当前位置:文档之家› 示波器差分探头的校准方法

示波器差分探头的校准方法

示波器差分探头的校准方法
示波器差分探头的校准方法

示波器差分探头的校准方法

The Calibration Technique of Oscilloscope Differential Probe

刘红煜

(中国电子科技集团公司第二十研究所计量站,陕西西安710068)

摘 要:随着测量信号速率的提高,差分信号变得越来越普遍,为了确保测量结果的准确性和可靠性,本文提出了对示波器差分探头的校准方法。关键词:差分探头;校准;方法

为了抑制信号中的共模噪声,示波器差分探头被广泛的使用,但是示波器差分探头是否准确对测量结果有

很大的影响,为了确保测量结果的准确性和可靠性,需要对示波器差分探头计量校准。国家对示波器计量检定/校准有相应的检定规程和校准方法,但对示波器差分探头计量校准却没有规定,因此本文提出了示波器差分探头计量校准方法,供同行参考。1 示波器差分探头计量校准的主要项目有

(1)共模抑制比;(2)直流衰减系数;(3)差分信号范围;(4)频带宽度;(5)上升时间;(6)输入阻抗(包括电阻和电容)。

2 校准项目和校准方法

211 

共模抑制比校准方法21111 共模抑制比(CMRR )的定义:在差分信号测量

中,为了说明差分放大电路抑制共模信号的能力。共模抑制比是反映差分探头性能的一个关键参数,被定义为:

CM R R =A d /A c

(1)或以dB 表示:CM R R =20lg A d /A c

(2)

其中:A d —差模信号电压增益;

A c —共模信号电压增益。

一般差分探头的接线端有3个,第一个是标有“+

”端,第二个是标有“-”端,第三个是“地”端,如图1所示:

图1 差分探头的接线端

差模信号电压放大倍数A d 越大,共模信号电压放大倍数A c 越小,则CMRR 越大。此时差分放大电路抑

制共模信号的能力越强,放大器的性能越好。当差分放大电路完全对称时,共模信号电压放大倍数A c =0,则共模抑制比CMRR →∞,这是理想情况,实际上电路完全对称是不存在的,共模抑制比也不可能趋于无穷大。电

路对称性越差,其共模抑制比就越小,抑制共模信号(干

扰)的能力也就越差。共模抑制比是一个与频率相关的参数,随着频率的增加而减小。因此高共模抑制比的高频差分探头比同样共模抑制比的低频差分探头性能好。21112 共模抑制比(CMRR )的校准

从共模抑制比的定义中,只要能测量差模信号电压增益和共模信号电压增益的大小,用公式(1)或(2)可以计算出差分探头共模抑制比。

校准需要的标准仪器:(1)示波器(本文推荐TEK 公司DPO4104数字示波器,也可用其它满足使用要求的示波器)。(2)标准信号源(本文推荐FL U KE 9500B 示波器校准仪),按图2的方法连接线路。

图2 共模抑制比(CMRR )的校准连接图

测量差模信号电压增益A d 和共模信号电压增益A c

的方法有两种:第一种是从示波器上读测量值,第二种是

从标准信号源上读标准值。下面分别介绍:

第一种方法操作步骤:

(1)按图2连好线,设置标准信号源和示波器的阻抗匹配,选择差分探头的量程和衰减系数,依据差分探头技术说明书中的频率点设置共模抑制比测量点,对不同频率对应的共模抑制比测量点应全部校准;

(2)测量共模信号电压A c ,把标准信号源的输出端与差分探头的输入端连接(探头“+”接标准信号源信号端,探头“-”接标准信号源地端),标准信号源输出一个固定正弦波电压V ,从示波器上读出测量值,即值A c ;

(3)测量差分信号电压A d ,把标准信号源的输出端与差分探头的输入端连接(探头“+”、“-”短路后接标准信号源信号端,探头“地”接标准信号源地端),标准信号源输出一个固定电压的正弦波电压V ,从示波器上读出

刘红煜:示波器差分探头的校准方法27

测量值,即值A d;

(4)标准信号源正弦波电压V保持不变,设置不同的频率,重复步骤(2)、(3),直至校准完所选测量点,用公式(1)或(2)计算出差分探头共模抑制比。

第二种方法操作步骤:

(1)按图2连好线,设置标准信号源和示波器的阻抗匹配,选择差分探头的量程和衰减系数,依据差分探头技术说明书中的频率点设置共模抑制比测量点,对不同频率对应的共模抑制比测量点应全部校准;

(2)测量共模信号电压A c,把标准信号源的输出端与差分探头的输入端连接(探头“+”接标准信号源信号端,探头“-”接标准信号源地端),标准信号源输出一个正弦波电压,从示波器上读出波形高度或格数,记录标准信号源显示的电压值,即值A c;

(3)测量差分信号电压A d,把标准信号源的输出端与差分探头的输入端连接(探头“+”、

“-”短路后接标准信号源信号端,探头“地”接标准信号源地端),标准信号源输出一个正弦波电压,从示波器上读出波形高度或格数(同步骤(2)的波形高度一样高),记录标准信号源显示的电压值,即A d值;

(4)标准信号源设置不同的频率,重复步骤(2)、(3),直至校准完所选测量点,用公式(1)或(2)计算出差分探头共模抑制比。

21113 共模抑制比校准中应注意的问题:

(1)为了确保信号波形不失真,所用标准仪器示波器制造商和被校准探头制造商最好是同一个厂家,示波器型号最好选择厂家推荐与探头相匹配的型号;

(2)标准信号源与探头连接时,必须使用厂家提供的探头尖适配器,这种探头尖适配器能够使探头连接快速方便,并且稳定可靠。严禁使用普通的连接线;

(3)为了减小地线上的阻尼振荡,使地线可能的短和直接;

(4)在校准时,示波器的模式放在平均采样,平均次数设置16次,在第二种方法操作步骤(2)中,波形高度最好达到6格(6个DIV),并开启自动测量功能,保证两次波形高度一致。

212 直流衰减系数校准方法:大多数的示波器差分探头直流衰减系数准确度在3%~5%,故要求标准的准确度优于1%,现在大多数的数字示波器厂家给出直流准确度在1%~3%,而实际测量得出直流准确度优于1%,如TEK公司DPO4104示波器测量的实际直流准确度优于015%,所以可以用DPO4104数字示波器作为测量标准。

