当前位置:文档之家› 水电站厂房设计

水电站厂房设计

水电站厂房设计
水电站厂房设计

网络教育学院

本科生毕业论文(设计)

题目:西江河水电站厂房设计

学习中心:奥鹏远程教育福州学习中心

层次:专科起点本科

专业:水利水电工程

年级: 2011 年秋季

学号: 111024401101

学生:黄培东

指导教师:李明理

完成日期: 2013年 9月 3日

内容摘要

在中国南方大河珠江干流西江河上,水力资源丰富,可供修建大中型水库和电站,西江河流域下游为该县的主要产粮区和工业发展区。由于受电力不足的影响,严重制约了该地区的经济发展,为了解决该地区的用电紧张问题和合理开发老灌河水力资源,拟定修建水利水电枢纽工程,以发电为主,结合防洪,城市供水,农田灌溉及水产等进行综合利用,因此本毕业设计承担水利水电枢纽工程中水电站厂房设计的部分工作。

根据已有的原始资料和该处地形图进行设计,主要内容有:水电站站址的选择,总体布置,水轮机型号的选择,蜗壳尺寸的确定,尾水管尺寸的确定,调速器和蝶阀的型号选择,水电站厂房尺寸的确定,尾水渠渠道布置、形式选择、开挖方量等,并根据要求绘制相应的平面布置图和剖面图。

关键词:水电站;枢纽布置;厂房布置

目录

内容摘要 ........................................................................................................................... I 引言 . (1)

1 设计资料 (3)

1.1 某水电站自然条件概况 (3)

1.2 某水电站建筑物规划概况 (3)

1.3 设计依据 (4)

2 水电站总体布置及厂区布置 (5)

2.1 水电站枢纽布置 (5)

2.2 主厂房位置布置 (5)

2.3 主变压器场及开关站选择 (6)

2.4 副厂房位置选择 (7)

2.5 安装间布置 (9)

3 水电站厂房设计 (10)

3.1 主厂房轮廓尺寸确定 (10)

3.1.1 主厂房各层高度和主要高程的确定 (10)

3.1.2 主厂房长度的确定 (12)

3.1.3 主厂房宽度确定 (13)

3.2 厂房内机电设备布置及交通运输 (14)

3.2.1 主厂房内机电设备的布置 (14)

3.2.2 厂内交通及起重设备的布置 (16)

3.3 主厂房结构布置 (17)

3.4 副厂房结构布置 (18)

结论 (20)

参考文献 (21)

引言

目前全世界的灯泡贯流式水电站总装机容量己超过60OOWM。己投产的电站装机容量最大的为美国石岛电站,总装机为432WM,共8台机组,其主要参数为:单机容量P=54WM,水头H=12.ml,转轮直径Dl=7.4m;单机容量最大的为日本只见电站,达P=65WM,最大水头H=20.0m,转轮直径D1=6.7m,转轮直径最大的为悉尼墨累电站,D1达8.2m。

在我国,从60年代开始研制灯泡贯流式机组,并在引进了国外灯泡贯流式机以后,开始了较大规模的仿制、消化吸收和研制工作,到1980年的广东白垢电站10姗级机组投产,标志着我国已基本掌握了灯泡贯流式机组的制造技术,使我国的研制工作产生了—个新的飞跃,为研制更大型的机组打下了基础。在珠江水系,低水头灯泡贯流式水电站的开发近年进入了—个高潮期,据不完全统计,珠江委设计院在九十年代中至今,在广东境内的北江、东江、梅江等河流,先后设计了大小灯泡贯流式水电站十多座,成为水电站设计任务的主力军。也说明灯泡贯流式水电站特别适合在低水头、大流量的平原河流中建设[1-3]。

本文在第一章设计资料:主要介绍了要设计水电站的基本资料,如该处自然条件,选择建站的理由等基本资料;第二章水电站总体布置及厂区布置:主要是论证了水电站内的各种厂房的布置规划的具体方案。第三章水电站厂房设计:主要是基于一、二章的基础上推导计算厂房里面的各项数据,以及厂房内部一些关键区域的布置规划方式。

本文整体设计思路如下流程图所示。

水电站厂房是水工建筑物、机械及电气设备的综合体,是水能转化为电能的生产场所,也是运行人员进行生产和活动的场所。其任务是通过—系列工程措施,将水流平顺的引入水轮机,使水能转换成为可供用户使用的电能,并将各种必需的机电设备安置在恰当的位置,创造良好的安装、检修及运行条件,为运行人员提供良好的工作环境。水电站厂房设计的发展随着生产力的发展而不断发展,且

随着人们生活水平的提高有新的发展趋向,近年向以人为本的方向发展,厂房设计的方法随着计算机的发展有很大的发展和改善[4-5]。

1 设计资料

1.1 西江河水电站自然条件概况

本水电站位于西江河中游,是西江河最后—个峡谷地段,再往下为开阔的大平原。

本水电站在A 城东北100km ,铁路、公路干线离电站仅10km ,可修筑支线通向工地。

本水电站控制的流域面积为215000km ,上游大部分为草原半干旱地区,因而多年平均流量仅350/m s 。

坝区河谷宽约1km ,河床中为砂卵石覆盖层,最大厚度达40m 。两岸为震旦纪白色石英岩、石灰岩。岩石很破碎。

本地区多年平均降水量750mm ,雨量多集中于6-9月,冬季最低温度可达20C ,夏季最高温度可达40C 。最大风速可达25m/s 。

地震设防烈度为7度。

1.2 西江河水电站建筑物规划概况

1、水库任务及电站运行方式

该水库是以防洪及工农业供水为主要任务的综合利用水库。总库容为43.75亿3m 。工农业及城市用水28.13/m s ,灌溉农田26.67万2h m 。本水电站是该水库的主要发电建筑物。根据水库的综合利用规划,本电站主要是利用水库供给的工农业用水发电。装机台数为6台,单机容量为1.5万kW 。总装机9.0万kW 。本电站在系统中担任峰荷,不发电时作调相运行[6]。

2、坝型及发电引水隧洞

该水库坝型为壤土斜墙砂石坝体的土坝。最大坝高66.39m ,长960.2m ,坝顶高程160m ,坝顶宽8m 。

本水电站设有—条泄水支洞,洞身前半部分兼用发电引水隧洞,后半部分则由—条施工支洞改建而成,泄水支洞与泄水渠相连,然后与尾水渠汇合,当万年—遇洪水时,泄水支洞配合其他泄洪建筑物共同宣泄洪水,以确保主坝安全;紧急降低水库水位时,泄水支洞需投入运行;水电站运行初期,安装机组台数较少时,利用泄水支洞泄水以满足下游灌溉用水要求,电站正常工作时,泄水支洞对电站尾水无影响。

发电引水隧洞布置在右岸,采用斜墙式进水口,洞长510m ,设有调压井。

3、其他设备

主要有以下设备:

蜗壳及尾水管:由厂家提供,型号为HL220-LJ-225。

机旁盘:每台机组3块,每块尺寸为0.8m ×0.55m ×2.10m(长×宽×高)。 励磁室:其尺寸为5.20m ×1.50m

蝴蝶阀:蝶阀布置在主厂房内,尺寸为3.4m ×1.2m 。

桥式吊车:桥式起重机最大起重量为发电机转子带轴重100t ,型号为100/20t 。

1.3 设计依据

1、依据发电量及装机容量,厂房按2级建筑物设计

2、水库水位(高程)

校核洪水位(万年—遇)159.50m ;

设计洪水位(千年—遇)157.50m ;

正常蓄水位(最高发电水位)156.50m ;

汛前限制水位:126.00m 。

3、电站尾水位:

最低尾水位(全部机组停机):91.50m ;

设计尾水位(单台机组满负荷工作3Q=34.5/s m )91.84m ;

正常尾水位(全部机组满负荷工作3Q=207/s m )93.50m ;

最高尾水位(3Q=507/s m )94.60m 。

4、电站工作水头:

设计水头51.20m ;

最大工作水头61.10m ;

最小工作水头37.80m 。

2 水电站总体布置及厂区布置

2.1 水电站枢纽布置

水电站枢纽的布置本文通从地形、地质、施工条件及运行管理等几个方面进行方案比较。本水电站枢纽位置共有两个待选方案,见下图。

方案比较如下:

方案—:水电站枢纽放在右岸,这样会使厂区位于山丘上,是的施工工程量加大。在交通不是非常便利,如果加宽路面就会使得其他厂房使用面积减少。

方案二:水电站枢纽放在左岸。由于河流地形开阔,船运和水运很方便,厂房前缘长度相对较小,—般可供布置建筑物的余地较多,此时应根据地形、地质条件,因地制宜作出多方总体布置方案。由于修建水电站后,改变了水流与原河床的相互作用的边界条件,造成枢纽上、下游河床冲淤的变化、为使水流与原河床在较短的时间内达到新的平衡,在枢纽布置时就要考虑原有的河势和发展趋势,顺应河势。最终从技术上、经济上全面综合论证,选择最优方案二。

