当前位置:文档之家› 南航飞机结构设计习题答案_5

南航飞机结构设计习题答案_5

南航飞机结构设计习题答案_5
南航飞机结构设计习题答案_5

5-09

由书中所给的飞机重量与过载系数等数据,可以认为:相对载荷较大,相对厚度较小。因此,宜选用单块式结构布局,布置如下图:

关于结构布局的说明:

① 选用三根梁纵向布置(根肋处为固支点),前、后梁都要连接前后缘的襟副翼,如中间梁高度较低,可适当的弱(截面尺寸小),但在开口段要加强;

② 普通长桁在两个单闭室内等百分线布置(避免长桁装配弯曲);

③ 横向肋顺气流布置(因后缘后掠角小,不会引起变长而增重)。选用5根加强肋,见图示标号;这5个肋的位置需处于前后缘活动翼面的连接挂点位置,并兼顾开口位置(一物多用原则); ④ 普通肋适当间距布置,视对蒙皮稳定性的支撑作用来确定;再两个参与区内,普通长桁的截面积逐渐减小到零。

5-10 解:

1.由剪力按刚度分配原理确定刚心

因上下面对称,故刚心的x 轴位置在对称轴上;而y 轴位置由下式计算:

12121K K a b K a K b K a ++=?=

24

124222012.5625021510.03000K cm K cm =??==??= 25.9a c m =

2、由合力矩定理,平移外载荷并计算肋的支反剪力与剪流,见图1。

V

M n= P ? (A+a) = 80?(30+25.9)=4472KN.cm

4472 1.24/2(2520)800.5n M q KN cm ===Ω?+?? P ?a = Q2?B Q1+Q2 = P q1=2.164KN/cm

Q2 = 25.9 KN Q1= 54.1 KN q2=1.295KN/cm

3、画出肋的剪力、弯矩图(应由原肋的构件实际作用力图+支反力来具体画出,双支点外伸梁!)

4、由剪力图上的最大值确定肋腹板厚度(抗剪型板设计,四边简支)

设计载荷:c 1q= t =5.1/H =5.1/25=0.204 KN/cm τ

公式:δ= 23.78

5.6(/)K a b =+

a /

b =B/H 1=80/25=3.24 K= 5.97, E=70000 Mpa

3.3899mm δ==

5、由弯矩的最大值确定肋上下缘条的面积(上缘条受拉、下缘条受压,且力大小

相等、方向相反):

最大弯矩处的缘条内力: N = M max /H 1 = 2400/25=96 KN

上缘条面积由强度计算确定:

A * σb = N

A *=96000(N)/420 (MPa)=228.57 mm 2

考虑到连接有效面积的削弱,应取 A *=228.57/0.9=253.97 mm 2

下缘条面积由压杆总体稳定性公式确定:

22cr K EI

P N l π== (两端固支,K=4,注失稳的弯曲方向)

32

**1

1

1212I ab A == (正方形) A * =

Q 图:

M=80?A=2400 KN.cm

A *

=

= 516.78 mm 2 如按题目给出的受压失稳临界应力值(偏危险),可得:

*cr A N σ=

A * = 96000/280 = 342.86 mm 2

6、前梁腹板的厚度确定:

前梁腹板的剪流:q q = q 1+q = 3.404 KN/cm

由公式粗算(不考虑立柱,a 很大)

δ= K= 5.6 + (

)23.78/a b = 5.6

3.3000δ== mm (因厚度合适,可不考虑安装立柱) 如考虑立柱,其间距取a = b =250 mm , 则 K=9.38

2.8δ== mm

7、后梁腹板的厚度确定:

后梁腹板的剪流:q h = q 2 - q = 1.295-1.24= 0.055 KN/cm

0.96δ===1 mm

可不再考虑立柱设计 。

5-14

1) 在传递总体弯矩M (上下壁板的轴力)时,A-A 肋起到对蒙皮参与轴力转移

2

的支持作用,引起肋缘条受分布轴力,如图分析:

肋的受力形成对称扭,故需加强A-A肋的缘条;

2)传剪Q路线没有被开口打断,与A-A肋无关

3)传扭M t路线被打断,有两种情况:

①盒段外端传来的一圈扭矩在A-A肋处转换成一对参差剪力,使肋受剪,

故需加强肋腹板,如下图分析:

②对开口区翘曲变形引起的自平衡内力系,A-A肋起到对前后闭室盒段壁

板受剪的支持作用,同时使该肋受剪,故也需加强腹板。如图分析:

5-15 分析传力

补强设计:

①需在后梁腹板上加立柱,使集中力P扩散到后梁的腹板上;

②需补强后梁的腹板,集中力P的扩散剪流需通过腹板向后传;

③集中力P引起的弯矩倒传给前盒段,由传力分析图看出,在前盒段需加强以

下构件:

i)后梁缘条补强符合自平衡力系的参与区规律,即:

ii) 前盒段蒙皮需加强,由该闭室蒙皮参与将集中力P引起的弯矩转换到前梁;iii)加强开口端肋的腹板,该肋提供了前盒段蒙皮参与剪力的支持。

④前梁缘条需加强,集中力P引起的弯矩最终通过前梁后段传给根部支持;补强规律按等截面的强度/稳定性计算值。

⑤前梁后段腹板无需补强。

南航飞机结构设计习题答案43

4-1 梁的根部接头是固接,梁的缘条可以传递弯矩,纵墙的根部接头是绞接,它本身不能传递弯矩。 4-2 4-3

4-23 4-24 4-26 (1)在A-A 肋处,蒙皮没有发生突变,所以A-A 肋在传扭时不起作用。 (2)前梁在A-A 剖面处发生转折,前梁上弯矩M 分为两部分21M M M +=,1M 由前 梁传给机身,2M 传给A-A 肋。

