调控异常还与肿瘤的侵袭、 转移,肿瘤新生血管生成,肿瘤化疗抗性等密切相关。事实上,以酪氨酸激酶为靶点进行抗肿瘤药物的开发已成为国际研究的前沿。 1酪氨酸激酶抑制剂的开发策略 目前酪氨酸激酶抑制剂的开发策略主要分为胞外、胞浆和核内三个层面:细胞外策略主要是针对于受体型,配体与受体的生物拮抗剂以及特异性抗体,通过拮抗配体和受体的相互作用,抑制酪氨酸激酶的激活[5];胞浆内策略主要分为抑制激酶区的激酶活性和拮抗酪氨酸激酶与其下游信号分子的相互作用两个方面[6];核内策略主要是利用miRNA 降解或者干扰酪氨酸激酶的mRNA ,抑制激酶的蛋白表达而达到抑制激酶活性的目的[7,8]。其中研究最多的是抑制激酶区激酶活性的小分子抑制剂,而本文也主要是针对这部分抑制剂的研究方法进行探讨。酪氨酸激酶的自磷酸化过程和催化下游信号分子磷酸化的过程都涉及到ATP 上磷酸基团的转移,这一反应过程是酪氨酸 3134··

常见蛋白酶抑制剂

当前位置:生物帮 > 实验技巧 > 生物化学技术 > 正文 蛋白酶及蛋白酶抑制剂大全 日期:2012-06-13 来源:互联网 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9;

蛋白酪氨酸磷酸酶

蛋白酪氨酸磷酸酶 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 1988年Tonks等首次在人的胎盘细胞中分离和纯化了第一个37kDa的蛋白酪氨酸磷酸酶1B(ProteinTyrosinePhosphatase-1B,PTP-1B)。 PTP1B是一种胞内PTP,位于内质网,在人体的各种组织中都有表达;其与蛋白酪氨酸激酶(ProteinTyrosineKinases,PTK)共同维持着酪氨酸蛋白磷酸化的平衡,参与细胞的信号转导,调节细胞的生长、分化、代谢、基因转录和免疫应答等。 PTP1B属于蛋白质酪氨酸磷酸酶家族,专一水解芳香族磷酸,如磷酸化酪氨酸(phosphotyrosyl,pTyr)残基上磷酸根的酶,通过对胰岛素受体或其底物上的酪氨酸残基去磷酸化作用,对胰岛素信号转导进行负调节,组织细胞中PTP-1B过表达都会降低PTK的活性,使胰岛素受体无法与胰岛素结合,进而引起胰岛素抵抗,最终导致2型糖尿病。 PTP-1BDNA的启动子上有一个转录因子Y盒结合蛋白-1的结合位点,它的过度表达可使PTP-1B的表达水平增加。使用反义寡核苷酸技术减少其表达后,

PTP-1B的表达随之降低,呈正相关趋势。 PTP-1B在体内没有自身的特异性受体,而是在细胞信号传导过程中,与PTP家族中的其他成员以及蛋白酪氨酸激酶协同作用,调控蛋白底物中酪氨酸的磷酸化水平,进而对细胞的生长、分化、代谢、基因转录和免疫应答等功能进行调节。 1PTP-1B的生理功能 目前研究发现PTP-1B主要表现出以下几个方面的生理功能: (1)与胰岛素受体(insulinreceptor,IR)、胰岛素受体底物(insulinreceptorsubstrate,IRS)等信号蛋白作用,使这些蛋白调节区的酪氨酸残基去磷酸化,进而阻断胰岛素信号级联反应的下传,在胰岛素信号中起着负调控作用。与II型糖尿病的发生具有密切的联系。 (2)在瘦素信号传导过程中,通过降低转录激活子-3(STAT-3)和Janus激酶-2(JAK-2)的磷酸化水平,在瘦素信号中起负调控作用。与肥胖的发生具有密切的联系。 (3)PTP-1B通过与生长因子等底物相互作用,参与细胞生长周期的调节,与肿瘤的发生具有一定的联系。 除此之外,研究还发现PTP-1B在催乳素信号传