2.2 主厂房位置布置

主厂房位置共有两个待选方案,见图。

方案比较如下:

方岸—:厂房位于离开坝脚的辉绿岩地带主厂房位于桔园平坦处,尾水渠布置在主厂房下游,斜对河岸。这个方岸的优点是(1)基础开挖几劈坡工程量小。(2)尾水出口与河道斜交,免受下泄洪水的顶托。(3)升压站紧接副厂房,缩短了引出线的长度。

方岸二:厂房位于靠近坝脚的白色石英岩陡壁下,位于进厂公路的—侧,升压站位于厂房的后方,尾水渠布置在主厂房的下游。这个方岸的优点是(1)靠近公路,交通便利。(2)升压站远离副厂房,延长了引出线的长度。

对于上述两个方岸的比较,可以得出结论:方岸—,工程量小,厂房布置紧凑,厂区布置合理,虽有—些不足之处,但较方案二是利多弊少,故采用方案—。

2.3 主变压器场及开关站选择

本电站主变压器场设40500kVA及150000kVA升压变压器各—台,该电站设开关站各—座。

变电站设计包括主变场和开关站设计:

(1)主变场设计

灯泡贯流式水电站主变压器的容量、重量和体积都较大。为了提高运行的可靠性,并缩短发电机母线的长度,主变压器应尽量靠近水轮发电机组,且在高压侧有方便的出线条件。为了便于使用厂房内吊车进行检修,主变压器—般布置在安装间的上、下游侧或进厂大门附近。主变场地面高程与安装间楼面高程—致,主变压器设有运输轨道进入安装间。

由于主变压器重量大,宜直接放在基岩上或置于混凝土墩墙结构上。主变压器应有良好的通风条件和可靠的防火措施。按规程规定,当主变压器用油量在25kN 以上时,主变压器之间防火净距应不小于10m,与露天绝缘油罐的净距应不小于15m。如面积小,达不到此要求时,则需用钢筋混凝土防爆墙隔开。主变压器底部设有集油坑,坑内铺卵石,并铺设排油管,将主变发生事故时漏出的油排走。若为厂外变压站则周围应设置防护墙或遮栏,高度不低于2.5m。

(2)开关站设计

开关站的布置形式分为户外开敞式开关站和全封闭组合电器(G工S)开关站两种。户外开敞式开关站的位置,要有足够的面积,并尽可能靠近主厂房,以缩短电缆的长度,开关站的位置还要便于高压输电线的出线;若条件许可,开关站也可放在厂区填高的河(滩)地上,设备和构架的基础做在基岩上。

建在山坡上或山脚下的开关站要避开断层、滑坡、危岩、滚石等不利地质地段,防止遭受山洪和泥石流的冲击而破坏。布置在岸边的开关站须避开泄洪水雾的侵袭和水流的冲击。选择开关站位置,还需考虑出线门构与高压输电线关站,也可将开关站布置在厂房顶或尾水平台上。

近年来,国内外多采用—种全封闭式六氟化硫(SF6)组合电器(GIS),可以大大缩小开关站的面积和图.25尾水平台开关站高度,更适用于地形受限制的电站。与通常设计的22OkV开关站相比,采用全封闭组合电器开关站的面积大大节省,仅为户外双母线低型布置的%5。但GIS室的布置要求较高,除室内清洁度有—定要求外,还要避开机组运行带来的震动。开关站的布置还要注意主要电气设备进行检修(维修)的方便。

2.4 副厂房位置选择

副厂房的位置有三个待选方案。方案—,将副厂房布置在主厂房上游侧压力岔管明管段的镇墩上;

方案二,将副厂房布置在主厂房下游侧的尾水平台上;方案三,将副厂房分成两部分:中控室、低压配电装置及蓄电池室等布置在安装场下游侧,而办公室及其他生产专用房间布置在主厂房左端。

方案比较如下:综上所述,由于国产机组调速器、油压装置等设备的要求,增设管道电缆层即主厂房分三层是合理的,但该布置形式的运行层楼板开孔较多,有发电机、水轮机的吊物孔,有调速器、油压装置的管道接口,且孔洞尺寸大,

需在孔洞边布置梁,这样梁格纵横交错,比较复杂,结构设计较为麻烦。因此选择方案三。

2.5 安装间布置

常用安装间布置形式有河床式、半河床式(单向挡水)、地面式。河床式多用大体积墙体结构、半河床式多为混合型结构,地面式多为框、排架结构。安装间位置、面积与结构布置考虑的因素有:

1)安装间位置:宜布置于厂房—端,且应大件进场与机组安装、检修均方便;

2)当电站要求几台机组同时安装时,可适当加大安装间的面积或利用主厂房机组段作临时安装场或另设副安装场;

3)安装场高程—般与主机段运行层高程相同;可视结构布置情况作多层或单层布置;

4)安装间长度考虑—台机组五大件(发电机定子、转子、外配水环、水轮机转轮、大轴与轴承)布置确定,—般取2倍的机组间距;

5)当利用安装场下部作副厂房用则安装间为多层布置,不利用为单层布置(直接座于地基上);

6)根据大件入场尺寸、考虑大件入场的方式、空间尺寸,确定进场大门的高度和宽度;

7)考虑主变压器入场、检修方式,确定变压器运输轨道布置;

8)考虑行车运行和检修的交通,结合厂内交通,考虑安装间副厂房人行交通;安装场基础—般需落在基岩上,以满足地基承载力要求,减少不均匀沉降。安装场至基岩面常采用箱型基础或实体混凝土结构,当安装场下还附设副厂房时,可采用密肋板梁结构,为增加底板抗弯能力,需在底板中部设中隔墙。

当安装间也作为挡水建筑物的—部分时,应复核安装间的整体稳定(包括抗浮稳定计算),必要时可采取—些如空箱抛填块石、灌注桩等工程措施来满足设计要求。安装间功能是按安装或大修时放置机组六大件考虑,其荷载主要有:结构自重、土压力、水压力、扬压力、楼面活载、吊车荷载、施工荷载(水平进厂时,还应考虑汽车荷载)等;安装间地面活荷载很大,—般按实际受力情况取用。

3 水电站厂房设计

3.1 主厂房轮廓尺寸确定

3.1.1 主厂房各层高度和主要高程的确定

(1) 水轮机安装高程▽T :

T W s H X =++▽▽ (3-1)

式中:

▽W —水电站正常运行时可能出现的最低下游水位,—般取—台机组的过流量相应的尾水位。

Hs —水轮机允许吸出高

s H 10)H 900

σσ=+▽-(△- (3-2) s 24765H 100190.04)29.24 3.0m 900

=+=.-(.- 导叶高度b0=0.511m

水轮机实际允许吸出高s H ′

σ—气蚀系数,由水轮机特性曲线决定

△σ—气蚀系数修正值,由水轮机厂家提供

H

—计算水头

▽—水电站厂房所在地点的海拔高程,初步设计时可采用下游平均水位高程

X —水轮机压力最低点与安装高程之间的差值,对于混流式水轮机

X = b0 / 2

在尾水渠设计时已算得下游平均水位为247.65m ,开—台机时,下游水深为247.12m 。

247.12 3.2560.511/2250.63m =++=T ▽

(2) 尾水管底板高程▽尾

0b 250.632

=尾▽--h (3-3) 式中:

h —尾水管高度

0.511250.6335=246.87m 2

=尾▽--. 0s s b 0.511H H 3 3.256m 22

=+=+=′

(3)主厂房基础开挖高程▽F

F 1h =尾▽▽- (3-4)

式中:

1h —尾水管底部浇注混凝土厚度,1m

F 246.871245.87m

=-=▽ (4)水轮机机层地面高程▽1

1T c 4h ρ=++▽▽ (3-5)

式中:

ρc —蜗壳进口断面半径

h4—蜗壳混凝土保护厚度,1m

1250.630.861.0=252.5m =++▽

(5)发电机装置高程▽G

G 156h h =++▽▽ (3-6)

式中:

h5—发电机机墩进人孔高度,1.8—2.0m

h6—发电机机墩进人孔顶部厚度,1m

G 252.5 1.81255.3m =++=▽

(6)发电机层地面高程▽2

2G 3

h =+▽▽ (3-7) 式中:

h3—发电机转子基坑深度

2255.3 1.18256.48m =+=▽

(7)吊车安装高程▽C

C 27891011

h h h h h =+++++▽▽ (3-8) 式中:

h7—发电机上机架高度

h8—吊运部件与固定的机组或设备间的垂直净距

h9—最大吊运部件高度

h10—吊运部件吊钩之间的距离

h11—主钩最高位置至轨道顶面的距离,可从起重机主要参数表查出

C 256.480.50.3310.552261.83=+++++=▽m

(8) 屋顶高程▽R

R 121314

C h h h =+++▽▽ (3-9) 式中:

h12—轨顶到吊车小车距离,可从起重机主要参数表查出

h13—吊车检修预留空间,0.5m

h14—屋面板厚度

R 261.83 2.340.50.5265.17m =+++=▽

3.1.2 主厂房长度的确定

0L=nL +L +L 安△

(3-10) 式中:

L —主厂房长度

n —机组台数

L0—机组段长度

L 安—安装间长度

△L —边机组段加长

⑴ 机组段长度L0的确定

0+L L L =+X X -

(3-11) ① 对于蜗壳层

+X +X 110L = R + = 2.97+1.2 = 4.17m

L = R + = 2.45+1.2 = 3.65m L = 4.17+3.65 = 7.81m

δδX X --

②对于尾水管层

+X 2X 20B

3.836

L = + = +1.2 = 3.118m

22B

3.836

L + = +1.2 = 3.118m 22L 3.118 3.118 6.236m

δδ==+=-

③对于发电机层,机组段间距由发电机定子外径控制

0L = D d +风

(3-12) 式中:

D 风—发电机风罩外缘直径

d —两相邻风罩通道间的距离

0L =5.527.5m +=

L0取三者中的大值,7.81m

⑵ 边机组段加长△L=(0.1~1)D0=1×1.4=1.4m

⑶ 安装间长度L 安=(1~1.5)L0=1.2×7.81=9.37m

取安装间长度为10米,则主厂房长度

37.8110 1.434.83L m =?++=

取主厂房长度为35米

3.1.3 主厂房宽度确定

x s B=B +B

3-13) 式中:

B —主厂房净宽

Bx —下游侧宽度

Bs —上游侧宽度

(1) 水下部分净宽的确定

①上游侧宽度

s B =1.25+1.0+0.8+4.0=7.05m

式中:

1.25—座环半径

1.0—混凝土保护层厚度

0.8—蜗壳上游侧断面直径

4.0—蝶阀坑宽度

②下游侧宽度

x B =1.25+1.0+1.74+1.5=5.49m

式中:

1.25—座环半径

1.0—混凝土保护层厚度

1.74—蜗壳下游侧断面直径

2—走道宽度

则,主厂房净宽7.05 5.4912.54s x B B B m =+=+=

(2)水上部分净宽的确定

①上游侧宽度

s B =2.75+5=7.75m

式中:

2 .75—发电机风罩半径

5—布置调速器,油压设备及机旁屏必需的距离

②下游侧宽度

x B =2.75+2.5=5.25m

式中:

2.75—发电机风罩半径

2.5—下游走道宽度

则,主厂房净宽7.75 5.2513s x B B B m =+=+=

取两者中的大值,主厂房的宽度为13m

3.2 厂房内机电设备布置及交通运输

3.2.1 主厂房内机电设备的布置

1、水轮发电机组的布置

灯泡贯流式水电站主变压器的容量、重量和体积都较大。为了提高运行的可靠性,并缩短发电机母线的长度,主变压器应尽量靠近水轮发电机组,且在高压侧有方便的出线条件。为了便于使用厂房内吊车进行检修,主变压器一般布置在安装间的上、下游侧或进厂大门附近。主变场地面高程与安装间楼面高程一致,主变压器设有运输轨道进入安装间。

由于主变压器重量大,宜直接放在基岩上或置于混凝土墩墙结构上。主变压器应有良好的通风条件和可靠的防火措施。按规程规定,当主变压器用油量在25kN 以上时,主变压器之间防火净距应不小于1m0,与露天绝缘油罐的净距应不小于15m 。如面积小,达不到此要求时,则需用钢筋混凝土防爆墙隔开。主变压器底部设有集油坑,坑内铺卵石,并铺设排油管,将主变发生事故时漏出的油排走。若为厂外变压站则周围应设置防护墙或遮栏,高度不低于2.5m 。

2、主阀的布置

主阀,当引水式电站采用联合供水或分组供水时,在蜗壳进口前设置一道快速闸门或蝴蝶阀,一般称为主阀。主阀可以装设在厂内也可以装设在厂外,设在厂内时运行管理安装等都比较方便,但增加了厂房宽度。主阀的上游侧要安装伸缩节,以方便其拆装。主阀布置在主阀层内,其控制设备就近布置。

3、蜗壳的布置

蜗壳层除过水部分外,均为大体积混凝土,布置较为简单。进人孔,在下部块体结构中要设有通向蜗壳和尾水管的进人孔,并设置通道。一般进人孔的直径为60cm,进人孔通道尺寸不小于1×1m。一般电站在蜗壳层以下的上游侧或下游侧均设有检查、排水廊道,作为运行人员进入蜗壳、尾水管检查的通道,有的电站还同时兼作到水泵室集水井的过道。

4、尾水管和尾水闸门的布置

水轮机的流道,一般都由厂家通过模型试验确定,经过比较及反复优化后所推荐使用的较优方案,流道尺寸部分一般不作修改,但有时也为了满足下游副厂房的布置要求,延长尾水流道的长度。尾水管段布置主要分为尾水锥管段、尾水混凝土渐变段、尾水事故(检修)闸门、尾水闸墩等。

尾水锥管段布置除考虑尾水管进人孔及尾水流道排水坑的位置外,还应重点考虑尾水锥管二期混凝土的预留布置设计,其一般应考虑以下几个因素:

a)预留尺寸结合尾水里衬安装支墩高程,固定、调节用的埋件位置等进行布置;

b)结合厂房的分层分块设计进行布置;

c)结合尾水锥管的安装方案进行布置,应优先考虑锥管安装完成后再浇锥管上半部分的流道顶板混凝土;

d)当锥管来货较晚,此时二期混凝土的预留应考虑在流道顶板浇筑完毕的情况下进行安装,以满足施工进度要求。

尾水门槽一般布置在尾水流道出口尾水闸墩处,为事故闸门,当闸门的下游(或上游)发生事故时,能在动水中关闭,且兼有检修闸门功能,两门同槽布置。

灯泡式机组尾水管出口顶部相应比较高,为了保证机组安全稳定运行,尾水管不能进气。因此在确定安装高程时,除满足多种工况的汽蚀要求外,还应满足机组在最枯流量运行即最低尾水位时,尾水管出口顶部应有一定的淹没深度,一般不小于(0.5一l)m。

5、调速系统

每台机组装设一套包括调速器、油压装置等附属设备组成的调速系统,根据电力系统要求自动调整机组的出力,同时使机组保持一定的额定转速。调速设备一般由下列三部分组成:调速器柜、作用筒(接力器)、油压装置。三部分之间用管路联系。

a.调速器柜。单机容量不同,机型不同,调速系统也不一样,调速柜的外形尺寸变化

不大,一般为方形,尺寸为800mm×800mm×1900mm。它以机械的传动杆和油管与作用筒相联。因作用筒多布置在机墩的上游侧,所以调速柜也多布置在发电机的上游侧。

b.作用筒(接力器)。作用筒是个油压活塞,大中型机组都采用两个,用来推转调节环。调节环带动导水叶来控制水轮机的引用流量,以调节机组的出力。因蜗壳上游断面尺寸较小,作用筒一般布置在上游侧机墩内。

c.油压装置。油压装置是由压力油罐、储油槽和油泵组成。油罐内油压为2.5MPa,供推动活塞用。油压靠压缩空气维持,所以油桶内上部为压缩空气。工作后的油回到储油槽,罐内油量不足时,由油泵将油槽中的油打入罐内。油泵一般为两台,一台工作,一台备用。

3.2.2 厂内交通及起重设备的布置

1、安装间的布置

安装间位于厂房右侧,采用半河床式混合型布置,前缘长41.4m7,下部底宽63.0m。上游平台宽17.30m,高程94.65m,与坝顶同—高程。坝顶公路下游侧,设有面积为10.75mx5.0m的垂直进厂运输井,与安装间上游进厂间相通。

安装间宽度与主机间相同,高程62.50m,面积为24.03x41.4m7。安装间高程53.00m至60.63m,采用钢筋混凝土格箱结构,箱格内回填石碴(施工时改为块石素混凝土),以满足稳定应力要求。安装间下游墩顶及平台高程均同主机间。

2、厂内交通

厂房与外界联系通道有三条:—条专供设备运输,由坝顶平台的运输井直接进入高程62.5m的进厂间;—条是安装间右端墙顶人行通道;—条是主机间左端墙顶人行通道及交通楼;两条通道均可联系坝顶公路、尾水副厂房及尾水交通平台。

安装间上游副厂房设—交通楼梯,可沟通安装间上游副厂房各层,及在下游

侧设—道屋面检修楼梯。尾水副厂房设有—座电梯和二道主楼梯,并在每机组段辅以—道简易楼梯,可沟通安装间下游副厂房、尾水副厂房各层及发电运行层。两道主楼梯直通至水轮机井底部,并通过交通廊道贯通主厂房。在安装间屋顶部位设置—条走火通道,必要时可通过此通道把运行人员从厂内疏散至尾水平台。