4-30 机翼外段长桁上的轴向力通过蒙皮剪切向前后梁扩散,到根部全部转移到前后梁的缘条上去。 4-31 1. L 前=L 后

(1) Q 的分配 K=2 2EJ L L 前=L 后 ∴ 只与2EJ 有关 Q 1=112K Q K K += 122EJ L [22L (121EJ EJ +)]Q = 112EJ Q EJ EJ + = 1 12Q + = 0.333Q = 3330kg = 33.3KN Q 2= 6670kg = 66.7KN (2) M 的分配 K=KJ L ∴ 关系式仍同上 1M = 0.333?5?105 = 1666.7 KN m M 2= 0.667?5?105 = 3335 KN m (3) M t 的分配 M t1= 5510t M += 0.333?3?103 = 0.999?103 kg.m = 10 KN m M t2 = 0.667?3?103 = 2.001?103 kg.m = 20 KNm 2. L 前=3000 mm L 后=1500 mm (1) Q 的分配 K=2 2EJ L K 1= 2? () 12 2 103000= 2?12 6 10910 ?=2 9?106 = 2?106?0.111 K 2= 2?( )12 2 101500= 2?29?106 = 22 2.25??106 = 2?106?0.889 K 1+ K 2 = 2?106 ( 19 +1 2.25) = 2?106 ( 0.111 +0.889) = 1?2?106 ∴ Q 1= 0.111?10000 = 1110kg = 11.1KN Q 2= 8890kg = 88.9KN (2) M 的分配 K 1 = KJ L = 12103000 = 0.333?109 K 1 = 12 101500Q ? = 1.333?109 K 1+ K 2 = 1.666?109 1M = 0.333 1.666?5?105 = 0.1999?5?105 = 0.2?5?105 = 105 kg m = 1000 KN m 2M = 4?105 kg m = 4000 KN m (3) M t 的分配

最新钢结构设计练习题

钢结构设计练习题一、填空题 1、门式刚架轻型房屋屋面坡度宜取(20 8),在雨水较多的地区取其中的较大值。 2、在设置柱间支撑的开间,应同时设置(屋盖横向支撑),以构成几何不变体系。 3、当端部支撑设在端部第二个开间时,在第一个开间的相应位置应设置(刚性)系杆。 4、冷弯薄壁构件设计时,为了节省钢材,允许板件(受压屈曲),并利用其(屈曲后)强度进行设计。 5、当实腹式刚架斜梁的下翼缘受压时,必须在受压翼缘两侧布置(隅撑) 6、螺栓排列应符合构造要求,通常螺栓端距不应小于(2)倍螺栓孔径,两排螺栓之间的最小距离为(3 )倍螺栓直径。 7、垂直于屋面坡度放置的檩条,按(双向受弯)构件设计计算。 8、屋架节点板上,腹杆与弦杆以及腹杆与腹杆之间的间隙应不小于(20mm)。 9、拉条的作用是(防止檩条侧向变形和扭转并且提供x轴方向的中间支点)。 10、实腹式檩条可通过檩托与刚架斜梁连接,设置檩托的目的是(防止檩条端部截面的扭转,以增强其整体稳定性)。

11、屋架的中央竖杆常和垂直支撑相连,一般做成十字形截面,这时它的计算长度是(0.9L)。 12、设计吊车梁时,对于构造细部应尽可能选用疲劳强度高的连接型式,例如吊车梁腹板与上翼缘的连接应采用(焊透的k形)焊缝。13、钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置(垫板)。 14、屋盖支撑可以分为(上弦横向支撑)、(下弦横向支撑)、(下弦竖 向支撑)、(垂直支撑)、(系杆)五类。 15、钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置(垫板)。 16、屋架上弦杆为压杆,其承载能力由(稳定)控制;下弦杆为拉杆,其截面尺寸由(强度)确定。 17、梯形钢屋架,除端腹杆以外的一般腹杆,在屋架平面内的计算长度Lox=(0.8 )L,在屋架平面外的计算长度Loy=(1.0)L,其中L 为杆件的几何长度。 18、吊车梁承受桥式吊车产生的三个方向荷载作用,即(吊车的竖向荷载P ),(横向水平荷载T)和(纵向水平荷载Tl)。 19、能承受压力的系杆是(刚性)系杆,只能承受拉力而不能承受压力的系杆是(柔性)系杆。 20、根据吊车梁所受荷载作用,对于吊车额定起重量Q≤30t,跨度l ≤6m,工作级别为Al~A5的吊车梁,可采用(加强上翼缘)的办法,

哈工大飞行器结构设计大作业指导书_最终版

《飞行器结构设计》课程大作业指导书 哈尔滨工业大学航空宇航制造系 2015年4月16日

一、要求与说明 1. 学生必须按照相关规范,在规定的时间内完成两个备选题目之一的大作业,并提交纸质和电子版文件。 2. 要求每名学生独立完成作业内容,如有抄袭、伪造等作弊行为则取消成绩,大作业的分数计入期末考核成绩。 二、题目 三、内容要求及规范 (二)分离机构连接计算与结构设计 1、设计的目的与意义 连接于分离机构的计算与设计是飞行器结构与机构分系统设计的重要部分,连接分离机构直接影响分离面处的连接刚度,而连接分离面又是飞行器载荷较为严重的部位。因此,为保证连接的可靠性,必须对分离机构中的关重件进行计算与校核,特别是起到连接与分离作用的爆炸螺栓组件。本设计作业的主要目的是通过对典型连接分离机构的计算与设计,使学生掌握此类结构设计的基本原理和方法,同时加深对飞行器结构设计的具体认识,为开展相关技术领域的研究与设计奠定基础。 2、设计输入条件 假设某型号导弹在发射阶段,由于横向载荷的作用,在连接面A1-A2会产生M=1500Nm的弯矩,同时已知气动过载的等效轴向载荷为F=800N,以压力形式作用于一二级分离面上,分离舱段对接框为环形接触面,被连接件间均采用石棉垫片。图2所示为轴向连接式对接框结构尺寸,图3所示为卡环式对接框尺寸,

两个舱段的平均壁度为6mm。假设舱段承力结构材料均为TC4,在设计过程中不考虑横向载荷产生的剪力,为使分离面紧密贴合,取安全系数f=1.5。此外,假定轴向连接分离机构由6个爆炸螺栓连接,卡环式连接分离机构由2个爆炸螺栓连接,爆炸螺栓螺杆材料为45号钢,且尺寸、规格同C级六角头螺栓。 图1 导弹一二级分离面受力示意图 3、设计任务 1)根据设计的输入条件,选择轴向连接或外置卡环式连接分离方式中的一种进行计算分析与结构设计。要求详细计算用于连接和分离的爆炸螺栓所受的工作总拉力,以及螺栓最大预紧力,并根据爆炸螺栓材料的屈服极限条件确定螺栓尺寸和规格。 2)按照计算分析的结果以及选择的爆炸螺栓结构尺寸,设计连接分离装置的具体结构,画出装配草图。 2 a) 轴向连接式分离面结构尺寸