校准需要的标准仪器:(1)示波器(本文推荐TEK 公司DPO4104,也可用其它满足使用要求的示波器)。

(2)标准信号源(本文推荐FL U KE9500B),按图2的方法连接线路。

操作步骤:

(1)把标准信号源和示波器的阻抗设置在1MΩ,选择探头量程和直流衰减系数,测量点一般设置3个(依据实际情况,也可增加),按满量程的30%,70%,100%给出;如果探头带有零复位功能,测量首先要零复位;

(2)把标准信号源的输出端与差分探头的输入端连接(探头“+”接标准信号源信号端,探头“地”接标准信号源地端),标准信号源输出直流电压值,从示波器上读出测量值,计算得到直流衰减系数;

(3)把标准信号源的输出端与差分探头的输入端(探头“-”接标准信号源信号端,探头“地”接标准信号源地端)连接,标准信号源输出直流电压值,从示波器上读出测量值,计算得到直流衰减系数;

(4)选择探头不同量程和直流衰减系数,重复步骤(2)、(3),直至校准完所选测量点。

对于直流衰减系数的校准,在选用标准时,也可以用数字多用表作为测量标准(原因是其准确度高),但是本文不推荐使用,主要原因:(1)大多数数字多用表的阻抗在10MΩ或更高,为了达到阻抗匹配,需要并联电阻,使操作连线复杂化,不能达到阻抗匹配的最佳效果;(2)数字多用表与探头的连接困难,如果是有源探头,无法直接连接,需要转换器;(3)探头在实际工作中的使用都是与示波器匹配使用,故用示波器测量的数据比用数字多用表测量的数据更能反映探头的真实性能。

213 差分信号范围校准方法:对探头差分信号范围的校准,同212直流衰减系数校准方法基本相同,不同的是:标准接在探头的“+”“-”端测量。

214 频带宽度校准方法:对探头频带宽度校准方法和具体操作,可参照国家对示波器带宽计量检定/校准校准方法,不同之处是:(1)不但测量阻抗在50Ω时的频带宽度,而且测量阻抗在1MΩ时的频带宽度;(2)标准信号源测量频带宽度一般参考频率为50kHz,探头频带宽度校准时参考频率为1MHz或依据说明书中的要求参考频率。

215 上升时间校准方法:对探头上升时间测量,可参照国家对示波器上升时间计量检定/校准方法。校准中使用的快沿脉冲信号发生器,上升时间应不大于被校准仪器的1/3,否则测量的上升时间用公式(3)修正。

t p=t2(s+p)-t2s(3)式中:t p—探头上升时间;

t(s+p)—示波器测量上升时间;

t s—示波器建立时间。

(下转第30页)

法、维护情况和稳定性考核记录、比对核查记录等,这些实际经验记录在一般书本资料中找不到,可是对于从事实际工作的人是非常有用的。

(11)计量控制图:以均值控制图、标准偏差控制图等形式记录标准装置性能的变化情况。

(12)其他:本企业设计、工艺、检验、试验、运行各系统工作与该量值有关的各类信息,如需用量限、准确度、动静态性能、检测介质要求等。与各系统交往中产生的各种文件、协议等也是重要的技术资料。

3 标准装置使用手册的应用

(1)对标准装置进行考核、验证的依据:因期间核查、标准装置搬动、更换配套设备、环境设施变化等,需要对标准装置全部或部分技术参数进行重新考核、验证时,标准装置使用手册可以提供数据和方法。

(2)日常计量测试工作的信息资料库:随着工业现代化进程的不断加快,在各种工业产品中不断应用新技术、新工艺、新方法,产品技术指标的实现、测量数据是否准确、是否满足设计预期要求,离不开测量和试验验证,计量工作是保证测量量值准确统一的唯一途径。在凸显计量技术优势的同时,也对计量工作不断提出新的要求。计量工作已不局限于量值传递,还承担着产品的精密测试,新仪器设备的调试工作,这就要求计量部门掌握更多的技术信息、方法、手段,在开展新的检定、校准、检测项目时,能够高效、高质量地完成任务。标准装置使用手册可提供的各种技术参数、检测方法、数据处理及不确定度评定程序等,正是解决这些问题的有力工具。另外,有了标准装置使用手册这个信息资料库,为编制计量发展规划、工作报告等文件也提供了可靠、全面的数据资料。

(3)培训计量检定员的教材:对于新进专业的检定人员,通过认真阅读理解标准装置使用手册,可以尽快达到全面掌握、正确使用检定设备的目的。多年前在我们单位发生的事例可以说明系统学习标准装置使用手册的重要性。当时因工作需要,热工组由其他专业调入一名检定员,由于不了解热工计量的特点,不知道热电偶检定炉存在热场梯度,也没看建标时制作的升温曲线和保温曲线函数图,在检定一批新购的工作用热电偶时,得出整批被检热电偶输出值严重偏离标准值的结论,审核人员发现整批被检热电偶输出值一致,电偶节点外观正常,初步判定该检定员的结论不合常规。经过认真复查分析,发现该检定员违反操作规程,检定时将炉温快速升至检定点,未经保温即开始测量,错误地认为只要测量完所有被检偶后第二次测量标准偶的数值与第一次测得值一致,即说明没有“跑温”,忽视了操作程序对升温和保温过程的要求,从而得出了错误的计量结论。重新按操作程序对该批电偶检定,结论是全部合格。因此,要求各专业检定员工作前必须熟知所用仪器设备的工作原理及性能,熟悉理解标准装置使用手册的内容,正确认识并严格执行相关规章制度,可以有效地提高计量工作质量。

4 结束语

计量体系基础建设是一项需要长期持续开展的工作,在此过程中,除了更新设备、改善环境、提高人员素质、完善规章制度之外,收集整理现有资源、积累经验并有效利用,也是提高计量科学应用水平的途径。只要有认真、敬业的精神,通过广大计量工作者的共同努力,一个单位的计量综合能力就会得到不断提高。

作者简介:张玉山,男,工程师。工作单位:郑州飞机装备公司理化计量中心。通讯地址:450005河南郑州1084信箱理化计量中心。

收稿时间:2008-03-27

(上接第28页)