蛋白酶磷酸酶抑制剂

常用蛋白酶抑制剂和磷酸酶抑制剂的贮存与工作液浓度 在与蛋白相关的检测中,首先最关键的一步便是蛋白质的提取。蛋白质的提取过程中,我们要经常加和蛋白酶抑制剂以防止蛋白质的降解。另外在磷酸化蛋白的研究过程中,磷酸酶抑制剂也是必不可少的,本文总结了常用的蛋白酶抑制剂PMSF,Leupeptin 亮肽素,Aprotini n抑肽酶,Pepstatin胃蛋白酶抑制剂,EDTA-Na2等以及磷酸酶抑制剂NaF氟化钠,Na3VO4 原矾酸钠,BETA-glycerophosphate 甘油磷酸钠,Na2P2O4 焦磷酸钠等。对这些蛋白酶抑制剂的溶解配制,贮存液与工作液浓度,保存都做了详细的说明。 蛋白酶抑制剂 PMSF: 特性:丝氨酸蛋白酶抑制剂,如胰凝乳蛋白酶,胰蛋白酶和凝血酶,也抑制半胱氨酸蛋白酶如木瓜蛋白酶(可逆的地面处理)。 溶解性:溶于异丙醇,乙醇,甲醇和丙二醇果>10mg/ml。在水溶液中不稳定。在100%异丙醇, +25℃时稳定至少9个月 分子量: 使用:贮存浓度:200mM,工作浓度:1mM Leupeptin 亮肽素 特性:抑制丝氨酸和半胱氨酸蛋白酶如胰蛋白酶,木瓜蛋白酶,纤溶酶,和组织蛋白酶B 溶解性:高度溶于水(1mg/ml)。4℃一周稳定,分成小份冷冻在-20℃至少6个月 分子量:C20H38N6O4 x 1/2 H2SO4: C20H38N6O4 x 1/2 H2SO4 x H2O:

使用:贮存浓度:1mg/ml,工作浓度 ug/ml (1mM) Aprotinin抑肽酶 特性:丝氨酸蛋白酶抑制剂,抑制纤维蛋白溶酶,激肽释放酶,胰蛋白酶,糜蛋白酶的高活性。不抑制凝血酶或因子X。 溶解性:易溶于水(10mg/ml)或缓冲液(例如,tris,,)。pH约7-8的溶液在4℃可保存1周,分装保存在-20℃可至少保存6个月。避免反复冻融, pH>的碱性环境可使其灭活。 分子量:6,512 使用:贮存浓度:1mg/ml, 工作浓度:– ug/ml– uM) Pepstatin胃蛋白酶抑制剂 特性:抑制天冬氨酸(酸)蛋白酶如胃蛋白酶,肾素,组织蛋白酶D,凝乳酶,许多微生物酸性蛋白酶 溶解性:溶于甲醇约1mg/ml;可溶于乙醇,过夜溶解可达到1 mg/ml;在6当量乙酸中溶解度为300ug/ml。4℃稳定一周,分装储存于-20℃时可保存1个月分子量: 使用:贮存浓度:1mg/ml,使用浓度:μg/ml(1 μM) EDTA-Na2 特性:金属蛋白酶抑制剂 溶解性:溶于水至,在pH8-9的条件下,4℃稳定至少6个月 分子量: 使用:工作浓度:– mg/ml– mM),不需现用现配,在溶液pH值调至8-9时再加入。

蛋白酶抑制剂的研究进展

蛋白酶抑制剂的研究进展 郭川 微生物专业,200326031 摘要:自然界共发现四大类蛋白酶抑制剂:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、金属蛋白酶抑制剂和酸性蛋白酶抑制剂,本文就各大类蛋白酶抑制剂的结构特点,活性部位的研究概况及其在各领域应用的原理及进展。 关键词:蛋白酶抑制剂;结构;应用 天然的蛋白酶抑制剂(PI)是对蛋白水解酶有抑制活性的一种小分子蛋白质,由于其分子量较小,所以在生物中普遍存在。它能与蛋白酶的活性部位和变构部位结合,抑制酶的催化活性或阻止酶原转化有活性的酶。在一系列重要的生理、病理过程中:如凝血、纤溶、补体活化、感染、细胞迁移等,PI发挥着关键性的调控作用,是生物体内免疫系统的重要组成部分。从Kunitz等最早分离纯化出一种PI至今,已有多种PI被发现,根据其作用的蛋白酶主要分以下几类:抑制胰蛋白酶、胰凝乳蛋白酶等的丝氨酸蛋白酶抑制剂,抑制木瓜蛋白酶、菠萝蛋白酶等的巯基蛋白酶抑制剂,抑制胃蛋白酶、组织蛋白酶D等的羧基蛋白酶抑制剂、抑制胶原酶、氨肽酶等的金属蛋白酶抑制剂等。而根据作用于酶的活性基团不同及其氨基酸序列的同源性,可将自然界发现的PI分为四大类:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂(半胱氨酸蛋白酶抑制剂)、金属蛋白酶抑制剂和酸性蛋白酶抑制剂[1]。 1 结构与功能 1.1丝氨酸蛋白酶抑制剂(Serine Protease Inhibitor,Serpin) 丝氨酸蛋白酶抑制剂是一族由古代抑制剂趋异进化5亿年演变而来的结构序列同源的蛋白酶抑制剂。Sepin为单一肽链蛋白质。各种serpin大约有30%的同源序列,疏水区同源性高达70%。血浆中的serpin多被糖基化,糖链经天东酰胺的酰胺基与主链相连。位于抑制性serpin表面、距C端30~40个氨基酸处的环状结构区RSL(reactive site loop)中,存在能被靶酶的底物识别位点识别的氨基酸P1[2];近C端与P1相邻的氨基酸为P1’,依此类推,即肽链结构表示为N端-P15~P9~P1-P1’~P9’~P15’-C端。在对靶酶的抑制中。Serpin 以RSL中的类底物反应活性位点与靶酶形成紧密的不易解离的酶-抑制剂复合物,同时P1-P1’间的反应活性位点断裂。几种perpin氨基酸序列比较发现,serpins各成员的抑制专一性是由P1决定的,且被抑制的酶特异性切点一致。如抗凝血酶,抑制以Arg羧基端为敏感部位的丝氨酸蛋白酶,其中P1为Arg[2]。 1.2巯基蛋白酶抑制剂(Cytsteine Proteinase Inhiitor,CPI) 对于丝氨酸蛋白酶抑制剂(SPI)已有大量研究,巯基蛋白酶抑制剂(CPI)的研究则相对要晚一些。而动物和微生物来源的CPI已有一些研究,发现它们在结构上具有同源性,Barrett等将CPI统称为胱蛋白超家族,并按分子内二硫键的有无与数量,分子量大小等将此家族分为3个成员(F1、F2、F3)。在3个家族中,大多数F1和F3的CPI中都有Glu53-Val54-Val55-Ala56-Gly57保守序列,其同源序列在其它CPI中也被发现,如F2中的Gln-X-Val-Y-Gly和CHα-ras基因产物中的Gln-Val-Val肽段。人工合成的Glu-Val-Val-Ala-Gly 短肽也显示对木瓜蛋白酶有抑制活性,因此可以认为这一保守区段在抑制活性中起着全部或部分的关键作用[3]。对植物来源的CPI研究的不多,已有报道的有水稻、鳄梨和大豆。水稻巯基蛋白酶抑制剂(Oryzacystatin,OC) 具有102个氨基酸残基,有典型的Glu-Val-Val-Ala-Gly保守序列,应与动物CPI同源进化而来。从OCI没有二硫键来看,它应归为F1成员,但从序列比较看,则更接近F3。对OCIGlu---Gly保守序列进行点突变试验表明,突变使其抑制活性大幅度下降,其中当Glu被Pro替代时则活性全无,由此说明,这一段保守序列在OCI的抑制活性中,同动物CPI一样必不可少。除Glu---Gly保守区域外,OCI序列中其