钢结构设计习题库

钢结构设计题库 一、选择题 1、在钢材所含化学元素中,均为有害杂质的一组是(C )A 碳磷硅 B 硫磷锰 C 硫氧氮 D 碳锰矾 2、钢材的性能因温度而变化,在负温范围内钢材的塑性和韧性(B )A 不变 B 降低 C 升高 D 稍有提高,但变化不大 3、长细比较小的十字形轴压构件易发生屈曲形式是(B ) A 弯曲 B 扭曲 C 弯扭屈曲 D 斜平面屈曲 4、摩擦型高强度螺栓抗剪能力是依靠(C ) A 栓杆的预应力 B 栓杆的抗剪能力 C 被连接板件间的摩擦力 D 栓杆被连接板件间的挤压力 5、体现钢材塑性性能的指标是(C )A 屈服点 B 强屈比 C 延伸率 D 抗拉强度 6、下列有关残余应力对压杆稳定承载力的影响,描述正确的是(A )A 残余应力使柱子提前进入了塑性状态,降低了轴压柱的稳定承载力B 残余应力对强轴和弱轴的影响程度一样 C 翼缘两端为残余拉应力时压杆稳定承载力小于翼缘两端为残余压应力的情况 D 残余应力的分布形式对压杆的稳定承载力无影响7、下列梁不必验算整体稳定的是(D )A 焊接工字形截面 B 箱形截面梁 C 型钢梁 D 有刚性铺板的梁 8、轴心受压柱的柱脚,底板厚度的计算依据是底板的(C ) A 抗压工作 B 抗拉工作 C 抗弯工作 D 抗剪工作 9、同类钢种的钢板,厚度越大(A )A 强度越低 B 塑性越好 C 韧性越好 D 内部构造缺陷越少 10、验算组合梁刚度时,荷载通常取(A )A 标准值 B 设计值 C 组合值 D 最大值 11、在动荷载作用下,侧面角焊缝的计算长度不宜大于(B ) A 60f h B40f h C80f h D120f h 12、计算格构式压弯构件的缀材时,剪力应取(C )

2013年南航《材料科学基础》真题及答案

一、简答题 1)右图为一立方晶胞,A、B、G、H为顶点,C、E、F为棱边中点,求OGC、EFGH的晶面指数和AB的晶向指数。 OGC:(211) EFGH:(012) AB : [111] 2)如下图所示的位错环,说明各段位错的性质,并且说明刃位错的半原子面的位置。 由柏氏矢量与位错线的关系可以知道,BC是右旋螺位错,DA为左旋螺位错;(1分)由右手法则,CD为正刃型位错,多余半原子面在纸面上方;(2分)AB为负刃型位错,多余半原子面在纸面下方。(2分) 3)陶瓷材料中主要结合键是什么?从结合键的角度解释陶瓷材料 所具有的特殊性能。 陶瓷材料中主要结合键是离子键和共价键。 (1)由于离子键及共价键很强,故陶瓷的抗压强度很强,硬度极高; (2)因为原子以离子键和共价键结合时,外层电子处于稳定的结构状态,不能自由运动; 4)试分析形成枝晶偏析的原因,如何消除? 固熔体不平衡结晶时,从液体中先后结晶出来的固相成分不同,造成的晶粒内枝干含高熔点组元较多,而晶枝间含低组元较多,导致晶粒内部化学成分不均匀的现象。(3分) 可用扩散退火(或均匀化退火)消除,即将铸件加热至低于固相线100~200℃,长时间保温,使偏析元素充分扩散。(2分)

5)C在α—Fe中的扩散系数大于C在γ—Fe中的扩散系数,为什么渗C不在α—Fe中进行,而在γ—Fe中进行? ①α-Fe是体心立方结构,八面体间隙尺寸为0.15(较小),进行渗碳时,碳 在α-Fe中的熔解度很小,渗碳时会出现典型的反应扩散现象。(2分) ②渗碳在α-Fe中进行时,温度低,扩散系数小,扩散速度慢; ③γ-Fe是面心立方结构,八面体间隙尺寸为0.414(较大),碳的熔解度高, 扩散速度快。 所以渗碳不在α-Fe中进行,而在γ-Fe中进行。 6)固溶体和金属间化合物在成分、结构、性能等方面有何差异? 固溶体是固态下一种组元(溶质)溶解在另一种组元(溶剂)中而形成的新相;固溶体具有溶剂组元的点阵类型;固溶体的硬度、强度往往高于组成它的成分,而塑性则较低。(2.5分) 金属间化合物就是金属与金属,或金属与类金属之间所形成的化合物;结构不同于组元结构而是一个新结构;金属间化合物具有极高的硬度、较高的熔点,而塑性很差。 7) 在单位晶胞中画出立方晶系的如下晶面和晶向:(1 2 1)、 (1 0 1)、[1 2 1]、[2 1 2] 略 8)试用位错理论解释固溶强化的原因。 固溶在点阵间隙或节点上的合金元素原子,由于其尺寸不同于基体原子,故产生一定的应力场,该应力场与位错产生的应力场交互作用,使位错周围产生柯氏气团;(2分) 由于柯氏气团的钉扎作用,阻碍位错的运动,造成固溶强化。(3分) 9)试说明晶体滑移的临界分切应力定律 τ=σ0m;σ0=P/A,m=cos?cos λ ,当外力P一定时,作用于滑移系上的分切应力与晶体受力的位向有关。(3分)当σ0=σS时,晶体开始滑移,此时滑移方向上的分切应力称为临界分切应力。(2分)

钢结构设计原理练习题参考答案

钢结构原理与设计练习题 第1章 绪论 一、选择题 1、在结构设计中,失效概率P f 与可靠指标β的关系为( B )。 A 、P f 越大,β越大,结构可靠性越差 B 、P f 越大,β越小,结构可靠性越差 C 、P f 越大,β越小,结构越可靠 D 、P f 越大,β越大,结构越可靠 2、若结构是失效的,则结构的功能函数应满足( A ) A 、0Z C 、0≥Z D 、0=Z 3、钢结构具有塑性韧性好的特点,则主要用于( A )。 A .直接承受动力荷载作用的结构 B .大跨度结构 C .高耸结构和高层建筑 D .轻型钢结构 4、在重型工业厂房中,采用钢结构是因为它具有( C )的特点。 A .匀质等向体、塑性和韧性好 B .匀质等向体、轻质高强 C .轻质高强、塑性和韧性好 D .可焊性、耐热性好 5、当结构所受荷载的标准值为:永久荷载k G q ,且只有一个可变荷载k Q q ,则荷载的设 计值为( D )。 A .k G q +k Q q B .1.2(k G q +k Q q ) C .1.4(k G q +k Q q ) D .1.2k G q +1.4k Q q 6、钢结构一般不会因偶然超载或局部荷载而突然断裂破坏,这是由于钢材具有( A )。 A .良好的塑性 B .良好的韧性 C .均匀的内部组织 D .良好的弹性 7、钢结构的主要缺点是( C )。 A 、结构的重量大 B 、造价高 C 、易腐蚀、不耐火 D 、施工困难多