3.3 主厂房结构布置

主机间共设置6台灯泡机组,单机容量为3.8万wk。水轮机型号GZD320—WP—590(DFEM)、GZ(K4/0.38)—WP—590(HEC),发电机型号SFWG38—56/6500(DFEM)、SFWG38—56—6400(HEC)。水轮发电机组置于过水流道内,顺流向依次为进口段、座环段、转轮室和尾水管段。

进口流道宽由15.2m渐变至12.15m。布置有拦污栅及检修闸门各—道。拦污栅综合考虑工程量、造价及运行管理等诸因素后,推荐采用整体式斜栅布置,栅面与水平面呈80/交角,栅孔尺寸4.mox49.4m0(宽x高),每—流道设有3孔。检修门孔口尺寸为12.15mx14.21m;进口平台顺水流向宽26.10m,高程为94.65m。依次布置2xSONk耙头式清污机(轨距m4)、坝顶公路及2x1600kN双向门机,门机轨距7m。

座环段、转轮室段尺寸取决于机组运行、安装和检修要求,其底高程42.575m,最大高度14.05m,水轮机井底高程39.8m0,考虑结构尺寸,厂房建基最低高程35.80m,考虑流道顶板内布设电缆、管道廊道,流道顶板面高程62.50m。主机间宽为24.03m,备有二台双梁桥式起重机,其中—台起重量为150/50t,跨度为19.0m,轨顶高程为79.0m0;另—台起重量为32/5t,跨度为18.5m,轨顶高程为73.00m。桥机上游轨道梁支承在挡墙牛腿上,下游轨道支承在排架柱牛腿上。

主厂房屋顶采用钢网架屋面,钢网架安装高程为87.90m。

主厂房采用运行层和交通廊道层共二层布置方式,主机间发电运行层高程为62.50m,布置有油压装置和调速器。层内布置有发电机引出线电缆廊道、油气水管道廊道和机组进入孔。及供机组安装检修用的发电机井和水轮机井。其平面尺寸分别为5.45mx8.15m(D)、6.15mx7.70m(D)和 5.16xl2.0m。为便于工作人员管理维护,两孔均设置隔音盖板。在水轮机井底部,高程39.80m处,布置有贯穿主厂房的交通廊道层,主要功能为安装检修水轮机部分,同时也是尾水进人孔及渗漏、检修廊道的交通通道,此层布置有轴承油箱、测量管路、排水泵等辅助设备。为满足厂内通风要求,在主厂房上游侧设有送风道,风道顶高程为69.50m,并在风道顶布置有高位油箱。

水电站厂房设计(图文讲解)

水电站厂房设计 第一节水电站厂房的任务、组成及类型 一、水电站厂房的任务 水电站厂房是将水能转为电能的综合工程设施,包括厂房建筑、水轮机、发电机、变压器、开关站等,也是运行人员进行生产和活动的场所。 水电站厂房的主要任务: (1)将水电站的主要机电设备集中布置在一起,使其具有良好的运行、管理、安装、检修等条件。 (2)布置各种辅助设备,保证机组安全经济运行,保证发电质量。 (3)布置必要的值班场所,为运行人员提供良好的工作环境。 二、水电站厂房的组成 (一)从设备布置和运行要求的空间划分 主厂房:布置水电站的主要动力设备(水轮发电机组)和各种辅助设备,设置装配场(安装间)。 副厂房:布置控制设备,电气设备和辅助设备,是水电站运行、控制、监视、通讯、试验、管理和工作的房间。 主变压器场:装设主变压器的地方。水电站发出的电能经主变压器升压后,再经输电线路送给用户。 高压开关站:装设高压开关、高压母线、和保护措施等设备的场所,高压输电线由此送往用户。 此外厂房枢纽中还有:进水道、尾水道和交通道路等。 水电站主厂房、副厂房、主变压器场和高压开关站及厂区交通等,组成水电站厂区枢纽建筑物,一般称厂区枢纽。 (二)从设备组成的系统划分 水电站厂房内的机械及水工建筑物共分五大系统 (1)水流系统。水轮机及其进出水设备,包括压力管道、水轮机前的进水阀、蜗壳、水轮机、尾水管及尾水闸门等。 (2)电流系统。即电气一次回路系统,包括发电机及其引出线、母线、发电机电压配电设备、主变压器和高压开关站等。 (3)电气控制设备系统。即电气二次回路系统,包括机旁盘、励磁设备系统、中央控制室、各种控制及操作设备如各种互感器、表计、继电器、控制电缆、自动及远动装置、通迅及调度设备等直流系统。

风江水电站2×65MW设计_毕业设计

风江水电站2×65MW设计

摘要 本毕业设计主要是对风江水电站电气部分进行设计,该水电站的总装机容量为2×65=130MW。主接线方式采用单母线分段接线。主要内容包括主接线方案设计、主要设备选择、短路电流计算、电气一次设备的选择、计算。通过对水电站的一次主接线设计、短路电流的计算及主要电气设备的选行型及参数确定,较为细致地完成了风江水电站的设计。 毕业设计的过程是将理论与实际相结合的实践过程,起到学以致用,巩固和提升了对电气工程及自动化专业所学知识的运用和理解,树立工程设计的观念,提高了电力系统设计的能力。通过毕业设计,让我们理论联系实际,系统、全面地掌握所学知识,培养我们分析问题、工程计算和独立工作的能力,让我们树立工程观点,初步掌握发电厂电气部分的设计方法。并在计算、分析和解决工程实际问题等方面得到训练,为今后从事电力行业有关设计、运行、科研等方面的工作奠定坚实的理论基础。 这次毕业设计的课题来源于风江水电站,主要针对风江水电站在电力系统的地位,拟定本电厂的电气主接线方案,通过经济技术经济比较,确定推荐的最佳方案,并对其进行短路电流计算,对发电厂用电设备进行选择,然后对各级电压配电装置进行设计。在这些设计过程中需要用到各种电力工程设计手册,并借用CAD辅助绘图工具绘制电气主接线图。 通过本论文的研究,可以使风江水电站安全、可靠、经济地在系统中运行,保证其持续可靠、稳定地供电,同时也能提高自己使用CAD、word等软件的能力,培养了自己工程设计的概念,是对大学5年所学理论知识与实践的融会贯通的结晶。 关键词: 发电厂变压器主接线短路电流计算设备选型继电保护

水电站厂房设计

水电站厂房设计 一、水电站厂房的任务 水电站厂房是将水能转为电能的综合工程设施,包括厂房建筑、水轮机、发电机、变压器、开关站等,也是运行人员进行生产和活动 的场所。 水电站厂房的主要任务: (1) 将水电站的主要机电设备集中布置在一起,使其具有良好的运 行、管理、安装、检修等条件。 (2) 布置各种辅助设备,保证机组安全经济运行,保证发电质量。 (3) 布置必要的值班场所,为运行人员提供良好的工作环境。 二、水电站厂房的组成 (一) 从设备布置和运行要求的空间划分 主厂房:布置水电站的主要动力设备(水轮发电机组)和各种辅助设 备,设置装配场(安装间)。 副厂房:布置控制设备,电气设备和辅助设备,是水电站运行、控制、监视、通讯、试验、管理和工作的房间。 主变压器场:装设主变压器的地方。水电站发出的电能经主变压器 升压后,再经输电线路送给用户。 高压开关站:装设高压开关、高压母线、和保护措施等设备的场所, 高压输电线由此送往用户。 此外厂房枢纽中还有:进水道、尾水道和交通道路等。

水电站主厂房、副厂房、主变压器场和高压开关站及厂区交通等,组成水电站厂区枢纽建筑物,一般称厂区枢纽。 (二) 从设备组成的系统划分 水电站厂房内的机械及水工建筑物共分五大系统 (1) 水流系统。水轮机及其进出水设备,包括压力管道、水轮机前 的进水阀、蜗壳、水轮机、尾水管及尾水闸门等。 (2) 电流系统。即电气一次回路系统,包括发电机及其引出线、母 线、发电机电压配电设备、主变压器和高压开关站等。 (3) 电气控制设备系统。即电气二次回路系统,包括机旁盘、励磁设备系统、中央控制室、各种控制及操作设备如各种互感器、表计、继电器、控制电缆、自动及远动装置、通迅及调度设备等直流系统。 (4) 机械控制设备系统。包括水轮机的调速设备,如接力器及操作柜,事故阀门的控制设备,其它各种闸门、减压阀、拦污栅等操作 控制设备。 (5) 辅助设备系统。包括为了安装、检修、维护、运行所必须的各种电气及机械辅助设备,如厂用电系统(厂用变压器、厂用配电装置、直流电系统),油系统、气系统、水系统,起重设备,各种电气和机械修理室、试验室、工具间、通风采暖设备等。 水电站厂房组成(设备组成) (三) 从水电站厂房的结构组成划分 1.平面:主机室+安装间 主机室:水轮发电机组及辅助设备布置在主机室,是运行和管理的 主要场所;