常见蛋白酶抑制剂

蛋白酶及蛋白酶抑制剂大全 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度 恩必美生物新一轮2-5折生物试剂大促销! Ibidi细胞灌流培养系统-模拟血管血液流动状态下的细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上;

4)工作浓度:0.5~1.5mmol/L. (0.2~0.5mg/ml); 5)加入NaOH调节溶液的pH值,否则EDTA不溶解。 胃蛋白酶抑制剂(pepst anti n) l)抑制酸性蛋白酶如胃蛋白酶,血管紧张肽原酶,组织蛋白酶D和凝乳酶; 2)1mg/ml溶于甲醇中; 3}储存液在4℃一周内稳定,-20℃稳定6个月; 4)1作浓度:0.7ug/ml(1umol/L) 5)在水中不溶解。 亮抑蛋白酶肽(leupeptin) 1)抑制丝氨酸和巯基蛋白酶,如木瓜蛋白酶,血浆酶和组织蛋白酶B; 2)lOmg/ml溶于水; 3)储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度0.5mg/ml。 胰蛋白酶抑制剂(aprotinin) 1)抑制丝氨酸蛋白酶,如血浆酶,血管舒缓素,胰蛋白酶和胰凝乳蛋白酶; 2)lOmg/ml溶于水,pH7~8 3}储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度:0.06~2.0ug/ml(0.01~0.3umol/L); 5)避免反复冻融: 6)在pH>12.8时失活。 蛋白酶抑制剂混合使用 35ug/ml PMSF…………………………………丝氨酸蛋白酶抑制剂 0.3mg/ml EDTA…………………………………金属蛋白酶抑制剂 0.7ug/ml胃蛋白酶抑制剂(Pepstatin)…………酸性蛋白酶抑制剂 0.5ug/ml亮抑蛋白肽酶(Leupeptin)……………广谱蛋白酶抑制剂