8、大跨度结构常采用钢结构的主要原因是钢结构(B) A.密封性好 B.自重轻 C.制造工厂化 D.便于拆装 二、填空题 1、结构的可靠度是指结构在规定的时间内,在规定的条件下,完成预定功能的概率。 2、承载能力极限状态是对应于结构或构件达到了最大承载力而发生破坏、结构或构件达到了不适于继续承受荷载的最大塑性变形的情况。 3、建筑机械采用钢结构是因为钢结构具有以下特点:1)______强度高、自重轻__________、2)_____塑性、韧性好_______________,3)______材质均匀、工作可靠性高______________。 4、正常使用极限状态的设计内容包括控制钢结构变形、控制钢结构挠曲 5、根据功能要求,结构的极限状态可分为下列两类:__承载力极限状态____ ______正常使用极限状态_____、 6、某构件当其可靠指标β减小时,相应失效概率将随之增大。 三、简答题 1、钢结构与其它材料的结构相比,具有哪些特点? 2、钢结构采用什么设计方法?其原则是什么? 3、两种极限状态指的是什么?其内容有哪些? 4、可靠性设计理论和分项系数设计公式中,各符号的意义? 第2章钢结构材料 一、选择题 1、钢材在低温下,强度(A),塑性(B),冲击韧性(B)。 (A)提高(B)下降(C)不变(D)可能提高也可能下降 2、钢材应力应变关系的理想弹塑性模型是(A)。

钢结构设计 练习题及答案(试题学习)

钢结构设计练习题及答案 1~5题条件:为增加使用面积,在现有一个单层单跨建筑内加建一个全钢结构夹层,该夹层与原建筑结构脱开,可不考虑抗震设防。新加夹层结构选用钢材为Q235B ,焊接使用 E43型焊条。楼板为SP10D 板型,面层做法20mm 厚,SP 板板端预埋件与次梁焊接。荷载标准值:永久荷载为2.5kN/m 2(包括SP10D 板自重、板缝灌缝及楼面面层做法),可变荷载为4.0 kN/m 2。夹层平台结构如图所示。 立柱:H228x220x8x14 焊接H 型钢 A=77.6×102mm 2 I x =7585.9×104mm 4,i x =98.9mm I y =2485.4×104mm 4,i y =56.6mm 主梁:H900x300x8x16 焊接H 型钢 I x =231147.6×104mm 4W nx =5136.6×103mm 3 A=165.44×102mm 2主梁自重标准值g=1.56kN/m a) 柱网平面布置立柱 次梁 主梁 1 2 H900x300x8x16 H300x150x4.5x6 次梁:H300x150x4.5x6 焊接H 型钢 I x =4785.96×104mm 4W nx =319.06×103mm 3 A=30.96×102mm 2次梁自重标准值0.243kN/m M16高强度螺栓加劲肋 -868x90x63030 40 6 n 个 b) 主次梁连接 1. 在竖向荷载作用下,次梁承受的线荷载设计值为m kN 8.25(不包括次梁自重)。试问, 强度计算时,次梁的弯曲应力值?(20分) 解:考虑次梁自重后的均布荷载设计值: 25.8+1.2×0.243=26.09kN /m 次梁跨中弯矩设计值: M =04.665.409.268 1 8122=??=ql kN ·m 根据《钢结构设计规范》GB 50017-2003第4.1.1条; 4.1.1在主平面内受弯的实腹构件(考虑腹板屈曲后强度者参见本规范第4.4.1条),其 抗弯强度应按下列规定计算: ny y y nx x x W M W M γγ+ ≤f (4.1.1) 式中 M x 、M y —同一截面处绕x 轴和y 轴的弯矩(对工字形截面:x 轴为强轴,y 轴 为弱轴): W nx 、W ny —对x 轴和y 轴的净截面模量;γx 、γy —截面塑性发展系数;对工字形截面, γx =1.05,γy =1.20:对箱形截面,γx =γy =1.05;对其他截面.可按表5.2.1采用; f —钢材的抗弯强度设计值。 当梁受压翼缘的自由外伸宽度与其厚度之比大于13y f 235/ 而不超15 y f 235/时, 应取γx =1.0。f y 为钢材牌号所指屈服点。 对需要计算疲劳的梁,宜取γx =γy =1.0。 受压翼缘的宽厚比小于13;承受静力荷载 γx =1.05 1.19710 06.31905.11004.6636=???=nx x W M γN/mm 2