水电站厂房的设计说明

绪论 水电站厂房是水电站主要建筑物之一,是将水能转换为电能的综合工程设施。厂房中安装水轮机、发电机和各种辅助设备。通过能量转换,水轮发电机发出的电能,经变压器、开关站等输入电网送往用户。所以说水电站厂房是水、机、电的综合体,又是运行人员进行生产活动的场所。其任务是满足主、辅设备及其联络的线、缆和管道布置的要求与安装、运行、维修的需要;为运行人员创造良好的工作条件;以美观的建筑造型协调与美化自然环境。 水电站厂区包括: (1)主厂房。布置着水电站的主要动力设备(水轮发电机组)和各种辅助设备的主机室(主机间),及组装、检修设备的装配场(安装间),是水电站厂房的主要组成部分。 (2)副厂房。布置着控制设备、电气设备和辅助设备,是水电站的运行、控制、监视、通讯、试验、管理和运行人员工作的房间。 (3)主变压器场。装设主变压器的地方。电能经过主变压器升高到规定的电压后引到开关站。 (4)开关站(户外高压配电装置)。装设高压开关、高压母线和保护措施等高压电气设备的场所,高压输电线由此将电能输往用户,要求占地面积较大。 由于水电站的开发方式、枢纽布置、水头、流量、装机容量、水轮发电机组形式等因素,及水文、地质、地形等条件的不同,加上政治、经济、生态及国防等因素的影响,厂房的布置方式也各不相同,所以厂房的类型有各种不同的划分,例如按机组工作特点可分为立式机组厂房、卧式机组厂房。根据厂房在水电站枢纽中的位置及其结构特征,水电站厂房可分为以下三种基本类型: 1. 坝后式厂房。厂房位于拦河坝下游坝趾处,厂房与坝直接相连,发电用水直接穿过坝体引人厂房。 2. 河床式厂房。厂房位于河床中,本身也起挡水作用,如西津水电站厂房。若厂房机组段还布置有泄水道,则成为泄水式厂房(或称混合式厂房),。 3. 引水式厂房。厂房与坝不直接相接,发电用水由引水建筑物引人厂房。当厂房设在河岸处时称为引水式地面厂房。 水电站厂房是专门的水工建筑物,它具有一般水工建筑物的共性,故其设计有以

水电站厂房课程设计

2015年秋水利水电工程专业水电站厂房课程设计 1.课程设计的目的 课程设计是以工程实例为题,由学生独立思考,灵活应用有关的布置原则和要点,自己动手布置厂房,从而巩固和加深厂房部分的理论知识,并进一步培养学生的计算,制图和应用技术资料的技能。 2.工程枢纽概况 水库库区跨越S、N两河,地处MY县城以北20km,两条河在MY县城以南约10km 处汇合成SN河。 水库是以防洪及工农业供水为主要任务,兼有发电效益的综合利用水利工程。 水库各特征水位如下: 死水位:▽126.0m 正常高水位:▽157.50m 设计洪水位:▽158.20m 校核洪水位:▽159.50m 坝顶高程:▽160.00m 主要建筑物包括: (1)挡水建筑物 有N、S主坝两座及副坝五处,为碾压式粘土斜墙土坝,最大坝高为N河主坝,高66.4m,S河主坝高56m,各副坝15.7m~39m不等。 (2)泄水建筑物 ①溢洪道:有S河左岸第一、第二溢洪道。第一溢洪道为正常溢洪道,底部高程▽140m,宣泄超过100年一遇的洪水,为5孔带胸墙式河岸溢洪道。 第二溢洪道为非常溢洪道,与第一溢洪道配合,宣泄1000年洪水,底部高程▽148.5m,为5孔开敞式河岸溢洪道。 ②隧洞: a. N河左岸发电隧洞,用作发电供水和下游工农业供水,并在调压井上游设泄水支洞,用以宣泄10000年一遇特大洪水。进水塔进口底部高程为▽116.0m,洞径6m,洞长416m,底坡i=1/400,调压室为园筒式,内径17.14m,调压室后接2根埋藏式压力钢管,管径5.5m,管长125m。

b. S河发电泄水隧洞,任务是施工导流,发电、灌溉、供水和泄水。 见图1所示。 ③坝下廊道: 为施工期的临时建筑物,施工导流采取S、N两河分别导流的方式,故设N河导流廊道、 210 180 150 图一:枢纽布置图(1:3000) S河导流廊道,可宣泄20年一遇洪水,另有南石骆驼输水廊道,用以泄放3个流量的

水电站毕业设计

目录 摘要 (1) 前言 (2) 第一部分:水力机组选型设计和调节保证计算 (3) 1水轮机的选型设计 (3) 1.1水轮机选型设计概述 (3) 1.2水轮机选型设计的任务 (3) 1.3水轮机选型的原则 (3) 1.4水轮机选型设计的条件及主要参数 (3) 1.5水轮机台数及型号的选择 (4) 1.6初选工况点A (5) 1.8额定转速的确定 (6) 1.9 效率及单位参数的修正 (7) 1.10 核对所选择的真机转轮直径 D................................... 错误!未定义书签。 1 1.11 确定水轮机导叶的最大可能开度 a.......................... 错误!未定义书签。 ok 1.12计算水轮机额定流量 Q ............................................... 错误!未定义书签。 r H ................................... 错误!未定义书签。 1.13确定水轮机的允许吸出高度 s 1.14计算水轮机的飞逸转速 (19) 1.15 计算水轮机轴向水推力∞ P ......................................... 错误!未定义书签。 1.16 估算水轮机的质量 (20) 1.17 绘制水轮机运转综合特性曲线 (20) 2水轮发电机的的初步选择计算 (24) 2.1水轮发电机的结构形式和冷却方式 (24) 2.2发电机主要尺寸的估算 (24) 2.3发电机外形尺寸估算 (25) 2.4水轮发电机的质量估算 (26) 3调节保证计算 (27) 3.1调节保证计算概述 (27) 3.2调节保证计算的标准 (27) 3.3计算基本数据 (27) L . 错误!未定义 3.4计算设计水头、最大水头下额定出力时引水系统的∑i i V 书签。 T和关闭规律 (28) 3.5假定导叶的直线关闭时间 f 3.6水击压力上升计算 (28)

毕业设计-小型水电站电气部分设计

毕业设计成果 Graduation practice achievement 设计项目名称110KV变电站初步设计

序 毕业设计是我们完成大学学习的最后一次总结与学习的机会,是对我们所学各门功课的综合运用与提高。通过这次毕业设计,巩固与加深了我们所学的理论专业知识,锻炼了我们分析与解决实际工程问题的能力培养和提高了我们综合实用技术规范,技术资料和进行有关计算,设计和绘图,编写技术文件的初步技能,为今后的工作和学习打下坚实的基础。 这次的毕业设计是由仇新艳老师带领的,在设计期间老师和我们共同讨论,一起学习,对我的启发良多。对此我很感谢仇老师的耐心指导,尤其是仇老师碰到问题时那积极解决问题的态度很值得我学习。 最后我还要感谢我们这组同学,在设计期间,大部分都是经过我们的仔细讨论我才解决了我的一些疑惑。通过短路电流的计算,教会了我对于高压电气的具体选型及校验方法;对于在设计过电压防护中我学会了如何来确定避雷针的高度;对于厂用变压器的选择,我也有了很深刻的认识。以上种种问题的解决,才使我的毕业设计最后能按时的完成,对此我很感谢。 这期间我查阅了大量的资料,极大的锻炼了我搜集资料和分析资料的能力,为我以后的就业提供了很大的帮助。最后我很感谢学院的领导和老师们对我这三年的教育和关怀。

目录 序 第一章原始资料 (4) 1.1水能资料 (4) 1.2 电力系统资料 (4) 第二章电气主接线设计 (6) 2.1 电气主接线设计概述 (6) 2.2 主接线方案的选择 (7) 第三章短路电流计算 (9) 3.1 短路电流计算的目的 (9) 3.2 短路电流计算的一般规定 (9) 3.3 短路电流计算的内容 (9) 3.4 短路电流计算方法 (10) 3.5 短路电流的计算 (10) 第四章厂用电的设计 (23) 4.1 厂用电设计的基本要求 (23) 4.2 水电站厂用电的特点 (23) 4.3 统计原则及计算分析过程 (23) 4.4 厂用电气的选择 (26) 4.5校验 (27) 第五章电气设备的选择及校验 (28) 5.1 35KV断路器选择与校验 (28) 5.2 35KV隔离开关选择与校验 (29) 5.3 35KV电流互感器选择与校验 (30) 5.4 35KV电压互感器选择与校验 (31) 5.5 熔断器的选择与校验 (32) 5.6 避雷器的选择 (33) 5.7 母线的选择 (33) 5.8 6.3KV开关柜及电气设备的选择 (34) 第六章过电压保护 (37) 6.1 造成水电站事故的原因 (37) 6.2 感应雷和雷电侵入波的防护 (37) 6.3 直击雷的防护 (37) 参考文献 (39) 附图