216 输入阻抗(包括电阻和电容)校准方法:探头电阻的准确度一般在2%左右,测量标准的准确度优于015%就能满足要求,因此测量标准可用数字多用表(测量电阻的准确度优于011%)或标准信号源(本文推荐FL U KE 9500B,测量电阻的准确度:011%~015%)直接测量,测量点包括:(1)探头“+”端与“-”端之间的电阻,(2)探头“+”端与“地”端之间的电阻,(3)探头“-”端与“地”端之间的电阻。

探头电容一般不要求准确度,只要求电容值小于探头说明书规定的某个值(在说明书规定的特定频率下测量),测量标准选用LCR仪直接测量,测量点包括:(1)探头“+”端与“-”端之间的电容,(2)探头“+”端与“地”端之间的电容,(3)探头“-”端与“地”端之间的电容。3 结束语

本文使用的校准方法在示波器差分探头实际检测中取得了较好效果,能满足目前三大示波器厂家(美国泰克公司,安捷伦公司,力科公司)和国内厂家生产的示波器差分探头,此校准方法可以在计量校准中工作使用。

参考文献

[1]JJ G262-96.模拟示波器检定规程.国家技术监督局.

[2]JJ G1057-1998数字存储示波器校准规范.国家技术监督局.

[3]无线电电子学计量(5)上册.国防科工委科技与质量司组织编写.

[4]TEK差分探头和DPO4104数字示波器说明书.美国TEK公司.

[5]FLU KE9500B示波器校准仪说明书.美国FLU KE公司.

作者简介:刘红煜,男,工程师。工作单位:中国电子科技集团公司第二十研究所计量站。通讯地址:710068陕西省西安市。

收稿时间:2008-03-27

如何校准x10示波器探头

如何校准x10示波器探头 为了尽量减少对被测器件的容性负载,大多数探头使用一个X10(也称为10:1)衰减器。我们往往可以对它进行校准或补偿,以提高频率响应。下面以Pico公司的MI103(250 MHz)的探头为例介绍的校准技术。这些校准方法可以应用到任何可调的无源探头,但并不是这里介绍的所有的校准方法都是必须的。 有两种补偿的类型:低频补偿和高频补偿。校准按键通常设置在探头的两端,如图1所示。 图1:MI103探头微调器位置 低频补偿 低频补偿(LFC)需要在kHz范围内调整X10探头的频率响应。低频补偿必须在高频补偿(HFC)之前进行。 图2显示了一个典型的探头模型。Cp是在放置在探头尖端的耗散电容。R1是一个9MΩ的串行电阻,用来隔离电缆电容和被测设备的输入。其组成示波器的一个带有1MΩ输入阻抗的10:1 Rscope衰减器。 图2:示波器探头模型

Ccomp1是一个可变电容,组成探头低频补偿的调整部分。Cp是用来调整R1和Ccomp1的时间常数来匹配Cscope、Ccable和Rscope设定的时间常数。实际上,我们在高频段(100 kHz以上)有一个直流电阻分压器和一个电容分压器。Ccomp1置放在MI103探头的顶部实现微调,靠近衰减开关。Ccomp2和Rcomp是用在探头的高频补偿(HFC)部分,详细情况将在下一节讨论。 最简单的对探头进行低频补偿的方法是输入一个相对边沿变化较慢的方波,但重要的是,不能过冲。 图3显示的是如何通过波形判断低频补偿是否合理。低频补偿过多,探头的高频(HF)增益将会比它的低频(LF)增益高。低频补偿过少,高频增益将会低于低频增益。 图3:低频补偿 高频补偿 影响探头的高频率响应的两个不定因素:电缆阻抗以及示波器的输入阻抗。示波器的输入端通常不是一个理想的电容,它会带有一些串联电感使得电路不具有非线性。 图4显示了在示波器的输入端放置一个陶瓷芯片电容器时的典型特征。由于电容的串联电感在存在,阻抗在它开始再次增加之前会随着频率变化有一个微降的过程。最低阻抗点的频率就是电抗和容性阻抗相等时的共振频率。 图4:陶瓷电容器特性

示波器探头基础知识

示波器探头基础知识 示波器探头原理---示波器探头工作原理 示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。探头有很多种类型号各有其特性,以适应各种不同的专门工作的需要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。这种探头通常对输入信号进行衰减。 我们将首先集中讨论通用无源探头,说明共主要技术指标以及探头对被测电路和被测信号的影响,接着简单介绍几种专用探头及其附近。 屏蔽 示波器探头的一个重要任务是确保只有希望观测的信号才在示波器上出现,如果我们仅仅使用一普通导线来代替探头,那么它的作用就好象是一根天线,可以从无线电台、荧光灯,电机、50或60Hz的电源的交流声甚至当地业余无线电爱好者那里接收到很多不希望的干扰信号,这类噪声甚至还能注入到被测电路中去所以我们首先需要的是屏蔽的电缆,示波器探头的屏蔽电缆通过探头尖端的接地线和被测电路连接,从而保证了很好的屏蔽。 一.探头构造图:

4. 一个探头,就算它只是简单的一条电线,它也可能是一个很复杂的电路。a)对于DC 信号( 0 Hz 频率),探头作为一对导线与一系列电阻,就向一个终端电阻一样。 b) AC 信号的特性变化是因为:电线具有分布电感(L),电线具有分布电容(C)。分布电感反作用于AC信号,在信号频率增加时,阻止AC信号通过。分布电容反作用于AC信号,在信号频率增加时,减小 AC信号电流通过的阻抗。这些反作用元件(L 和 C )的交互作用,与电阻元件(R)一起,成为随信号频率不同而变化的探头阻抗。