飞行器结构设计总复习

静强度设计:安全系数d e P f P d p 设计载荷 e p 使用载荷 u p 极限载荷 静强度设计准则:结构材料的极限载荷大于或等于设计载荷,即认为结构安全u p ≥d p 载荷系数定义:除重力外,作用在飞机某方向上的所有外力的合力与当时飞机重量的比值, 称为该方向上的载荷系数。 载荷系数的物理意义:1、表示了作用于飞机重心处除重力外的外力与飞机重力的比值关系; 2、表示了飞机质量力与重力的比率。 载荷系数实用意义:1、载荷系数确定了,则飞机上的载荷大小也就确定了; 2、载荷系数还表明飞机机动性的好坏。 着陆载荷系数的定义:起落架的实际着陆载荷lg P 与飞机停放地面时起落架的停机载荷lg o P 之 41.杆只能承受(或传递)沿杆轴向的分布力或集中力。 2.薄平板适宜承受在板平面内的分布载荷,包括剪流和拉压应力,不能传弯。没有加强件加 强时,承压的能力比承拉的能力小得多,不适宜受集中力。厚板能承受一定集中力等。 3.三角形薄板不能受剪。 刚度分配原则:在一定条件下(如机翼变形符合平剖面假设),结构间各个原件可直接按照 本身刚度的大小比例来分配它们共同承担的载荷,这种正比关系称为“刚度分配原则” P1l1/E1F1=P2l2/e2f2 K=EF/l p1/p2=k1/k2 p1=k1p/(k1+k2) (翼面结构的典型受力形式及其构造特点: 1.薄蒙皮梁式:蒙皮很薄,纵向翼梁很强,纵向长桁较少且弱,梁缘条的剖面与长桁相比要 大得多,当布置有一根纵梁时同时还要布置有一根以上的枞墙。常分左右机翼-----用几个集 中接头相连。 2.多梁单块式:蒙皮较厚,与长桁、翼梁缘条组成可受轴向力的壁板承受总体弯矩;纵向长 桁布置较密,长桁截面积与梁的截面积比较接近或略小;梁或墙与壁板形成封闭的盒段,增 强了翼面结构的抗扭刚度。为充分发挥多梁单块式机翼的受力特征,左右机翼一般连成整体 贯穿过机身,但机翼本身可能分成几段。 3.多墙厚蒙皮式:布置了较多的枞墙,厚蒙皮,无长桁,有少肋、多肋两种,但结合受集中 力的需要,至少每侧机翼上要布置3~5个加强翼肋。可以没有普通肋。) 大型高亚音速运输机或有些超音速战斗机采用多梁单块式翼面结构,Ma 较大的的超音速飞 机多采用多墙(或多梁)或机翼结构。 局部失稳问题:翼梁缘条受轴向压力时,由于在蒙皮平面内有蒙皮支持,在翼梁平面有腹板 支持,因此一般不会产生总体失稳,但需考虑其局部失稳问题。 翼梁的主要功用承受或传递机翼的剪力Q 和弯矩M 。 (各典型形式(梁式、单块式、多墙式)受力特点的比较: 机翼结构受力形式的发展主要与飞行速度的发展有关。速度的增加促使机翼外形改变并提高 了对结构强度、刚度、外形的要求。比较三者的受力特点可以发现,单纯的梁式、薄蒙皮和 弱长桁均不参加机翼总体弯矩的传递,只有梁的缘条承受弯矩引起的轴力。对于高速飞机, 由于气动载荷增大,而相对厚度减小又导致了机翼结构高度变小,只靠梁来承弯将使承弯构 件的有效高度减小;加之对蒙皮局部刚度和机翼扭转刚度要求的提高,促使蒙皮增厚,长桁 增多、增强。因此,在单块式、多墙式机翼中,蒙皮、长桁,乃至主要是蒙皮发展成主要的 承弯构件。由于蒙皮、长桁等受轴向力的面积较之梁缘条更为分散、更靠近外表面,故承弯 构件有效高度较大,因此厚蒙皮翼盒不仅承扭能力较高,抗弯特性也较好,因此,此种机翼

飞机结构设计习题答案

第二章 习题答案 2.飞机由垂直俯冲状态退出,沿半径为r 的圆弧进入水平飞行。若开始退出俯冲的高度H 1=2000 m ,开始转入水干飞行的高度H 2=1000 m ,此时飞行速度v =720 km/h ,(题图2.3),求 (1)飞机在2点转入水平飞行时的过载系数n y ; (2) 如果最大允许过载系数为n ymax =8,则 为保证攻击的突然性,可采用何种量级的大速度或大机动飞行状态?(即若r 不变,V max 可达多少? 如果V 不变,r min 可为多大? 解答 (1) 08.5)(8.9) 36001000720(11212 2=-?? +=+==H H gr v G Y n y (2) h km r g n v y /2.94310008.9)18(.).1(max =??-=-= m n g v r y 1.583) 18(8.9) 36001000720()1(2 2min -?? =-=

3.某飞机的战术、技术要求中规定:该机应能在高度H =1000m 处,以速度V=520 Km/h 和V ’=625km /h(加力状态)作盘旋半径不小于R =690m 和R ’=680m(加力 状态)的正规盘旋(题图2.4)。求 (1) 该机的最大盘旋角和盘旋过载系数n y ; (2) 此时机身下方全机重心处挂有炸弹,重G b =300kg ,求此时作用在炸弹钩上的载荷大小及方向(1kgf =9.8N)。 解答: (1) βcos 1 = = G Y n y ∑=01X r v m Y 2 sin =β① ∑=01 Y G Y =βcos ② 由 ①与②得 2 = =gr v tg βο04.72=β(非加力) 523 .4680 8.9) 36001000625(2 =??=βtg ο5.77=β(加力) 6.4cos 1 == βy n (2) r v m N X 2 1 = 6.飞机处于俯冲状态,当它降到H =2000m 时(H ρ=0.103kg /m 3 。)遇到上升气

钢结构设计练习题

钢结构设计练习题 一、填空题 1、门式刚架轻型房屋屋面坡度宜取(1/20—1/8),在雨水较多的地区取其中的较大值。 2、在设置柱间支撑的开间,应同时设置(屋盖横向支撑),以构成几何不变体系。 3、当端部支撑设在端部第二个开间时,在第一个开间的相应位置应设置(刚性)系杆。 4、冷弯薄壁构件设计时,为了节省钢材,允许板件(受压屈曲),并利用其(屈曲后强度)强度进行设计。 5、当实腹式刚架斜梁的下翼缘受压时,必须在受压翼缘两侧布置(隅撑) 6、螺栓排列应符合构造要求,通常螺栓端距不应小于(2)倍螺栓孔径,两排螺栓之间的最小距离为(3)倍螺栓直径。 7、垂直于屋面坡度放置的檩条,按(双向受弯)构件设计计算。 8、屋架节点板上,腹杆与弦杆以及腹杆与腹杆之间的间隙应不小于(20mm)。 9、拉条的作用是(防止檩条侧向变形和扭转并且提供x轴方向的中间支点)。 10、实腹式檩条可通过檩托与刚架斜梁连接,设置檩托的目的是(为了阻止檩条端部截面的扭转,以增强其整体稳定性)。 11、屋架的中央竖杆常和垂直支撑相连,一般做成十字形截面,这时它的计算长度是(0.9L)。 12、设计吊车梁时,对于构造细部应尽可能选用疲劳强度高的连接型式,例如吊车梁腹板与上翼缘的连接应采用(焊透的K形)焊缝。 13、钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置(垫板)。 14、屋盖支撑可以分为(上弦横向水平支撑)、(下弦横向水平支撑)、(下弦纵向水平支撑)、(垂直支撑)、(系杆)五类。 15、钢屋架中的杆件一般是由双角钢组成,为使两个角钢组成的杆件起整体作用,应设置()。