新型酪氨酸磷酸酶SHP2抑制剂的合成、生物活性及分子动态模拟研究

新型酪氨酸磷酸酶SHP2抑制剂的合成、生物活性及分子动态模 拟研究 目的:蛋白酪氨酸磷酸酶SHP2是新的抗肿瘤药物研究靶点。为寻找新的具有较强抗肿瘤活性的SHP2抑制剂,本课题以文献报道的SHP2抑制剂GS493,SHP836等为先导化合物,设计、合成了苯磺酸和吡嗪胺两类新的衍生物;测试了苯磺酸类衍生物对SHP2蛋白活性中 心的抑制作用;在细胞水平测试了所有化合物对人乳腺癌细胞 MDA-MB-231和非小细胞肺癌NCI-H1975的增殖抑制活性;选择活性较好的化合物If、IIe进行计算机辅助的分子动力学研究,以探讨它们与SHP2作用的具体模式及对SHP2的选择性。方法:1.目标化合物的设计与合成:(1)保留GS493的苯基腙吡唑啉酮以及磺酸基团,用内脂环或酰胺代替1位苯环的硝基,3位苯环的硝基替换为氟、甲氧基等基团,设计了12个目标化合物 Ia-Il。其合成方法为:对硝基苯甲酸经酰氯化,再与胺反应形成酰胺,然后再将其硝基还原,重氮化,还原,得到N-取代-4-肼基苯甲酰胺中间体;对氨基苯磺酸经过重氮化,与取代苯甲酰乙酸乙酯耦合得到4-{2-[1-乙氧基-3-(4-取代)-1,3-二氧代丙-2-基]肼基}苯磺酸中间体,其再与N-取代-4-肼基苯甲酰胺中间体反应得到目标产物Ia-Il。(2)保留 SHP836,SHP099的吡嗪胺结构,3位引入新的芳环或芳杂环替代二氯 苯环,6位引入大位阻的取代哌嗪基团,设计了12个目标化合物 IIa-IIl。其合成方法为:以2-氨基-3-溴-6-

蛋白质提取过程中常用的蛋白酶和磷酸酶抑制剂详细使用说明

蛋白质提取过程中常用的蛋白酶和磷酸酶抑制剂详细使用说明转自:https://www.doczj.com/doc/9a10973696.html,/html/980.html 在与蛋白相关的检测中,最关键的一步便是蛋白质的提取。在提取的过程中,我们要经常加入以防止。另外在磷酸化蛋白的研究过程中,也是必不可少的。 本文详细总结了常用的PMSF、 Leupeptin亮肽素、Aprotinin抑肽酶、Pepstatin胃、EDTA-Na2等以及NaF氟化钠、Na3VO4原矾酸钠、Beta-glycerophosphate甘油磷酸钠、 Na2P2O4焦磷酸钠等的溶液配制、贮存液与工作液浓度及保存条件。一、蛋白酶抑制剂 PMSF:特性:丝氨酸蛋白酶抑制剂,如胰凝乳蛋白酶、胰蛋白酶和凝血酶,也抑制半胱氨酸蛋白酶如木瓜蛋白酶。溶解性:溶于异丙醇、乙醇、甲醇和丙二醇里>10mg/ml。在水溶液中不稳定。在100%异丙醇,25℃时稳定至少9个月。分子量:174.2使用:贮存浓度 200mM,工作浓度1mM Leupeptin 亮肽素特性:抑制丝氨酸和半胱氨酸蛋白酶如胰蛋白酶、木瓜蛋白酶、纤溶酶和组织蛋白酶B。溶解性:高度溶于水(1mg/ml)。4℃一周稳定,分成小份,冷冻在 -20℃至少6个月。分子量:C20H38N6O4×1/2 H2SO4:475.6 C20H38N6O4 x 1/2 H2SO4 × H2O:493.6使用:贮存浓度1mg/ml,工作浓度0.5 ug/ml (1mM)。 Aprotinin抑肽酶特性:丝氨酸蛋白酶抑制剂,抑制纤维蛋白溶酶、激肽释放酶、胰蛋白酶、糜蛋白酶的高活性。不抑制凝血酶或因子X。溶解性:易溶于水(10mg/ml)或缓冲液(例如0.1M tris,pH8.0)。pH约7~8的溶液在4℃可保存1周,分装保存在-20℃可至少保存6个月。避免反复冻融, pH>12.8的碱性环境可使其灭活。分子量:6,512使用:贮存浓度 1mg/ml,工作浓度0.06~2.0 ug/ml(0.01~0.3 uM)。 Pepstatin胃蛋白酶抑制剂特性:抑制天冬氨酸(酸)蛋白酶如胃蛋白酶、肾素、组织蛋白酶D、凝乳酶、许多微生物酸性蛋白酶溶解性:溶于甲醇约1mg/ml;可溶于乙醇,过夜溶解可达到1 mg/ml;在6当量乙酸中溶解度为300ug/ml。4℃稳定一周,分装储存于-20℃时可保存1个月。分子量:685.9使用:贮存浓度1mg/ml,使用浓度0.7 μg/ml(1 μM)。