示波器探头基础系列之一《示波器探头浅谈之无源探头》

示波器探头基础系列之一《示波器探头浅谈之无源探头》 作为一名专业的硬件设计及测试工程师,我们每天都在使用各种不同的数 字示波器进行相关电气信号量的量测。与这些示波器相配的探头种类也非常多,包括无源探头(包括高压探头,传输线探头)、有源探头(包括有源单端探头、 有源差分探头等),电流探头、光探头等。每种探头各有其优缺点,因而各有 其适用的场合。其中,有源探头因具有带宽高,输入电容小,地环路小等优点 从而被广泛使用在高速数字量测领域,但有源探头的价位高,动态范围小,静 电敏感,校准麻烦,因此,每个工程师使用示波器的入门级探头通常是无源探头。最常见的500Mhz 的无源电压探头适用于一般的电路测量和快速诊断,可 以满足大多数的低速数字信号、TV、电源和其它的一些典型的示波器应用。本文我们将集中讨论无源电压探头的模型和参数设定以及使用校准原理。一、10 倍无源探头的模型以及输入负载设定图1.探头原理图图1 是工程师常用的10 倍无源电压探头的原理图,其中,Rp (9 MΩ)和Cp 位于探头尖端内,Rp 为探头输入阻抗, Cp 为探头输入电容, R1 (1 MΩ)表示示波器的输入阻抗,C1 表示示波器的输入电容和同轴电缆等效电容以及探头补偿箱电容的组合值。为了精确地测量,两个RC 时间常量(RpCp 和R1C1)必须相等;任何不平衡都会带来测量波形的失真,从来引起使一些参数如上升时间、幅度的测量结果不准确。因此,在测量前需要校准示波器的探头的工作以保证测量结果的 准确性。从探头的信号模型我们可以分析,对于信号的DC 量测,输入容性Cp 和C1 等效为开路。信号通过Rp 和R1 进行分压,最终示波器的输入为:Vout=[R1/Rp+R1]*Vin=1/10* Vin 示波器输入信号衰减为待测输入信号的1/10。对于较高频率的输入信号,容抗对于信号的影响会大于阻抗。例如,一个

示波器电源测试的步骤

示波器电源测试的步骤 时间:2012-10-17 16:46:12 来源:作者: 过去大家习惯用万用表进行电源测试,如果测试参数很多的时候非常麻烦。而现在使用示波器提供了许多自动测量功能,可以使用这些功能简单实现幅度测量(幅度、高、低、最大值、最小值、RMS、峰到峰值、正/ 负过冲、平均值、周期平均值、周期RMS)、定时测量(周期、频率、上升/ 下降时间、正/ 负占空比、正/ 负脉宽、突发宽度、延迟、相位)、综合测量。在实践中,很多工程师对于利用示波器进行电源测试的要点并不是很清楚,这里零星总结一些步骤和要点供大家参考。(这里的陈述是根据本人所使用的泰克混合信号示波器MSO4000系列(MSO4034)以及泰克的探头配置,不同示波器和探头会有些差异) 选择示波器的几个要点 1. 记录长度及分析工具 对许多电源测量,必需捕获1/4 周期或1/2 周期(90度或180度)的工频信号,有些测量甚至要求捕获整个周期,这需要示波器具有足够的记录长度以满足要求(MSO4034记录深度为10M,一般的电源测试足够了)。 比长记录长度更重要的是提供能够利用所有这些数据的工具(如泰克的Wave Inspector)。否则处理几百万点的记录长度,也就是几千屏的信号活动无疑是大海捞针。 2.电压探头和电流探头之间的时滞 每只电压探头和电流探头都有自己的特性传播延迟。电流探头和电压探头之间的延迟差称为时滞,会导致幅度和定时测量不准确。在探头没有正确“校正时滞”时,测量精度会下降,如开关损耗。我所用的泰克TekVPI探头连接到泰克4000系列示波器时,它们会自动设置相应的时滞校正值,在电源测量中实现最大精度。 3. 探头偏置 差分探头一般会有较小的电压偏置。这会影响精度,在继续测量前必须消除这个电压偏置。大多数差分电压探头拥有内置的DC 偏置调节控制功能,可以相对简单地消除偏置。 某些探头内置了自动消磁/自动清零程序,如在使用TekVPI探头时,只需在探头“comp”框上按一个按钮就可以了。 安全准确地测试电压波形和电流波形 在使用数字示波器进行电源测量时,必需测量设备中的电压及电流。要求使用两只不同的探头:一只电压探头(通常是高压差分探头),一只电流探头。 测量经过MOSFET的电流相对简单,可以使用许多不同的霍尔效应电流探头完成,如TCP0030。而测量电压则会面临更多的问题。MOSFET没有连接到交流电源接地或电路输出接地上。因此,不可能使用示波器进行接地参考电压测量,因为把探头的地线连接到任何MOSFET端子上都会使通过示波器接地的电路短路。 进行差分测量是测量MOSFET 电压的最佳方式。在差分测量中,可以测量漏极到源极电压,即MOSFET漏极和源极端子中的电压。漏极到源极电压可以位于几十伏到几百伏电压的顶部,具体视电源的范围而定。 测量瞬时功率 检定开关晶体管中的瞬时功耗是几乎每个电源设计项目的一部分。选择能够在最坏情况操作极限下经济可靠地运行的元件至关重要。某些厂家的电流和电压探测解决方案为这些测量提供了理想选择。除提供安全测量解决方案外,它们还提供了非常简便的时滞校正功能。自动设置相应的时滞校正值,在电源测量中实现最大精度。为电压波形和电流波形及以瓦特为单位的演算波形提供正确的标度和单位。下面用泰克4000系列示波器介绍测量的简单步骤:连接探头;按Autoset,示波器自动调节垂直设置、水平设置;触发设置,以查看波形;把演算波形定义为Ch1 * Ch2;打开Area测量,测量曲线下的面积(能量);光标读数表明瞬时功率。通过使用测量选通,我们可以把Area测量限制在特定区域,查看与MOSFET 的启动时间(Ton)和关闭(Toff)时间有关的功率损耗。

示波器的使用

—本帖被yjm2000 执行置顶操作(2010-11-15) — 在家电维修的过程中使用示波器已十分普遍。通过示波器可以直观地观察被测电路的波形,包括形状、幅度、频率(周期)、相位,还可以对两个波形进行比较,从而迅速、准确地找到故障原因。正确、熟练地使用示波器,是初学维修人员的一项基本功能。 虽然示波器的牌号、型号、品种繁多,但其基本组成和功能却大同小异,本文介绍通用示波器的使用方法。 一、面板介绍 1.亮度和聚焦旋钮 亮度调节旋钮用于调节光迹的亮度(有些示波器称为"辉度"),使用时应使亮度适当,若过亮,容易损坏示波管。聚焦调节旋钮用于调节光迹的聚焦(粗细)程度,使用时以图形清晰为佳。 2.信号输入通道 常用示波器多为双踪示波器,有两个输入通道,分别为通道1(CH1)和通道2(CH2),可分别接上示波器探头,再将示波器外壳接地,探针插至待测部位进行测量。 3.通道选择键(垂直方式选择) 常用示波器有五个通道选择键: (1)CH1:通道1单独显示; (2)CH2:通道2单独显示; (3)ALT:两通道交替显示; (4)CHOP:两通道断续显示,用于扫描速度较慢时双踪显示; (5)ADD:两通道的信号叠加。维修中以选择通道1或通道2为多。 4.垂直灵敏度调节旋钮 调节垂直偏转灵敏度,应根据输入信号的幅度调节旋钮的位置,将该旋钮指示的数值(如0.5V/div,表示垂直方向每格幅度为0.5V)乘以被测信号在屏幕垂直方向所占格数,即得出该被测信号的幅度。