16、屋架上弦杆为压杆,其承载能力由()控制;下弦杆为拉杆,其截面尺寸由()确定。 17、梯形钢屋架,除端腹杆以外的一般腹杆,在屋架平面内的计算长度Lox=()L,在屋架平面外的计算长度Loy=()L,其中L为杆件的几何长度。 18、吊车梁承受桥式吊车产生的三个方向荷载作用,即(),()和()。 19、能承受压力的系杆是()系杆,只能承受拉力而不能承受压力的系杆是()系杆。 20、根据吊车梁所受荷载作用,对于吊车额定起重量Q≤30t,跨度l≤6m,工作级别为Al~A5的吊车梁,可采用()的办法,用来承受吊车的横向水平力。当吊车额定起重量和吊车梁跨度再大时,常在吊车梁的上翼缘平面内设置()或(),用以承受横向水平荷载。 21、设计吊车梁时,对于构造细部应尽可能选用疲劳强度高的连接型式,例如吊车梁腹板与上翼缘的连接应采用()焊缝。 22、屋架上弦横向水平支撑之间的距离不宜大于()。 23、桁架弦杆在桁架平面外的计算长度应取()之间的距离。 24、普通钢屋架的受压杆件中,两个侧向固定点之间的垫板数不宜少于 ()个。 参考答案: 1、1/20—1/8 2、屋盖横向支撑 3、刚性 4、受压屈曲,屈曲后强度 5、隅撑 6、2, 3 7、双向受弯 8、20mm 9、防止檩条侧向变形和扭转并且提供x轴方向的中间支点 10、为了阻止檩条端部截面的扭转,以增强其整体稳定性

飞行器结构优化设计课程总结

《飞行器结构优化设计》 ——课程总结 专业航天工程 学号GS0915207 姓名

《飞行器结构优化设计》课程总结报告 通过这门课程的学习,大致了解无论是飞行器、船舶还是桥梁等工程项目的传统结构设计流程:首先是根据技术参数、经验和一些简单的分析方法进行初始的结构设计,然后用较为精确的分析方法对初始设计进行核验,根据核验结果,逐步调整设计参数,直到得到满意的设计方案。但是这种传统设计方法的产品性能优劣主要就取决于设计人员的水平,而且设计周期长,并要耗费大量的人力和物力。随着高速、大容量电子计算机的广泛使用和一些精度高的力学分析数值方法的建立和应用,使得复杂的结构分析过程变得更加高效、精确。 本课程重点就在于介绍结构优化的各种分析方法。这些分析方法都是以计算机为工具,将非线性数学规划的理论和力学分析方法相结合,使用于受各种条件限制的承载结构设计情况。 优化问题的数学意义是在不等式约束条件下,求使目标函数为最小或最大值的一组设计变量值,在实际工程应用中,优化问题所包含的函数通常是非线性的和隐式的。建立在数学规划基础上的优化算法,是依据当前设计方案所对应的函数值与导数值等信息,按照某种规则在多维设计变量空间中进行搜索,一步一步逼近优化解。随着计算机的发展和数学计算方法不断进步,结构分析。优化的方法也是随之水涨船高。 一、有限元素法 这是基于在结构力学、材料力学和弹性力学基础上的一种分析方法。研究杆、梁,经简化薄板组成的结构的应力、变形等问题。其方法是首先通过力学分析将结构离散化成单一元素,然后对单一元素进行分析,算出各单元刚度矩阵后,进行整体分析,根据方程组K·u=P求解。这种方法求解的问题受限于结构的规模、形式和效率。 二、敏度分析 结构敏度是指结构性状函数,如位移、应力、振动频率等对设计变量的导数。近似函数的构成,以及许多有效的结构优化算法,皆要利用这些参数的一阶导数,以至二阶导数信息。 结构敏度分析的基础是结构分析,对于复杂的结构,精确的结构分析工作是

@建筑钢结构设计复习题及答案

1 《建筑钢结构设计》复习提纲《钢结构设计原理》 第九章单层厂房钢结构 1、重、中型工业厂房支撑系统有哪些(P305、317) 各有什么作用 答⑴柱间支撑分为上柱层支撑和下柱层支撑★吊车梁和辅助桁架作为撑杆是柱间支撑的组成 部分承担并传递单层厂房钢结构纵向水平力。 柱间支撑作用①组成坚强的纵向构架保证单层厂房钢结构的纵向刚度 ②承受单层厂房钢结构端部山墙的风荷载、吊车纵向水平荷载及温度应力等在地震区尚应承受纵向 地震作用并将这些力和作用传至基础 ③可作为框架柱在框架平面外的支点减少柱在框架平面外的计算长度 ⑵屋盖支撑由上弦横向水平支撑、下弦横向水平支撑、下弦纵向水平支撑、垂直支撑、系杆组成 屋盖支撑作用①保证屋盖形成空间几何不变结构体系增大其空间刚度 ②承受屋盖各种纵向、横向水平荷载如风荷载、吊车制动力、地震力等并将其传至屋架支座 ③为上、下弦杆提供侧向支撑点减小弦杆在屋架平面外的计算长度提高其侧向刚度和稳定性 ④保证屋盖结构安装时的便利和稳定 2、屋盖支撑系统应如何布置可能考作图题 答参考书P313-315 及图9.4.3 3、檩条有哪些结构型式是什么受力构件需要验算哪些项目P317319 答结构形式实腹式和桁架式檩条通常是双向弯曲构件需要验算强度、整体稳定、刚度。

4、设置檩条拉条有何作用如何设置檩条拉条 答作用为了减小檩条沿屋面方向的弯曲变形减小My以及增加抗扭刚度设置檩条拉条以减小该方 向的檩条跨度课件 如何设置当檩条的跨度4~6 m时宜设置一道拉条当檩条的跨度为6m以上时应布置两道拉条。屋 架两坡面的脊檩须在拉条连接处相互联系或设斜拉条和撑杆。Z形薄壁型钢檩条还须在檐口处设斜拉条 和撑杆。当檐口处有圈梁或承重天沟时可只设直拉条并与其连接。 5、压型钢板根据波高的不同有哪些型式分别可应用于哪些方面(P323) 答高波板波高>75mm适用于作屋面板 中波板波高50~75mm适用于作楼面板及中小跨度的屋面板 低波板波高<50mm适用于作墙面板 6、普通钢桁架按其外形可分为哪些形式(P326),梯形屋架有哪些腹杆体系(P327) 答普通桁架按其外形可分为三角形、梯形及平行弦三种。 梯形桁架的腹杆体系有人字式、再分式。 7、在进行梯形屋架设计时为什么要考虑半跨荷载作用 答梯形屋架中部某些斜杆可能在全跨荷载时受拉而半跨荷载时受压由拉杆变为压杆为不利受力情况 之一。 8、屋架中汇交于节点的拉杆数越多拉杆的线刚度和所受的拉力越大时则产生的约束作用越大压 杆在节点处的嵌固程度越大压杆的计算长度越小根据这个原则桁架杆件计算长度如何确 定?(P331-332) 此题答案仅供参考 答⑴桁架平面内弦杆、支座斜杆、支座竖杆---杆端所连拉杆少本身刚度大则0xl l