沁河河口村水库大机组电站厂房设计

沁河河口村水库大机组电站厂房设计 刘增强 柴志阳 孟旭央 (黄河勘测规划设计有限公司 工程设计院) [摘 要]河口村水库以防洪、供水为主,兼顾灌溉、发电和改善河道基流等综合作用。电站分大机组和小机组两个电站,总装机容量为11.6 MW。其中大电站以发电为主,并提供生态基流,装机容量为10 MW;小电站兼发电和向沁北电厂供水双重任务,装机容量为1.6 MW。本文主要讲述大电站的厂区布置、结构布置、副厂房结构布置设计优化及稳定应力计算等内容,为类似工程的设计可提供一定参考价值。 [关键词]电站厂房 河口村水库 沁河 1 工程概述 河口村水库位于黄河一级支流沁河最后一段峡谷出口处,下距五龙口水文站约9 km,属河南省济源市克井乡,是控制沁河洪水、径流的关键工程,也是黄河下游防洪工程体系的重要组成部分。开发任务是“以防洪、供水为主,兼顾灌溉、发电、改善河道基流等综合利用”。水库总库容3.17亿m3,最大坝高122.5 m,正常蓄水位275 m。 电站分大、小机组两个电站,总装机容量11.6 MW。大电站以发电为主,并提供生态基流;小电站兼发电和向沁北电厂供水双重任务。大机组电站为岸边式地面厂房,由2台混流式水轮发电机组、安装间及副厂房组成,总装机容量为10 MW,额定水头76.00 m,单机额定流量7.80 m3/s,机组安装高程为171.20 m。 根据《中国地震动参数区划图》(GB18306-2001),确

定河口村坝址场地地震动反应谱特征周期为0.40 s,地震动峰值加速度0.1 g,确定电站抗震设计烈度为7度。 河口村水库工程等别为Ⅱ等,属大(2)型。根据《水利水电工程等级划分及洪水标准》(SL252-2000),电站厂房及次要建筑物为3级,电站厂房按50年一遇洪水设计,200年一遇洪水校核。 2 大机组电站厂区布置 大电站采用岸边式地面厂房布置型式,安装间布置在主机间右侧,中控室及交接班室均布置在安装间的上游侧,主变压器布置在主机间上游室外地面高程180.00 m的平台上,考虑主变检修、消防等要求,两台主变压器之间,变压器与主厂房、中控室分别通过防火墙分隔。 厂房上游侧设置不小于4.00 m宽的消防通道,路面高程为180.00 m,可以满足消防车作业的需要,净空高度无障碍,满足有关规范要求。主厂房的对外交通出入口,布置在安装间右山墙侧,与进厂公路平顺相连。 尾水平台高程为180.00 m,高于200年一遇校核尾水位179.45 m。机组尾水闸门孔口尺寸为2.82 m×1.34 m(宽×高),底坎高程168.39 m,采用平板钢闸门,两台机组共用一台单轨移动式启闭机,为满足尾水闸门检修要求,计算确定起闭机牛腿底高程为185.30 m。

水电站设计方案

坝后式水电站毕业设计 5.1 设计内容 5.1.1 基本内容 5.1.1.1 枢纽布置 (1) 依据水能规划设计成果和规范确定工程等级及主要建筑物的级别; (2) 依据给定的地形、地质、水文及施工方面的资料,论证坝轴线位置,进行坝型选择; (3) 论证厂房型式及位置; (4) 进行水库枢纽建筑物的布置(各主要建筑物的相对位置及形式,划分坝段),并绘制枢纽布置图。 5.1.1.2 水轮发电机组选择 (1) 选择机组台数、单机容量及水轮机型号; (2) 确定水轮机的尺寸(包括水轮机标称直径D1、转速n、吸出高度Hs、安装高程Za); (3) 选择蜗壳型式、包角、进口尺寸,并绘制蜗売单线图; (4) 选择尾水管的型伏及尺寸; (5) 选择相应发电机型号、尺寸,调速器及油压装置。 5.1.1.3厂区枢纽及电站厂房的布置设计 (1) 根据地形、地质条件、水文等资料,进行分析比较确定厂房枢纽布置方案; (2) 核据水轮发甴机的资料,选择相应的辅助设备,进行主厂房的各层布置设计; (3) 确定主厂房尺寸; (4) 副厂房的布置设计; (5) 绘制主厂房横剖面图、发电机层平面图、水轮机层和蜗壳层平面图各?张。 5.1.0 选作内容 5.1.2.1 引水系统设计 (1) 进水口设计。确定进水口高程、型式及轮廓尺寸; (2) 压力管道的布置设计。确定压力管道的直径;确定压力管道的布置方式和各段尺寸;

5.2 基本资料 本水电站在MD江的下游,位于木兰集村下游2km处。坝址以上流域控制面积30200km2。 本工程是一个发电为主,兼顾防洪、灌溉、航运及养鱼等综合利用的水利枢纽。电站投入运行后将承担黑龙江东部电网的峰荷,以缓解系统内缺乏水电进行调峰能力差的局面。 本工程所在地点交通比较方便,建筑材料比较丰富,是建设本工程的有利条件。电站地理位置图见图5-1。

水电站厂房设计

第十一章水电站地面厂房布置设计 第一节水电站厂房的任务、组成及类型 一、水电站厂房的任务 水电站厂房是水能转为电能的生产场所,也是运行人员进行生产和活动的场所。其任务是通过一系列工程措施,将水流平顺地引入水轮机,使水能转换成为可供用户使用的电能,并将各种必需的机电设备安置在恰当的位置,创造良好的安装、检修及运行条件,为运行人员提供良好的工作环境。 水电站厂房是水工建筑物、机械及电气设备的综合体,在厂房的设计、施工、安装和运行中需要各专业人员通力协作。 二、水电站厂房的组成 水电站厂房的组成可从不同角度划分。 (一)从设备布置和运行要求的空间划分 (1)主厂房。水能转化为机械能是由水轮机实现的,机械转化为电能是由发电机来完成的,二者之间由传递功率装置连接,组成水轮发电机组。水轮发电机组和各种辅助设备安装在主厂房内,是水电站厂房的主要组成部分。 (2)副厂房。安置各种运行控制和检修管理设备的房间及运行管理人员工作和生活用房。 (3)主变压器场。装设主变压器的地方。水电站发出的电能经主变压器升压后,再经输电线路送给用户。 (4)开关站(户外配电装置)。为了按需要分配功率及保证正常工作和检修,发电机和变压器之间以及变压器与输电线路之间有不同电压的配电装置。发电机侧的配电装置,通常设在厂房内,而其高压侧的配电装置一般布置在户外,称高压开关站。装设高压开关、高压母线和保护设施,高压输电线由此将电能输送给电力用户。 水电站主厂房、副厂房、主变压器场和高压开关站及厂区交通等,组成水电站厂区枢纽建筑物,一般称厂区枢纽。 (二)从设备组成的系统划分 水电站厂房内的机械及水工建筑物共分五大系统 (1)水流系统。水轮机及其进出水设备,包括压力管道、水轮机前的进水阀、蜗壳、水轮机、尾水管及尾水闸门等。 (2)电流系统。即电气一次回路系统,包括发电机及其引出线、母线、发电机电压配电设备、主变压器和高压开关站等。 (3)电气控制设备系统。即电气二次回路系统,包括机旁盘、厉磁设备系统、中央控制室、各种控制及操作设备如各种互感器、表计、继电器、控制电缆、自动及远动装置、通迅及调度设备等直流系统,如图11-1所示。

水电站厂房课程设计

《水电站》课程设计目录 目录 第一章任务书 (1) 1.1 目的 (1) 1.2 设计内容和要求 (1) 1.3 应提交的设计成果 (1) 第二章基本资料 (2) 2.1 工程概况 (2) 2.2 电站枢纽 (2) 2.3 设计依据及参数 (2) 第三章设计过程 (5) 3.1 确定设备尺寸 (5) 3.1.1 蜗壳尺寸 (5) 3.1.2 水轮机和尾水管尺寸 (6) 3.1.3 发电机尺寸 (7) 3.2 厂房尺寸 (7) 3.2.1 主厂房的平面尺寸 (7) 3.2.2 主厂房的立面尺寸 (9) 3.3 主厂房各层布置 (10) 3.3.1 发电机层布置 (10) 3.3.2 水轮机层布置 (11) 3.3.3 蜗壳层布置 (12) 3.4 副厂房的布置 (12) 3.5 厂区枢纽布置 (12)

第一章任务书 1.1 目的 通过本设计,进一步巩固和加深水电站厂房部分的理论知识,使学生初步掌握水电站厂房设计的步骤和方法,培养和提高学生独立分析问题和运用所学理论知识解决实际问题的能力。 1.2 设计内容和要求 根据给定的原始资料及机电设备,决定厂房在枢纽中的位置,进行厂区和厂房内部的布置,确定厂房的轮廓尺寸。 1.3 应提交的设计成果 (-)设计说明书一份。 (二)水电站厂房设计布置图三张: 1、沿机组中心线厂房横剖面图(1:100); 2、发电机层平面图(1:100-1:200); 3、水轮机层、蜗壳层综合平面图(1:100-1:200)。 (三)厂房枢纽布置简图一张(1:1000)。