5.垂直移动调节旋钮 用于调节被测信号光迹在屏幕垂直方向的位置。 6.水平扫描调节旋钮 调节水平速度,应根据输入信号的频率调节旋钮的位置,将该旋钮指示数值(如0.5ms/div,表示水平方向每格时间为0.5ms),乘以被测信号一个周期占有格数,即得出该信号的周期,也可以换算成频率。 7.水平位置调节旋钮 用于调节被测信号光迹在屏幕水平方向的位置。 8.触发方式选择 示波器通常有四种触发方式: (1)常态(NORM):无信号时,屏幕上无显示;有信号时,与电平控制配合显示稳定波形; (2)自动(AUTO):无信号时,屏幕上显示光迹;有信号时与电平控制配合显示稳定的波形; (3)电视场(TV):用于显示电视场信号; (4)峰值自动(P-P AUTO):无信号时,屏幕上显示光迹;有信号时,无需调节电平即能获得稳定波形显示。该方式只有部分示波器(例如CALTEK卡尔泰克CA8000系列示波器)中采用。 9.触发源选择 示波器触发源有内触发源和外触发源两种。如果选择外触发源,那么触发信号应从外触发源输入端输入,家电维修中很少采用这种方式。如果选择内触发源,一般选择通道1(CH1)或通道2(CH2),应根据输入信号通道选择,如果输入信号通道选择为通道1,则内触发源也应选择通道1。

示波器如何校正波器校准步骤

示波器如何校正波器校准步骤

————————————————————————————————作者:————————————————————————————————日期:

示波器如何校正?示波器校准步骤 示波器与其它仪器一样(如万用表等),在使用之前都必需要先对其进行校正。而所谓对示波器的校正,是将示波器的原来波形在测试之前正确调试出来。也就是说,校正出来的波形要与示波器本身所设定的参数一致(这些参数通常会在校正的测试点标志出来)。以GW GOS-602示波器为例(左图):在其面板的左下角就是要求校正波形的参数,如电压值为2V、频率是1KHz等(右图),就是要求示波器的校正波形(或正、余弦波、方波)的电压峰峰值为2V、频率为1KHz。但示波器通常不能直接显示波形的频率,而是根据频率与周期的转换(T=1/f)来将频率化为周期,再用周期波表示频率(频率1KHz的等效周期为1mS)。 在校正波形过程中,为了方便观察波形,应首先将波形的中心位置调节好,这就要将输入之间的连接模态信号的开关拨到GND位置上(左下图)。这时若正常接通电源,应该能够显出一条水平亮线;如果没有显示,那就要上下调节POSITION、DC BALT和INTER了。其中,POSITION是波形上下调节按钮(中图),DC BAL是水平亮线的中心调

整,INTER是亮度调整,如果现出亮线不平衡(相对于X轴)时,则要用无感螺丝刀调节在FOCUS附近的TEACE ROTATION(右下图),之后通过FOCUS的调节把会聚调至最佳状态。 第一步工作完成后,将GND转换为AC挡(图a);在输入校正波形时,要把衰减或扩大按钮调到原始位置上,如果拨错了会严重影响被测波形数值的准确性;对输入踪道的选择,完全操纵在MODE选择键上(图b);调试出来的波形如果是闪烁不定的,那就要考虑到同步功能键,即LEVEL(水平同步调节)(图C)和TRIG. ALT、ALT.CHOP(图d)。 图a 图b 图c 图d 而通常需要校正的主要是电压峰峰值和周期数的调节,这也是我们对波形的测试内容。这些调节由按钮VOLTS/DIV、TIME/DIV、SWP.VAR,VOLTS/DIV共同配合完成,各按钮上的标志指向哪一个数值,表示这一数值就是显示屏的坐标轴上每一格的单位数值。横坐标表示周期,纵坐标表示电压幅值,例如:VOLTS/DIV白色指定点拨在1V(左下图),即表示纵坐标的每一小格的电压幅值为2V;在TIME/DIV上将指定点

示波器探头原理

示波器探头原理 示波器因为有探头的存在而扩展了示波器的应用围,使得示波器可以在线测试和分析被测电子电路,如下图: 图1 示波器探头的作用 探头的选择和使用需要考虑如下两个方面: 其一:因为探头有负载效应,探头会直接影响被测信号和被测电路; 其二:探头是整个示波器测量系统的一部分,会直接影响仪器的信号保真度和测试结果 一、探头的负载效应 当探头探测到被测电路后,探头成为了被测电路的一部分。探头的负载效应包括下面3部分: 1. 阻性负载效应; 2. 容性负载效应; 3. 感性负载效应。 图2 探头的负载效应 阻性负载相当于在被测电路上并联了一个电阻,对被测信号有分压的作用,影响被测信号的幅度和直流偏置。有时,加上探头时,有故障的电路可能变得正常了。一般推荐探头的电 . .

阻R>10倍被测源电阻,以维持小于10%的幅度误差。 图3 探头的阻性负载 容性负载相当于在被测电路上并联了一个电容,对被测信号有滤波的作用,影响被测信号的上升下降时间,影响传输延迟,影响传输互连通道的带宽。有时,加上探头时,有故障的电路变得正常了,这个电容效应起到了关键的作用。一般推荐使用电容负载尽量小的探头,以减小对被测信号边沿的影响。 图4 探头的容性负载 感性负载来源于探头地线的电感效应,这地线电感会与容性负载和阻性负载形成谐振,从而使显示的信号上出现振铃。如果显示的信号上出现明显的振铃,需要检查确认是被测信号的真实特征还是由于接地线引起的振铃,检查确认的方法是使用尽量短的接地线。一般推荐使用尽量短的地线,一般地线电感=1nH/mm。 . .