飞机结构设计习题答案学习资料

飞机结构设计习题答 案

第二章 习题答案 2.飞机由垂直俯冲状态退出,沿半径为r 的圆弧进入水平飞行。若开始退出俯冲的高度H 1=2000 m ,开始转入水干飞行的高度H 2=1000 m ,此时飞行速度v =720 km/h ,(题图2.3),求 (1)飞机在2点转入水平飞行时的过载系数n y ; (2) 如果最大允许过载系数为n ymax =8, 则为保证攻击的突然性,可采用何种量级的大速度或大机动飞行状态?(即若r 不变,V max 可达多少? 如果V 不变,r min 可为多大? 解答 (1) 08.5)(8.9) 36001000720(11212 2 =-?? +=+==H H gr v G Y n y (2) h km r g n v y /2.94310008.9)18(.).1(max =??-=-= m n g v r y 1.583) 18(8.9) 36001000720()1(2 2min -?? =-=

3.某飞机的战术、技术要求中规定:该机应能在高度H =1000m 处,以速度V=520 Km/h 和V ’=625km /h(加力状态)作盘旋半径不小于R =690m 和R ’=680m(加力 状态)的正规盘旋(题图2.4)。求 (1) 该机的最大盘旋角和盘旋过载系数n y ; (2) 此时机身下方全机重心处挂有炸弹,重G b =300kg ,求此时作用在炸弹钩上的载荷大小及方向(1kgf =9.8N)。 解答: (1) βcos 1= = G Y n y ∑=01X r v m Y 2 sin =β① ∑=01 Y G Y =βcos ② 由 ①与②得 2 = =gr v tg β 04.72=β(非加力) 523 .4680 8.9) 36001000625(2 =??= βtg 5.77=β(加力) 6.4cos 1 == βy n (2) r v m N X 2 1 =

钢结构设计实例 含计算过程

设计资料 北京地区某金工车间。采用无檩屋盖体系,梯形钢屋架。车间跨度21m,长度144m,柱距6m,厂房高度15.7m。车间内设有两台150/520kN中级工作制吊车。设计温度高于-20℃。采用三毡四油,上铺小石子防水屋面,水泥砂浆找平层,8cm厚泡沫混凝土保温层,1.5m×6.0m预应力混凝土大型屋面板。屋面积灰荷载0.6kN/m2,屋面活荷载0.35 kN/m2,雪荷载为0.45kN/m2,风荷载为0.5kN/m2。屋架铰支在钢筋混凝土柱上,上柱截面为400mm ×400mm,混凝土标号为C20。 一、选择钢材和焊条 根据北京地区的计算温度和荷载性质及连接方法,钢材选用Q235-B。焊条采用E43型,手工焊。 二、屋架形式及尺寸 无檩屋盖,i=1/10,采用平坡梯形屋架。 =L-300=20700mm, 屋架计算跨度为L =1990mm, 端部高度取H 中部高度取H=H +1/2iL=1990+0.1×2100/2=3040mm, 屋架杆件几何长度见附图1所示,屋架跨中起拱42mm(按L/500考虑)。 为使屋架上弦承受节点荷载,配合屋面板1.5m的宽度,腹杆体系大部分采用下弦间长为3.0m的人字式,仅在跨中考虑到腹杆的适宜倾角,采用再分式。 屋架杆件几何长度(单位:mm) 三、屋盖支撑布置 根据车间长度、屋架跨度和荷载情况,设置四道上、下弦横向水平支撑。因柱网采用封闭结合,为统一支撑规格,厂房两端的横向水平支撑设在第二柱间。在第一柱间的上弦平面设置刚性系杆保证安装时上弦杆的稳定,第一柱间下弦平面也设置刚性系杆以传递山墙风荷载。在设置横向水平支撑的柱间,于屋架跨中和两端共设四道垂直支撑。在屋脊节点及支座节点处沿厂房纵向设置通长的刚性系杆,下弦跨中节点处设置一道纵向通长的柔性系杆,支撑布置见附图2。图中与横向水平支撑连接的屋架编号为GWJ-2,山墙的端屋架编号为GWJ-3,其他屋架编号均为GWJ-1。

飞机结构设计答案

飞机结构设计答案 一、填空题(15分) 1.目前通常将战斗机分成四代,米格-21是典型的二代机,F-22是四代机的第一个代表机种,我公司正在研制的L15高级教练机为三代机。 2. 飞机结构设计要满足空气动力要求和设计一体化要求,结构完整性要求和最小重量要求,使用维修性要求,工艺性要求,经济性要求。 3. 飞机在飞行过程中,外界作用于飞机的载荷主要有:升力、阻力、发动机推力、重力。 4. Y向载荷系数表示了飞机升力与重力的比值。L15高级教练机正向设计过载为8,负向设计过载为3。 二、简答题(70分) 1.飞机结构的设计思想就其发展过程看,大致可划分为哪5个阶段? 答:静强度设计阶段,静强度和刚度设计阶段,强度、刚度、疲劳安全寿命设计阶段,强度、刚度、损伤容限和耐久性设计阶段、结构可靠性设计试用阶段。 2. 使用载荷的定义 答:飞机使用中实际可能遇到的最大载荷称为使用载荷。

3. 设计载荷的定义 答:为了保证一定的安全裕度,飞机结构通常按能承受高与使用载荷的载荷设计,设计的结构所能承受而不破坏的最大载荷称为设计载荷。 4. 安全系数的定义 答:安全系数定义为设计载荷与使用载荷之比。 5. 机身的主要功用? 答:主要功用:1 安置空勤组人员、旅客、装载燃油、武器、设备和货物等。2 把机翼、尾翼、起落架及发动机等连接在一起,形成一架完整的飞机。 6. 机身主要外载荷? 答:1 装载加给机身的力 2 其他部件传来的力 3 增压载荷 7. 机身结构的典型受力形式有哪三种? 答:桁梁式、桁条式、硬壳式 三、计算题(15分) 已知飞机机翼全翼展长L=9.7m,其最大使用升力Y W=643KN,半机翼的结构重量G W/2=7.7KN,半机翼的升力合力与重心假设展向作用于Z=0.5(L/2)处。此外机翼上Z=0.6(L/2)处,挂有G B=1KN 的炸弹。安全系数f=1.5,求:机翼根部Z=0.1(L/2)处的设计弯矩