泛素-蛋白酶体与蛋白酶体抑制剂

泛素-蛋白酶体及其抑制剂 沈子珒许啸声李稻审校 上海交通大学医学院病理生理学教研室 摘要:蛋白酶体与泛素化信号系统一起构成的泛素—蛋白酶体(UPP)是哺乳动物细胞内主要的蛋白水解酶体系,参与和调控细胞的增殖、分化和凋亡。蛋白酶体是一个由20S 催化颗粒、11S调控因子和2个19S调节颗粒组成的ATP依赖性蛋白水解酶复合体。蛋白酶体的活性状态对细胞功能正常维持是非常重要的。26S蛋白酶体对蛋白的降解依赖于靶蛋白的泛素化和泛素化蛋白识别。蛋白酶体抑制剂能通过抑制蛋白酶体活性进而干扰和影响细胞原有的功能,尤其对肿瘤细胞生长有明显的抑制作用。同时,利用蛋白酶体抑制剂改变蛋白酶体的酶切位点活性也成为免疫、炎症等研究的热点。蛋白酶体的抑制剂可分为天然化合物和合成化合物两类,其中Bonezomib(Velcade,PS-341)是近年研究较多的一种蛋白酶体抑制剂。 关键词:肿瘤蛋白酶体泛素蛋白酶体抑制剂PS-341 泛素—蛋白酶体通路(Ubiquitin–proteasome pathway,UPP)的蛋白酶体(proteasome)是一种具有多个亚单位组成的蛋白酶复合体,蛋白酶体沉降系数为26S,故又称26S蛋白酶体。蛋白酶体水解蛋白的前提是靶蛋白的泛素化。在UPP中,各种靶蛋白质泛素化后,先被26S蛋白酶体的19S亚单位识别,随后泛素化靶蛋白脱泛素链和变性,进入20S亚单位的筒状结构内被降解成3~22个多肽。由于蛋白酶体具有精确降解细胞内各种目的靶蛋白,进而参与基因转录和细胞周期调节,以及受体胞吞、抗原呈递等各种细胞生理过程[1]。因此,应用蛋白酶体抑制剂改变其酶切位点活性已成为抗肿瘤治疗的研究热点,蛋白酶体是影响和改变细胞功能重要的目的靶标。 1.蛋白酶体组成 1979年,Goldberg等首先报道在大鼠肝脏和网织红细胞中存在一种分子质量为700 kD的受A TP激活的中性蛋白水解酶。此后,一些在形态、功能及免疫学特征上与之相同的颗粒通过不同途径被分离出来,被统一命名为蛋白酶体[2]。在真核生物进化中,蛋白酶体具有高度的保守性,其简单形式甚至存在于古细菌和真细菌中。真核细胞内的蛋白酶体分布于胞质与胞核内,有的与内质网或细胞骨架相结合,约占细胞蛋白质总量的1%。有功能的26S蛋白酶体是由20S催化颗粒(catalytic particle, CP)、11S调控因子(11S regulator)和2个19S调节颗粒(regulatory particle, RP)组成,其分子量为2.4MD,是ATP依赖性蛋白水解酶复合体。 1.120S催化颗粒(20S CP) 人类蛋白酶体CP的沉降系数为20S,分子量700~750kD。它由α环和β环组成,每个环各有7个相同的亚单位,分别以α1-7β1-7β1-7α1-7顺序排列成圆桶状结构,20S CP中间由两个β亚单位环组成。几乎所有β亚单位都含有一个N 端前导序列,尽管此序列在20S CP装配过程中被切除,但在引导真核生物β亚单位的正确折叠以及β与α亚单位的组装中有重要作用[3]。当β亚单位的N端前导序列被切除后,Thr残基被暴露出来,Thr是酶的活性位点,分别存在于β环的内表面,使β亚单位具有类似的丝氨酸蛋白酶的催化作用[4]。例如,β亚单位N端的折叠方式允许Thr的-OH对底物发动亲核反应形成半缩醛,而Thr的α-NH3可代替丝氨酸蛋白酶中His的咪唑基作为质子受体。此外,活性位点附近的一个Lys残基与特定的丝氨酸蛋白酶中一样,也起着催化剂的作用。目前认为,在20S CP内起催化作用的亚单位主要是β1、β2、β5。不同的β亚单位的催化活性尽管不同,但能互相协调使蛋白酶体具有多种蛋白酶活性,如类糜蛋白酶活性(chymotrypsin-like, ChTL)、类胰蛋白酶活性(trypsin-like,TL)、肽-谷氨酰肽水解酶活性(post-glutamyl-peptide hydrolyzing,PGPH)、支链氨基酸肽酶活性、中性氨基酸切割活性。在20S CP圆桶状的两端由α亚单位环组形成,环口的中央被α亚单位(α

常见蛋白酶抑制剂

当前位置:生物帮〉实验技巧 > 生物化学技术>正文 蛋白酶及蛋白酶抑制剂大全 日期:2012—06-13 来源:互联网 标签: 相关专题:解析蛋白酶活性测定聚焦蛋白酶研究新进展 摘要: 破碎细胞提取蛋白质得同时可释放出蛋白酶,这些蛋白酶需要迅速得被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解、以下列举了5种常用得蛋白酶抑制剂与她们各自得作用特点,因为各种蛋白酶对不同蛋白质得敏感性各不相同,因此需要调整各种蛋白酶得浓度 恩必美生物新一轮2-5折生物试剂大促销!?Ibidi细胞灌流培养系统-模拟血管血液流动状态下得细胞培养系统 广州赛诚生物基因表达调控专题 蛋白酶抑制剂 破碎细胞提取蛋白质得同时可释放出蛋白酶,这些蛋白酶需要迅速得被抑制以保持蛋白质不被降解、在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解、以下列举了5种常用得蛋白酶抑制剂与她们各自得作用特点,因为各种蛋白酶对不同蛋白质得敏感性各不相同,因此需要调整各种蛋白酶得浓度。由于蛋白酶抑制剂在液体中得溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂得沉淀。在宝灵曼公司得目录上可查到更完整得蛋白酶与蛋白酶抑制剂表。 常用抑制剂 PMSF 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)与巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0。1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离与纯化步骤中加入新鲜得PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上;