第二章基本资料 2.1 工程概况 湘贺水利枢纽位于向河上游,河流全长270km,流域面积6000km2,属于山区河流。本枢纽控制流域面积1350km2,总库容22.15m3,为多年调节水库。 本枢纽的目标是防洪和发电。主要建筑物有重力拱坝,坝高77.5m,弧长370m;泄洪建筑物;开敞式溢洪道或泄洪隧洞;发电引水隧洞及岸边地面厂房等工程。水电站总装机60MW,装机4台,单机15MW。电站担任工农业负荷,全部建成后担任系统灌溉负荷。 2.2 电站枢纽 电站厂房位于右岸坝下游几十米处,由引水隧洞供水,主洞内径5.5m,支洞内径3.4m,厂内装置4台混流式立式机组,出线方向为下游,永久公路通至左岸,开关站布置在左岸开阔平地上。 2.3 设计依据及参数 (一)水库及水电站特征参数 (1)水库水位。水库校核洪水位为140.00m,水库设计洪水位为137.00m,水库正常蓄水位为125.00m,水库发电死水位为108.00m,设计洪水尾水位为77.00m,校核洪水尾水位为78.50m。 (2)厂址水位—流量关系见表2—1. (3)水电站特征水头。最大水头为56.00m,最小水头为38.00m,平均水头为50.84m, 2

水电站厂房课程设计计算书1

2013年秋季学期课程设计 水利与环境学院系(院)水利水电工程专业 题目水电站厂房课程设计 学生姓名胡浩凡 班级10水利水电工程(1)班 学号2010101143 指导教师朱士江 日期2014 年01 月08 日 三峡大学教务处订制

水电站厂房课程设计说明书 1 绘制蜗壳单线图 1.1蜗壳的型式: 首先,本水电站水轮机的最大工作水头80.440>=m H m m ,应采用金属蜗壳;其次,由水轮机的型号HL220—LJ —120,可知本水电站采用金属蜗壳。 1.2蜗壳主要参数的选择 金属蜗壳的断面形状为圆形 为了获得良好的水力性能,圆形断面金属蜗壳的包角一般取φ0 =345°(P98)。 由基本资料可知: 3max 12.03m /s =Q 蜗壳进口断面流量max 0360 ?= c Q Q 3345 12.0311.53/360 = ?=c Q m s 。 由图4—30(P99)查得蜗壳进口断面平均流速 6.6/=c V m s 。 1.3座环尺寸 查金属蜗壳座环尺寸系列表可知,表中最小转轮直径为1800mm 。对表中数据进行分析,发现转轮直径和座环内外径成线性关系,利用excel 拟合直线,求出 17.3074983.11+=D D a , 54.1852938.11+=D D b 。 当11200=D mm 时 mm D a 2105=,mm D b 1738=,则mm r a 5.1052=,mm r b 869=。 其中:b D —座环内径;a D —座环外径;b r —座环内半径;a r —座环外半径。

座环示意图如下图所示 座环尺寸(单位:mm ),比例1:100 1.4蜗壳的水力计算 1.4.1对于蜗壳进口断面(P100) 断面面积20max 34512.03 1.75360360 6.6 ??= ===?c c c c Q Q F m V V 断面的半径0max max 0.746360360 6.6ρπ π = = = =???c m V 。 从轴中心线到蜗壳外缘的半径:max max 2 1.052520.746 2.545ρ=+=+?=a R r m 。 1.4.2 对于断面形状为圆形的任一断面的计算 设i ?为从蜗壳鼻端起算至计算面i 处的包角,则该计算断面处的max 360 i i Q Q ?= , i ρ= 2i a i R r ρ=+。 其中:3max 12.03/=Q m s , 6.6/=c V m s , 1052.5 1.0525==a r mm m 。 表 1—1

水电站厂房设计及问题分析与解决措施一

水电站厂房设计及问题分析与解决措施 摘要:随着科学技术的快速发展,我国的水电站建设越来越多,伴随着的水力发电被广泛应用起来。然而水电站厂房建设是水电站的基础建设,只有合理地对水电站厂房进行设计,在施工中解决问题,才能根本的解决水电站厂房的建设问题。本文主要分析了水电站厂房设计,并对水电站厂房建设存在的问题和解决措施进行了探讨。 关键词:水电站厂房;设计;问题;解决措施 一、水电站厂房设计 1.1 方案确定 在水电站厂房的方案确定过程中,应对厂址的地质、地形、水文条件以及施工单位具体要求等方面做实地考察与研究,并确定最佳的建设方案。例如在考察过程中,可确定河床式或者引水式以及长尾水渠式等形式,以确保使其发挥最大的效果。 1.2 布置特点 在厂房的布置方面,对于地形特点的依赖性更大。包括各个建筑的排布形式、溢洪坝位置、厂房布置位置等方面。核心方面就是发电厂房,特别要考虑河床弯道水流的影响, 应使水流进出厂房顺畅, 泥砂不易淤积, 确保安全运行, 管理方便。以某水电站建设为例,在建设过程中,发现河床较宽,因此可采用“一”字形排布;同时与闸坝结构合为一体,便于利用水力条件。在这一过程中,还需要保证施工的安全可靠。 1.3 参数标准 在厂房本身的设计过程中,需要充分考虑水源的蓄水深度、总水含量、装机容量等方面,同时也需要考虑附近农田的面积。以确保水电站在发电的过程中,也具有灌溉、泄洪及蓄水等综合作用。一般来讲,根据当地近100 年来的气候特点,对水电站厂房的抗风、抗震能力需要论证,并给与相应的极限范围。 1.4 配套设施的布置设计 (1)主变压器与开关站 主变压器可安置两台,紧邻安装场,同时可利用钢轨道进行推进。对于开关站来说,为保证其安全可靠,采取户内式结构。同样紧邻安装场,距离约15 米。实际执行过程中,有两回进线、四回出线的形式进行,提高了效率。 (2)交通安排 厂房内部的交通较为便利,上下层之间有楼梯连接,各个工作室或者设施之间有通道连接。在室外也有各类通道相连,便于人行和机动车辆行驶。 (3)排水系统 对于厂房的排水系统,主要由深水泵及集水井完成。并在厂房机组上游布置排水廊道。在实际应用过程中,与集水井相通。为了防洪需要和不至于发生洪水淹没厂房的事故,下游最高洪水位低于厂区地面高程,厂区排水均通过地面排水沟自动排至下游尾水渠内。

最新整理水电站厂房设计资料

水电站厂房设计 指导老师:徐寅 一、任务书 1、设计技术要求 厂房课程设计重点是主厂房内部主要设备和结构的布置,以及轮廓尺寸的决定,设计图应符合工程图纸的要求,说明书应能说明设计内容,文字通顺,整洁

2、 工作内容 水电站厂房课程设计要求学生根据所给任务书,利用说给的资料,完成下列工作: 用简略的方法选择厂房的主要和辅助设备 进行厂区和厂房内部布置,决定厂房的轮廓尺寸 绘制设计图纸和编写设计说明书 二、工程概况 该水电站是一座以发电为主兼有防洪、灌溉、过木、供水等综合效益的县办骨干电站。采用钢筋混凝土堆石坝,最大坝高74m ,坝址以上控制流域面积564k ㎡,占全流域面积的75.3%,多年平均流量为s m /6.173水库总库容为3810783.2m ?,属多年调节。厂房为坝后式,安装3台8000KW 机组,总装机容量KW 4104.2?,保证出力5500KW ,多年平均发电量h KW ??4107260,年利用小时3025h ,在系统中(地方电网)担任调峰、调相任务,并可对下游梯级进行调节,经济效益显著。 在枢纽布置上,为避免厂房、溢洪道、筏道的相互干扰,将岸坡式溢洪道布置在坝左岸的一鼻形山脊上,用钢筋混凝土挡土墙与堆石坝衔接,出口消能采用挑流形式。过木干筏道布置在坝左岸的山坡上。隧洞布置在坝右岸的山体中,具有导流、发电引水和放空等多种功能,即施工期用隧洞导流,并在导流洞口上的山岩中另开一洞口,与隧洞相连成为“龙抬头”形式,采用塔式进水口作为发电引水和放空隧洞的首部,水库蓄水时将导流洞口封赌。隧洞直径为5.2m 。隧洞出口设有放空水库用的闸门。在放空闸门上游另凿发电引水岔洞,洞径4.6m ,然后以三根m 2Φ的钢支管与机组相连。 本工程规模属大(2)型,枢纽为二等工程,电站厂房按3级建筑物设计。 三、主要设备 1、水轮机和发电机 电站最大水头H max =64.3m ,加权平均水头H cp =59.63m ,最小水头H min =38.02m 。按水头范围及装机容量,套用3台现有机组。水轮机的型号为HL220-LJ-140,单机额定出力为8333KW ,该机组适用H max =65m ,H min =38m ,额定流量16.5m 3/s ,和电站水头范围比较匹配。发电机型号为SF8000-16/3300,单机额定出力8000KW (悬式),采用密封式通风,可控硅励磁。水轮机导叶b0为0.35m 。水轮机带轴长3.74m ,发电机转子带轴长 4.785m.。一台机组在设计水头、额定出力下运行的尾水位为100.1 m 。 2、调速器:选用 YDT-3500型电气液压式 3、主阀:采用卧式液压型摇摆式接力器双平板偏心蝴蝶阀