南航飞机结构设计习题答案_2

2-01 飞机在铅垂平面内作圆周运动,在A 点过载可能最小,在B 点过载最大。 A 点: G N Y y =+ gR v G N n y y 2 11- =- = 02.01000 *8.9)6.3/360(12 -=- =y n 或 y N G Y =+ 112 -= -= gR v G N n y y 02.011000 *8.9)6.3/360(2 =-= y n B 点: y N G Y += gR v G N n y y 2 11+ =+ = 02.21000 *8.9)6.3/360(12 =+ =y n

2-02 (1)发动机重心处的过载系数 2.18 .93*92.3== = ?g L n z yE ω(()() 3.92*3 1.29.8 z yE L n g ω--?= = =) 8.12.13-=+-=?+=yE y yE n n n (2)质量载荷 1) 由发动机惯性矩引起的支座反力: 120( 3.92)470.4z M I kgm ω==?-=- 470.4470.41.0 M N kg l -= ==- (1) (1) /470.4/470.4A B N M l kg N M l kg ==-=-= 2) 由发动机重心过载引起的支座反力: (2) (2)0.8*( 1.8)*100014400.2*( 1.8)*1000360A B N kg N kg =-=-=-=- (1) (2) (1)(2)1440470.41910.4360470.4110.4A A A B B B N N N kg N N N kg =+=--=-=+=-+= 发动机作用于机身结构接头上的质量载荷应反向,即 ' ' 1910.4110.4A B A B N N kg N N kg =-==-=-

钢结构设计原理习题及答案

钢结构设计原理题库 一、单项选择题 1.下列情况中,属于正常使用极限状态的情况是 【 】 A 强度破坏 B 丧失稳定 C 连接破坏 D 动荷载作用下过大的振动 2.钢材作为设计依据的强度指标是 【 】 A 比例极限f p B 弹性极限f e C 屈服强度f y D 极限强度f u 3.需要进行疲劳计算条件是:直接承受动力荷载重复作用的应力循环次数n 大于或等于 【 】 A 5×104 B 2×104 C 5×105 D 5×106 4.焊接部位的应力幅计算公式为 【 】 A max min 0.7σσσ?=- B max min σσσ?=- C max min 0.7σσσ?=- D max min σσσ?=+ 5.应力循环特征值(应力比)ρ=σmin /σmax 将影响钢材的疲劳强度。在其它条件完全相同情况下,下列疲劳强度最低的是 【 】 A 对称循环ρ=-1 B 应力循环特征值ρ=+1 C 脉冲循环ρ=0 D 以压为主的应力循环 6.与侧焊缝相比,端焊缝的 【 】 A 疲劳强度更高 B 静力强度更高 C 塑性更好 D 韧性更好 7.钢材的屈强比是指 【 】 A 比例极限与极限强度的比值 B 弹性极限与极限强度的比值 C 屈服强度与极限强度的比值 D 极限强度与比例极限的比值. 8.钢材因反复荷载作用而发生的破坏称为 【 】 A 塑性破坏 B 疲劳破坏 C 脆性断裂 D 反复破坏. 9.规范规定:侧焊缝的计算长度不超过60 h f ,这是因为侧焊缝过长 【 】 A 不经济 B 弧坑处应力集中相互影响大 C 计算结果不可靠 D 不便于施工 10.下列施焊方位中,操作最困难、焊缝质量最不容易保证的施焊方位是 【 】 A 平焊 B 立焊 C 横焊 D 仰焊 11.有一由两不等肢角钢短肢连接组成的T 形截面轴心受力构件,与节点板焊接连接,则肢背、肢尖内力分配系数1k 、2k 为 【 】 A 25.0,75.021==k k B 30.0,70.021==k k C 35.0,65.021==k k D 35.0,75.021==k k

南京航空航天大学829计算机专业基础(A卷)2016年考研真题

科目代码:829科目名称:计算机专业基础 第1页 共4页 南京航空航天大学 2016年硕士研究生招生考试初试试题( A 卷) 科目代码: 829 科目名称: 计算机专业基础 满分: 150 分 注意: ①认真阅读答题纸上的注意事项;②所有答案必须写在答题纸上,写在本试题纸或草稿纸上均无 效;③本试题纸须随答题纸一起装入试题袋中交回! 数据结构部分(50分) 1.(10分)求下图中的关键路径,给出算法思想和求解过程每一步的状态。 2.(10分)输入关键字序列(55,12,24, 47,30, 68,19),建立平衡二叉树。说明算法思想,给出插入和调整的具体过程示意图。 3.(10分)说明基数排序的算法思想和数据结构,对数据序列( 130, 6, 458, 92, 12, 836, 250, 59, 525, 272 ),给出基数排序过程示意图。 4.(10分)设L 为带头结点的单链表,元素值为整型。编写函数,删除L 中的重复结点(具有相同元素值的结点只保留一个)。先给出算法思想,再写出程序代码。 5.(10分)已知一棵二叉链表表示的二叉树T,编写函数,判断T 是否是完全二叉树。先给出算法思想,再写出程序代码。 操作系统部分(50分) 6.(10分)回答下列问题: (1)试说明页面置换算法在虚拟存储管理中的重要性。(2分) (2)FIFO 算法适用于什么场合,又有何缺点 。(2分) (3)设页面走向为1,2,3,4,1,2,5,1,2,3,4,5,当物理页框数分别是3和4时,试问:采用FIFO、LRU 置换算法产生的缺页中断分别是多少?(这里假设内存开始时都是空的并且只要是第一次用到的页面都产生缺页中断)(6分) 7.(10分)A、B 两个程序,程序A 按顺序使用CPU 10秒,使用设备甲5秒,使用CPU 5秒,使用设备乙10秒,最后使用CPU 10秒,程序B 按顺序使用设备甲10秒,使用CPU 10秒,使用设备乙10秒,使用CPU 5秒,使用设备乙10秒。试问: V2 V 4 V6 V5 V 1 V 3 a7=6 a4=5 a8=1 a2=6 a3=2 a6=7 a5=4 a1=8

相关主题
文本预览
相关文档 最新文档