蛋白酶抑制剂选择指南

蛋白酶抑制剂选择指南 1 蛋白酶抑制剂选择指南 抑制剂 工作浓度 分子量 抑制蛋白酶种类 稳定性 AEBSF终浓度1mM MW:239.5不可逆的丝氨酸蛋白酶抑制剂,抑制胰蛋白酶,糜 蛋白酶,纤溶酶,凝血酶及激肽释放酶. 可溶于水,其pH7的水溶液在4o C可保持稳定1-2个月,在pH>8的情况下会发生缓慢水解 Aprotinins 抑肽酶终浓度2ug/ ml MW:6512 可逆的丝氨酸蛋白酶抑制剂,可抑制纤溶酶,激肽 释放酶,胰蛋白酶,糜蛋白酶,但不抑制凝血酶和 Factor Xa。 非常稳定,当pH>12.8时失去活性,可溶于 水(10mg/ml),-20o C下可长期保存 Bestatin终浓度10uM MW:308.4 可逆的丙氨酰-氨基肽酶抑制剂, 工作液可保存一天,1mM的甲醇贮存液在 -20o C可保存至少一个月 E-64 Protease Inhibitor终浓度10uM MW:357.4 不可逆的半胱氨酸酸蛋白酶抑制剂,抑制半胱氨酸 酸蛋白酶而不会影响其他酶的半胱氨酸残基,与小 分子量的巯基醇如beta-巯基乙醇不会产生反应, 具有高度特异性。工作液在正常pH值下可保持稳定数天,1mM的水溶液在-20o C可保存几个月 EDTA, 4Na终浓度10mM MW:380.2 金属蛋白酶的可逆性螯合物,可能同时影响其他金 属依赖性生物过程。其水溶液很稳定,其贮存液(pH8.5的0.5M 水溶液)在4o C可保存数月 Leupeptin, 半硫酸盐 亮抑酶肽(亮肽素) 终浓度100uM MW:493.6 可逆的丝氨酸及半胱氨酸蛋白酶制剂,可抑制胰蛋 白酶样蛋白酶及一些半胱氨酸蛋白酶如:Lys-C内 切蛋白酶,激肽释放酶,木瓜蛋白酶,凝血 酶,Cathepsin B及胰蛋白酶。 工作液的稳定期为数小时,贮存液(10mM 水溶液)在4o C时稳定期为一周,-20o C时 稳定期为一个月 Pepstatin A 终浓度1uM MW:685.9 可逆的天冬氨酸蛋白酶,可抑制胃蛋白 酶,Cathepain B&L,血管紧张肽原酶(renin)及以1mg/ml溶于甲醇,搅拌过夜可以 1mg/ml溶于乙醇,333mg/ml溶于6N的