图5 探头的感性负载 二、探头的类型 示波器探头大的方面可以分为:无源探头和有源探头两大类。无源有源顾名思义就是需不需要给探头供电。 无源探头细分如下: 1. 低阻电阻分压探头; 2. 带补偿的高阻无源探头(最常用的无源探头); 3. 高压探头 有源探头细分如下: 1. 单端有源探头; 2. 差分探头; 3. 电流探头 最常用的高阻无源探头和有源探头简单对比如下: 表1 有源探头和无源探头对比 低阻电阻分压探头具备较低的电容负载(<1pf),较高的带宽(>1.5GHz),较低的价格, . .

示波器测交流220V(差分探头)

一、前言 我们都知道使用示波器,就必须使用探针 由于半导体组件的速度愈来愈快,受测电路的讯号自然愈来愈高速化。今天要正确地从受测电路检出讯号,并传送到示波器的输入端。而又不影响受测电路的正常运转,绝对不是一件容易的事情。使用正确的探棒是一个关键。若探针选用不当,即使购买再昂贵的示波器,也无济于事。现在市面上有许多种类的探棒可以帮助使用者在各种不同条件下完成电路检测的工作,差动探棒就是其中一类。 差动探针早期主要是用来量测电力系统,电力转换器及转换式电源供应器。所量测的讯号通常都是相当大的浮动讯号,从数十伏到数仟伏。近年来由于数字电路的高速化,数字设计及数字传输中大量使用差动讯号,因而出现新型的低压高速差动探针。它的量测范围很小。只有几伏甚至零点几伏,但频宽很宽,可高达数 GHz 。在现代的示波器量测中,不管是高压型差动探针,或是高速型差动探针,在他们各自的领域中,都是不可或缺的。 二、示波器探棒的选择 - 电力差动讯号在电力电子电路中,通常有许多相当大的浮动讯号,图二是一个典型的交换式电源供应器 (Switching Power) 的电力电路,我们可以将它以Vd( 差动讯号 ) , VCM( 共模讯号 ) 及 VLINE ( 电源讯号 ) 来表示。

当我们用示波器观测电力电子电路讯号时,如果使用单端探棒,将造成短路,损坏待测物及测试设备,甚至造成测量人员触电等 ( 图三 ) 。 电路与示波器的接地端形成短路回路,所以有些量测人员便将示波器的电源接地拆掉,浮接示波器,来避免短路回路的形成 ( 图四 ) ,但是,这样就可以解决我们在电力电子电路的量测问题了吗让我们就这样的方式来讨论:

示波器校准器操作规程

示波器校准器操作规程 1.打开9500B电源开关,仪器进入自检状态,自检完毕预热15分钟。 2.将有源信号头接入9500B和被测示波器的输入端。 3.按下前面板右侧“”,进入9500B幅度校准菜单。 a)将示波器的垂直灵敏度档置于校准位置U i。将9500B设置于幅度校准功 能,将灵敏度档(V/div)调节到与被测示波器相同。 b)按“ON”键,接通9500输出。调节被测示波器的扫速和触发同步,使 9500输出波形在示波器屏幕上稳定显示,波形位于屏幕中尖。 c)调节校准器的误差位,此值即为示波器在该校准点的误差。 d)根据校准要求,改变垂直灵敏度,重复a、b、c项。 4.按下前面板右侧的“”键,进入时标信号功能。 a.将示波器水平扫速置于校准位置,并调整至左侧的扫速档T i,示波器垂直灵敏度选择为0.2V/div。 b.按ON键,接通9500输出。调节示波器的扫速和触发同步,使9500输出的波形在示波器屏幕上稳定显示,波形位于示波器屏幕中央。 c.调节9500B误差使示波器上显示的第二个和第八个脉冲刚好和第二格和第八

格对齐。误差值即为示波器在该校准点的误差。 5.按下前面板右侧的“”键,进入快沿信号菜单。 a.将有源信号头接至示波器需要校准的通道的输入端,将用作触发通道的有源信号头或触发信号电缆接至示波器的外触发输入端。 b.将示波器垂直灵敏度档置于校准位置U i,将水平灵敏度打至最高档。 c.记下波形在10%~90%变化的时间t1,记下9500快沿时间t2。 d.通过计标确定示波器在该量程的快沿t r。 6.检定完毕,关闭仪器的电源开关。把标准器放回原位。

示波器探头的详细使用

别看一个示波器探头很简单,其实还是很有讲究的。以下是 圈圈使用示波器探头的一点小经验,供大家使用时参考一下。 首先是带宽,这个通常会在探头上写明,多少MHz。如果探头 的带宽不够,示波器的带宽再高也是无用,瓶颈效应。 另外就是探头的阻抗匹配。探头在使用之前应该先对其阻抗 匹配部分进行调节。通常在探头的靠近示波器一端有一个可调电容,有一些探头在靠近探针一端也具有可调电容。它们是用来调 节示波器探头的阻抗匹配的。如果阻抗不匹配的话,测量到的波 形将会变形。调节示波器探头阻抗匹配的方法如下:首先将示波 器的输入选择打在GND上,然后调节Y轴位移旋钮使扫描线出现在示波器的中间。检查这时的扫描线是否水平(即是否跟示波器的 水平中线重合),如果不是,则需要调节水平平衡旋钮(通常模 拟示波器有这个调节端子,在小孔中,需要用螺丝刀伸进去调节。数字示波器不用调节)。然后,再将示波器的输入选择打到直流 耦合上,并将示波器探头接在示波器的测试信号输出端上(一般 示波器都带有这输出端子,通常是1KHz的方波信号),然后调节 扫描时间旋钮,使波形能够显示2个周期左右。调节Y轴增益旋钮,使波形的峰-峰值在1/2屏幕宽度左右。然后观察方波的上、下两边,看是否水平。如果出现过冲、倾斜等现象,则说明需要调节 探头上的匹配电容。用小螺丝刀调节之,直到上下两边的波形都 水平,没有过冲为止。当然,可能由于示波器探头质量的问题, 可能调不到完全无失真的效果,这时只能调到最佳效果了。 另外就是示波器上还有一个选择量程的小开关:X10和X1。 当选择X1档时,信号是没经衰减进入示波器的。而选择X10档时,信号是经过衰减到1/10再到示波器的。因此,当使用示波器的X10 档时,应该将示波器上的读数扩大10倍(有些示波器,在示波器 端可选择X10档,以配合探头使用,这样在示波器端也设置为X10 档后,直接读数即可)。当我们要测量较高电压时,就可以利用 探头的X10档功能,将较高电压衰减后进入示波器。另外,X10档 的输入阻抗比X1档要高得多,所以在测试驱动能力较弱的信号波 形时,把探头打到X10档可更好的测量。但要注意,在不确信号电压高低时,也应当先用X10档测一下,确认电压不是过高后再选用正确有量程档测量,养成这样的习惯是很有必要的,不然,哪天 万一因为这样损坏了示波器,要后悔就来不及了。经常有人提问,为什么用示波器看不到晶振引脚上的波形?一个可能的原因就是 因为使用的是探头的X1档,这时相当于一个很重的负载(一个示 波器探头使用×1档具有上百pF的电容)并联在晶振电路中,导致电路停振了。正确的方法应该是使用探头的X10档。这是使用中应当注意的,即或不停振,也有可能因过度改变振荡条件而看不到 真实的波形了。 示波器探头在使用时,要保证地线夹子可靠的接了地(被测