水电站毕业设计论文(学术参考)

摘要 本次毕业设计的主要任务是根据原始资料进行一个发电厂主接线的初步设计,并对其一次设备进行选择,进而对继电保护进行规划和对配电装置进行规划。设计主要内容包括:电气主接线设计、短路电流计算、主要电气设备选择、校验及配电装置初步设计和继电保护的规划等。主要的电气设备选择有:主变压器、高压厂用变压器、高压断路器、隔离开关、电流互感器、电压互感器、避雷器及母线等的选择。 电气主接线是发电厂的主要环节,故本文对数个电气主接线方案进行了技术经济综合比较,确定了一个较佳方案,并根据此方案对全厂电气设备的选择、配电装置的布置、继电保护的规划等,进行了详细的设计和说明。本设计包括六部分:电气主接线选择,电气设备选择,短路电流计算,配电装置规划,继电保护规划及其整定。 关键词:发电厂;主接线;短路电流;电气设备;配电装置;继电保护

ABSTRACT This graduation project topic is s according to the first hand information designs a electric power plant, and mainly carries on the design to its equipment. Then design the power distribution equipment and relay protection planning. Designs the main content to include: The electrical host wiring design, the wiring design, the short-circuit current computation, the main electrical equipment choice , the verification and the power distribution equipment preliminary design and relay protection planning and so on. The main choice electrical equipment includes: The main transformer, the high-pressured factory use the transformer, the high-pressured circuit breaker, the isolator, the current transformer ,the voltage transformer, the arrester and the generatrix and so on. Main electrical scheme is the main part of substation, so this thesis synthetically compares several main electrical schemes from technical and economic aspects and picks up one preferable scheme. According to the chosen scheme, detailed design and instruction are carried out about the electric apparatus selection, distribution equipment arrangement, relay protection, and so forth.This thesis consist of six parts:main electrical scheme select,main choice electrical equipment,short-circuit current calculation,distribution equipment arrangement, relay protection and verification on the selection short dot. Key words: electric power plant; electrical main wiring; short-circuit current; electrical equipment; the power distribution equipment; relay protection

中小型水电站电气部分初步设计毕业设计论文

郑州电力职业技术学院 学生毕业论文 论文题目:中小型水电站电气部分初步设计 院系:电力工程系 年级: 2011级 专业:发电厂及电力设备 摘要 本篇毕业设计主要是对某水电站电气部分的设计,包括主接线方案的设计,主要设备选择,短路电流计算,电气一次设备的选择计算。通过对

水电站的主接线设计,主接线方案论证,短路电流计算,电气设备动、热稳定校验,主要电气设备型号及参数的确定,较为细致地完成电力系统中水电站设计。 限于毕业设计的具体要求和设计时间的限制,本毕业设计主要完成了对水电站电气主接线设计及论证,短路电流计算,电气一次设备的选择计算,电气设备动、热稳定校验、电气设备型号及参数的确定做了较为详细的理论设计,而对其他方面分析较少,这有待于在今后的学习和工作中继续进行研究。 关键词 电气主接线;短路电流;电气一次设备。

目录 摘要 ..........................................................I Abstract ...................................... 错误!未定义书签。 第1章前言 (1) 1.1设计题目 (1) 1.2水电站电气部分研究的背景 (2) 1.3本课题的研究意义 (2) 1.3.1 电站电气主接线的论证意义 (2) 1.3.2 电气一次设备和二次设备选择及计算的意义 (3) 1.3.3 短路电流计算的意义 (3) 1.3.4 本课题研究的现实意义 (3) 1.4本课题的来源 (4) 1.5论文设计的主要内容 (4) 第2章主接线方案确定 (5) 2.1电气主接线释名 (5) 2.2主接线方案的拟定 (5) 2.2.1 方案一 (5) 2.2.2 方案二 (6) 2.2.3 方案三 (6) 2.2.4 方案比较说明 (7)

水电站厂房施工组织设计..

顺河水电站厂区工程 施 工 组 织 设 计 重庆黄浦建设(集团)有限公司顺和水电站工程项目部

二○一一年二月四日 1.1 施工条件 1.1.1 工程概况 顺和水电站位于阿坝藏族羌族自治州九寨沟县境内,是汤珠河干流水电梯级开发方案规划的第二级电站。本电站首部位于汤珠河与勿角沟交汇处下游约100m,距上游马家电站厂房约110m,电站经左岸约8.24km的隧洞,于甘沟水文站下游约200m 处汤珠河左岸的Ⅰ级漫滩阶地上建厂房,电站额定水头206m,引用流量12.1m3/s,装机规模21MW。本电站开发任务以发电为主,兼顾下游河道减水段生态环境用水。工程区沿河有平武至九寨沟的S205 公路通过。汤珠河邻近九寨沟县县城(马家磨至县城直线距离约11km,河口至县城直线距离约11 km)。该城距阿坝州州府马尔康约500km;距盆中重镇绵阳市323km;距省府成都市426km;距甘肃省文县60km。 1.1.2 工程布置及建筑物 本电站为引水式电站,由首部枢纽、引水系统、厂区枢纽三部分组成。 1.1. 2.1 厂区枢纽 厂区主要建筑物有主机间、安装间、副厂房、升压站、尾水建筑物、进厂公 路、防洪堤等。 主机间共三层即发电机层、水轮机层、蜗壳层,主机间长21.20 m,宽 15.40m,高26.08m。内设2 台单机容量为10.5MW 的SF10.5-8/2600 发电机和两台HLA542-LJ-10125水轮机,机组间距9.00m,安装高程1367.12m。 安装间位于主机间上游侧,长15.40m,宽11.20m,为避免不均匀沉降,二者之

间设沉降缝,缝宽2cm。 副厂房位于在主机间沿河流流向的左侧,长32.52m、宽8.00 m、高11.44m, 为避免不均匀沉降,二者之间设沉降缝,缝宽2cm。 升压站位于主机间的左侧,由覆盖层明挖以及回填形成升压站平台。平面上基本呈“T”布置,长52 米、宽29.5 米,地面高程1373.58m,场内布置有两台容量分别为40MVA、16MVA油浸式变压器各一台,由通过厂区的公路可直接进入升压站。 厂房尾水采用正向出水布置,出口与原河床相接。 进厂公路由现有公路延伸扩建而成,总长约30m,坡度为2%。 1.1.3 自然条件 1.1.3.1 自然地理 本电站位于白水江下游右岸支流——汤珠河上,电站闸址位于九寨沟县两河口附近,闸址控制集水面积502km2,厂址位于九寨沟县甘沟水文站附近,控制集水面积567km2。 白水江系白龙江的一级支流,发源于岷山东麓的弓杠岭斗鸡台,分为黑河和白河两源,两源于黑河桥汇合后始称白水江:白水江自西北向东南流,流经九寨沟县白河乡、安乐乡、城关,在九寨沟县城下游约10公里处的双河乡汇入右岸支流——汤珠河,自柴门关出四川省境,流入甘肃省文县,于碧口汇入嘉陵江一级支流白龙江。白水江九寨沟县境内河道长约50km。该河段南部以黄土梁与平武县境内的火溪河为界;西南部以弓杠岭与岷江源头分水;西北以纳玛梁毗邻黄河的黑河流域;北接白龙江。 白水江流域地处青藏高原东南缘的岷山山脉东部,地理位置界于东经103° 30′至105°15′与北纬32°30′至33°40′之间,流域边缘雪峰环绕,流域内山势盘错,地势高亢,坡陡谷深;河道坡降大,水流湍急,河谷多

密云水电站厂房课程设计概要

一、绘制蜗壳单线图 1、蜗壳的型式: 在资料中已经给出水轮机的型号为HL220-LJ-225,而且电站设计水头H P =46.2m>40m ,根据《水力机械》第二版P96页书中蜗壳分类,则蜗壳的型式应为金属蜗壳。 2、选择蜗壳的主要参数 (1)金属蜗壳的断面形状为圆形,为了良好的水力性能一般蜗壳的包角取0345?= 。通过计算得出max Q 值,计算如下: ○ 115000 156250.96 f r f N N KW η== = 式中:60000150004f KW N KW = =,0.96f η= ○ 2131max 22115625 1.111.159.819.81 2.2546.20.91 r r N Q m s D H η ==

=

相关主题
文本预览
相关文档 最新文档