蛋白酶抑制剂

蛋白酶抑制剂 破碎细胞提取蛋白质的同时可释放出蛋白酶,这些蛋白酶需要迅速的被抑制以保持蛋白质不被降解。在蛋白质提取过程中,需要加入蛋白酶抑制剂以防止蛋白水解。以下列举了5种常用的蛋白酶抑制剂和他们各自的作用特点,因为各种蛋白酶对不同蛋白质的敏感性各不相同,因此需要调整各种蛋白酶的浓度。由于蛋白酶抑制剂在液体中的溶解度极低,尤其应注意在缓冲液中加人蛋白酶抑制剂时应充分混匀以减少蛋白酶抑制剂的沉淀。在宝灵曼公司的目录上可查到更完整的蛋白酶和蛋白酶抑制剂表。 常用抑制剂 PMSF PMSF即Phenylmethanesulfonyl fluoride,中文名为苯甲基磺酰氟。分子式为C7H7FO2S,分子量为174.19,纯度>99%。 常用生化试剂,用于抑制蛋白酶. 【配制方法】用异丙醇溶解PMSF成 1.74mg/ml(10mmol/L),分装成小份贮存于-20℃。如有必要可配成浓度高达17.4mg/ml的贮存液(100mmol/L)。 【注意】PMSF严重损害呼吸道粘膜、眼睛及皮肤,吸入、吞进或通过皮肤吸收后有致命危险。一旦眼睛或皮肤接触了PMSF,应立即用大量水冲洗之。凡被PMSF污染的衣物应予丢弃。PMSF在水溶液中不稳定。应在使用前从贮存液中现用现加于裂解缓冲液中。PMSF在水溶液中的活性丧失速率随pH值的升高而加快,且25℃的失活速率高于4℃。pH值为8.0时,20μmmol/l PMSF水溶液的半寿期大约为85min,这表明将PMSF溶液调节为碱性(pH>8.6)并在室温放置数小时后,可安全地予以丢弃。 蛋白水解酶抑制剂啊!!!实验室常用的啊!!! 主要用于组织匀浆时用!! 1)抑制丝氨酸蛋白酶(如胰凝乳蛋白酶,胰蛋白酶,凝血酶)和巯基蛋白酶(如木瓜蛋白酶); 2)10mg/ml溶于异丙醇中; 3)在室温下可保存一年; 4)工作浓度:17~174ug/ml(0.1~1.0mmol/L); 5)在水液体溶液中不稳定,必须在每一分离和纯化步骤中加入新鲜的PMSF。 EDTA 1)抑制金属蛋白水解酶; 2)0.5mol/L水溶液,pH8~9; 3)溶液在4℃稳定六个月以上; 4)工作浓度:0.5~1.5mmol/L. (0.2~0.5mg/ml); 5)加入NaOH调节溶液的pH值,否则EDTA不溶解。 胃蛋白酶抑制剂(pepstantin) l)抑制酸性蛋白酶如胃蛋白酶,血管紧张肽原酶,组织蛋白酶D和凝乳酶; 2)1mg/ml溶于甲醇中; 3}储存液在4℃一周内稳定,-20℃稳定6个月; 4)1作浓度:0.7ug/ml(1umol/L) 5)在水中不溶解。 亮抑蛋白酶肽(leupeptin) 1)抑制丝氨酸和巯基蛋白酶,如木瓜蛋白酶,血浆酶和组织蛋白酶B; 2)lOmg/ml溶于水; 3)储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度0.5mg/ml。 胰蛋白酶抑制剂(aprotinin) 1)抑制丝氨酸蛋白酶,如血浆酶,血管舒缓素,胰蛋白酶和胰凝乳蛋白酶; 2)lOmg/ml溶于水,pH7~8 3}储存液4℃稳定一周,-20℃稳定6个月; 4)工作浓度:0.06~2.0ug/ml(0.01~0.3umol/L); 5)避免反复冻融: 6)在pH>12.8时失活。

胰蛋白酶抑制剂的测定.doc - NY

NY 中华人民共和国农业行业标准 NY/T1103.2-2006 转基因植物及其产品食用安全检测 抗营养素第2部分:胰蛋白酶抑制剂的测定 Safety assessment of genetically modified plant and derived products Part 2: assay of anti-nutrients pancreatic typsin inhibiter 2006-07-10发布2006-10-01实施 中华人民共和国农业部发布

前言 本标准由中华人民共和国农业部提出。 本标准由全国农业转基因生物安全管理标准化技术委员会归口。 本标准起草单位:中国疾病预防控制中心营养与食品安全所、农业部科技发展中心、中国农业大学、天津市卫生防病中心。 本标准主要起草人:杨月欣、王竹、韩军花、李宁、汪其怀、黄昆仑、刘克明、刘培磊、连庆。 本标准首次发布。

转基因植物及其产品食用安全检测 抗营养素第2部分:胰蛋白酶抑制剂的测定 1 范围 本标准规定了转基因植物及其产品中胰蛋白酶抑制剂的测定方法。 本标准适用于转基因大豆及其产品、转基因谷物及其产品中胰蛋白酶抑制剂的测定。其他的转基因植物,如花生、马铃薯等也可用该方法进行测定。 2 术语和定义 下列术语和定义适用于本标准。 2.1 转基因植物genetically modified plant 指利用基因工程技术改变基因组构成,用于农业生产或者农产品加工的植物。 2.2 转基因植物产品products derived from genetically modified plant 指转基因植物的直接加工产品和含有转基因植物的产品。 3 原理 胰蛋白酶可作用于苯甲酰-DL-精氨酸对硝基苯胺(BAPA),释放出黄色的对硝基苯胺,该物质在410 nm下有最大吸收值。转基因植物及其产品中的胰蛋白酶抑制剂可抑制这一反应,使吸光度值下降,其下降程度与胰蛋白酶抑制剂活性成正比。用分光光度计在410 nm 处测定吸光度值的变化,可对胰蛋白酶抑制剂活性进行定量分析。 4 试验材料 转基因植物及其产品、受体植物及其产品。如果对转基因植物产品中的胰蛋白酶抑制剂进行测定,转基因植物产品和受体植物产品的处理条件应相同。 上述材料的水分含量和种植环境应基本一致。