力科示波器探头使用指南

示波器探头基础系列之五 ——示波器探头使用指南 美国力科公司 概述: 本文旨在帮助读者对常用的示波器探头建立一个基本认识。此外,我们通过一系列的例子说明探头的不正确使用如何影响测量的结果。 理解探测问题 注意!连接示波器和待测物会给被测波形带来失真。 示波器上应该贴上上面类似的警告标签吗?或许是的。示波器同其它测量仪器一样,受制于各种测量问题——显然,示波器和待测物的连接会影响到测量,使用者理解这样的影响是非常重要的。随着示波器技术的发展,连接示波器和待测物的工具和技术已经变得非常成熟。 早期的示波器,测量带宽只有几百KHz数量级,常使用电缆连接电路。现代示波器使用各种连接技术以最小化测量误差。使用者应该熟悉示波器本身以及示波器连接电路的各种方法的特性和限制。 考虑示波器连接待测电路的方式如何影响测量,待测电路可以等效为包含内置电阻和电容的戴维宁等效电压源。同样,示波器输入电路和连接部分可以被等效为负载电阻和旁路电容。该模型如图1所示。当示波器连接信号源时,示波器的负载效应会减小测量到的电压。低频的损耗取决于电阻比率Rs和Ro。对于高频时的损耗,Cs和Co成了主要因素。另外一个影响是系统带宽由于示波器的容性负载而变小,这也会影响到动态时间量的测量,如脉冲上升时间Risetime。 图1 包括信号源和示波器的简单测量模型 示波器的设计者需要从两个方面入手来减少负载效应的影响: a.高阻探头,利用有源和无源电路来减少负载效应,这些电路包括补偿衰减器或者低容值场效应晶体管缓冲放大器。 b.对于高频应用的直接连接,示波器的输入电路采用50ohm的内部端接。在这些场合,示波器输入电路被设计成常数的50ohm负载阻抗。低电容的探头被设计为50ohm端接来减少负载效应。 如何选择合适的探头 通常,探头可以被分成三大类。1、无源高阻探头;2、无源低阻探头;3、有源探头。

示波器探头校准的重要意义

示波器无源高阻电压探头具有通用性,通常一个探头可以与不同的示波器搭配使用。但不同的示波器,甚至同一示波器的不同输入通道,输入阻抗会有差异,这样当探头切换到带衰减的档位时,由于示波器输入阻抗的差异,势必导致衰减系数出现偏差,最终造成测量结果错误。为了解决这个问题,就要考虑探头与示波器输入通道之间的阻抗匹配和频率补偿。探头补偿是针对有衰减的档位设计的,当探头切换到无衰减档位时,补偿调节无效。 示波器的输入阻抗可以等效为一个电阻与一个电容的并联。电阻的阻值比较好控制,一般偏差不大,而寄生电容则与电路设计相关,会有一定的差异。为了补偿输入电容,需要在探头的衰减档位上设计相应的补偿电路,通过调节可调电容,补偿输入电容的差异,这就是低频补偿,所有的探头都具有该功能。然而,由于电路设计方案不同,该可调电容的位置也不一样,但通常在探尖端,如图1所示。 图1低频补偿调节孔 调整补偿电容时需接入示波器上的1kHz校准信号,调整补偿电容,直到方波的顶部最平坦,而不应出现欠补偿或过补偿的情况。当探头欠补偿时,高频信号的测量结果偏小,反之,高频信号的测量结果偏大。若示波器上的1kHz的校准信号损坏,也可以采用外部的1KHz的标准方波进行校准,但应特别注意以下几点。 首先,信号波形要接近理想的方波,不应出现过冲或上升沿过缓的情况,以免调节时影响判断,信号质量可通过探头无衰减档评估。 其次,信号频率应为1kHz,频率过高或过低都会影响补偿的正常操作,例如出现调整补偿时,信号波形形状不变,而幅度变化的情况。之所以选择校准信号频率为1kHz,是与探头本身的频率特性相关的,在该频率下,最有利于观察补偿情况。当然,在补偿时对校准信号的幅度并无严格要求,以方便观察为佳。低频补偿前后的波形如图2所示。 图2低频补偿前后波形对比 为了降低探头的负载效应并扩大补偿范围,通常会将补偿电容放置在探尖端。然而,对于带宽较高的探头,该补偿电容并不能在整个通频带内都起作用,往往还需要做额外的高频补偿,如图3所示。

示波器的各种测量技术

浮地测量和隔离输入示波器基础知识应用指南 本应用指南将介绍电源测量术语,阐述为进行浮地测量提供的不同选项,重点介绍每种选项的优点和缺点。 最苛刻的浮地测量要求源自电源控制电路,如马达控制器、不间断电源和工控设备。在这些应用领域中,电压和电流可能会很大,足以给用户和/或测试设备带来危险。在测量浮地高压信号时,有许多选项可以考虑。每个选项都有自己的优点和缺点。 差分测量与浮地测量比较 所有电压测量都是差分测量。差分测量定义为两点之间的电压差。电压测量分成两类: 1. 参考地电平测量 2. 非参考地电平测量(也称为浮地测量) 传统示波器 大多数传统示波器把“信号参考”端子连接到保护接地系统上,通常称为“接地”。通过这种方式,所有应用到示波器的信号或示波器提供的信号都会有一个公共连接点。 这个公共连接点通常是示波器机箱,通过AC供电设备电源线中的第三条线接地,来保持在(或接近)零伏。这意味着每个输入通道参考点都捆绑在一个接地参考源上。 不应该使用传统无源探头,直接在参考地电平的示波器上进行浮地测量。视流经参考引线的电流数量,传统无源探头会开始变热;在电流足够高时,它会类似熔丝那样熔化断开。 浮地测量技术 为进行高压浮地测量提供的不同选项包括: n隔离输入示波器 n差分探头 n电压隔离装置 n“A - B” 测量技术 n示波器“浮地”技术