蛋白酶体抑制剂和免疫调节剂对骨髓瘤骨病的治疗作用

USA,2005,102(39):13944-13949. [15]M u raka m iY,Y asud a T,Saigo K,et a.l Co m prehens i ve ana l ysis of m i cro RNA exp ress i on patt erns i n hepatocell u l ar carci no m a and non -t um orous tiss ues[J].On cogene,2006,25(17):2537-2545. [16]Ku tay H,B ai S,Datta J,et a.l Down regulati on ofm i r-122i n t h e roden t and hu m an hepatocell u l ar carci no m as[J].J C ell B io- ch e m,2006,99(3):671-678.[17]C i afre SA,Gal ard i S,M ang i ola A,et a.l E xtensive m odu l ati on of a s et ofm icro RNA s i n pri m ary gliob l ast oma[J].B ioche m B i ophys R es Co mm un,2005,334(4):1351-1358. [18]Chan J A,Krichevs ky A M,K os i k KS.M icro RNA-21i s an ant-i apoptotic f act or i n hum an gli ob l ast o m a cells[J].C ancer Res, 2005,65(14):6029-6033.(编校:田媛) 蛋白酶体抑制剂和免疫调节剂对骨髓瘤骨病的治疗作用 于亚平 The effect of proteaso m e i nhi bitor and i m muno modulatory drugs on m yel o ma bone disease YU Ya-p i n g D e p ar t m ent of H e matology,N anjing GeneralH osp it a l of N anjing M ilit ary Comm and,PLA,N anj i ng210002,China. =Ab stract>M ulti p l e m yelo m a is character i zed by ex tensive bone destructi on w it h little o r no new bone for m ation.O ve r the last decade,nove l agents hav e been used in the m anage m ent o fMM.I mm uno m odulato ry drugs(I M i D s),such as tha li dom i de and lena lidom ide and pro teaso m e i nh i b itor,bortezom i b,have s hown s i gnificant anti-m yelo m a acti v ity i n both new ly diagnosed and re lapsed/refracto ry MM.Besides t he ir po ten t e fficacy ag ainst m ye l om a ce lls,these agents m odify t he i nteracti ons bet w een m ali gnant plas ma ce ll and bone m arro w m icroenv iron m ent,and alter abno r m al bone m etabo li s m i n MM.T h i s rev ie w summ arizes av ail able da ta for t he effect o f I M i D s and borte zo m i b on bone re m ode ling o fMM pa ti ents and t he ir possible role i n t he m anagem ent o fm ye l om are lated bone disease. =K ey w ords>m yelo m a;thali do m i de;lena li do m i de;proteasom e inh i bito r M odern O nco logy2009,17(02):0376-0380 =指示性摘要>多发性骨髓瘤(MM)以广泛骨破坏而少有新骨形成为特点。过去的10余年中,以沙利度胺和 来那度胺为代表的免疫调节药和以硼替佐咪为代表的蛋白酶体抑制剂等新型治疗方法引入临床,这类药物 在对初治和复发/难治MM发挥强效抗肿瘤作用的同时,尚能改变恶性浆细胞和骨髓微环境间的相互反应, 从而影响MM的异常骨代谢,对骨髓瘤骨病发挥有益的治疗作用。本文综述此类新药对MM病人骨重塑的 影响及在骨髓瘤骨病治疗中可能的作用。 =关键词>骨髓瘤;沙利度胺;来那度;蛋白酶体抑制剂 =中图分类号>R733.3=文献标识码>A=文章编号>1672-4992-(2009)02-0376-05 骨髓瘤骨病(m ye l om a bone d i sease,M BD)是骨破坏增加,但没有新骨代偿性形成的结果。约80%的多发性骨髓瘤(MM)病人在病程中并发M BD,表现为骨痛,溶骨性病变,病理性骨折和高钙血症。溶骨性破坏是骨髓瘤病人最为痛苦的表现,严重影响病人的生活质量。即使无病生存数年的病人,其骨髓瘤相关的溶骨性病变亦不会修复,是MM治疗中的主要难题之一。 1M BD的发病机制 M BD是骨髓瘤细胞与破骨细胞和成骨细胞间复杂的相 =收稿日期> 2008-03-26 =作者单位> 南京军区南京总医院血液科,江苏南京210002 =作者简介> 于亚平(1963-),男,湖南岳阳人,博士,主任医师,主要从事内科血液病专业。互作用所致。组织形态学定量研究发现,骨髓瘤细胞促进破骨细胞的骨吸收作用,而抑制成骨细胞活性,从而造成骨吸收和形成间的平衡失调,此为M BD的主要特点[1]。 正常情况下,核因子J B配体受体活化剂(receptor ac t-i va t o r o f nuc lear factor-kappa B li gand,RANKL)和其诱饵受体护骨素(osteoprotegerin,O PG)调节破骨细胞的形成、活性和骨吸收。骨髓瘤细胞通过增加RANKL的表达和降低O PG 的表达而破坏两者间的平衡,RANK L的增加有利于破骨细胞的形成和激活,从而使骨吸收增加。应用OPG或可溶性RANK结构以改变上述平衡能防止B M D的发生[2]。除了RANKL和OPG外,骨髓瘤细胞还能产生巨噬细胞炎症蛋白-1A(m acrophage i nfla mm a t o ry prote i n-1A,M IP-1A)和M IP -1B,两者均能促进破骨细胞的骨吸收。M IP-1A以依赖RANKL的方式发挥作用。其它能增强破骨细胞形成和活性

相关主题
文本预览
相关文档 最新文档