术语表 共模信号 两个输入上共同的输入信号成分(幅度和相位完全相同)。 共模范围 差分放大器可以抑制的共模信号的最大电压(从接地)。 共模抑制比 衡量差分放大器抑制共模信号能力的一个性能指标。由于共模抑制一般会随着频率提高而下降,因此通常会指定特定频率的CMRR。 差分模式或差模 差分放大器两个输入之间的不同信号。差模信号(VDM)可以表达为: VDM = (V+input) - (V-input) 差模信号 两个输入之间不同的信号。 差分测量 两点之间的电压差。 差分探头 为差分应用专门设计的探头。有源差分探头在探头尖端包含一个差分放大器。无源差分探头与差分放大器一起使用,可以进行校准,精确匹配两条信号路径中(包括参考引线)的DC和AC衰减。浮地测量 任何一点都没有参考地电平(地电位)的差分测量。 接地环路 当两个或两个以上的单独接地路径在两个或两个以上的点捆绑在一起时,会出现接地环路。结果是一个导体环路。在存在变化的磁场时,这个环路会变成变压器的次级电路,作为短路线圈操作。附近承载非DC电流的任何导体都会产生磁场,激发变压器。许多导线、甚至数字IC输出引线中的AC线路电压都会产生这种激发作用。环路中循环的电流会在环路内部任何阻抗中积聚电压。这样,在任何给定时点上,接地环路中的各个点都不会位于相同的AC电位。

示波器探头基础系列之差分探头

示波器探头基础系列之差分探头 引言 作为一名专业的硬件设计及测试工程师,我们每天都在使用各种不同的数字示波器进行相关电气信号量的量测。与这些示波器相配的探头种类也非常多,包括无源探头(包括高压探头,传输线探头)、有源探头(包括有源单端探头、有源差分探头等),电流探头、光探头等。每种探头各有其优缺点,因而各有其适用的场合。其中,有源探头因具有带宽高,输入电容小,地环路小等优点从而被广泛使用在高速数字量测领域,但有源探头的价位高,动态范围小,静电敏感,校准麻烦,因此,每个工程师使用示波器的入门级探头通常是无源探头。最常见的500Mhz的无源电压探头适用于一般的电路测量和快速诊断,可以满足大多数的低速数字信号、TV、电源和其它的一些典型的示波器应用。 1、差分测量特点 探头从总体上可分为无源探头和有源探头两大类型,而宽带宽示波器和有源探头的用户还需要在单端探头和差分探头之间还要做出选择。承载差分信号的那一对走线就称为差分走线。本文主要讲的是分差探头。差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面: 1.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被最大程度抵消。 2.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。 3.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。目前流行的LVDS就是指这种小振幅差分信号技术。

示波器-OFFSET的校正

OFFSET的校正 由于工作环境温度的变化,还有其他因素会引起示波器和有源探头的直流偏置,会对测量结果造成比较大的影响,所以要对其进行校正。 a、示波器通道本身的偏置校正: 1.首先确认示波器通道本身有无偏置,方法如图示:暖机20分钟以上时间之后,在 通道的Coupling(耦合)菜单中选择GND方式,并把垂直刻度Scale设为最小1mv/div,此时观测扫描线与通道标示之间是否有偏差,如果有则需要进行校正。接地耦合以后通道的刻度标示后会有提示,如图所示 2.进行通道校正,按下Utility键进入菜单,在System中选择Cal,出现如下画面, 选择Signal Path Pass,取下所有的连接的探头,选择OK,执行信号路径校准。

信号路径校准的时间大约需要十分钟,通常在示波器工作环境温度变化达到10°C时需要进行此校准;或者通常使用比较小的量程范围5mV/div以下时,每周需要进行此校准。 b、电流探头偏置校正 电流探头偏置的校正,尽量在探头接上示波器暖机工作二十分钟以上时间之后进行,刚接上示波器就进行校正,随着工作时间增加,温度也会增加,也会造成一定的偏移。 1.校正时探头不接信号,并将扳手推至CLOSE位置,注意推紧,也不要用力过猛造 成探头损坏 2.按下DEGAUSS按钮,进行消磁(每次测试前建议进行此操作);将示波器垂直刻 度Scale设为最小10mA/div;调节BALANCE旋钮调节至基准位置 c、高压差分探头偏置校正 高压差分探头偏置的校正,也需要在探头接上示波器暖机工作二十分钟以上时间之后进行 1.把信号输入端短接,将示波器垂直刻度Scale设为最小50mV/div或者500mV/div 2.使用探头所附带的无感小起子,调节OFFSET旋钮,调节至基准位置

示波器探头原理

示波器探头原理 示波器探头原理---示波器探头工作原理 示波器探头不仅仅是把测试信号判定以示波器输入端的一段导线,而且是测量系统的重要组成部分。探头有很多种类型号各有其没的特性,以适应各种不同的专门工作的击破要,其中一类称为有源探头,探头内包含有源电子元件可以提供放大能力,不含有源元件的探头称为无源探头,其中只包含无源元件如电阻和电容。这种探头通常对输入信号进行衰减。 我们将首先集中讨论通用无源探头,说明共主要技术指标以及探头对被测电路和被测信号的影响,接着简单介绍几种专用探头及其附近。 屏蔽 示波器探头的一个重要任务是确保只有希望观测的信号才在示波器上出现,如果我们仅仅使用一面导线来代替探头,那到它的作用就好象是一根天线,可以从无线电台、荧光灯,电机、50或60Hz的电源的交流声甚至当地业余无线电爱好者那里接收到很多不希望的干扰信号,其些这类噪声甚至还能抽向注入到被测电路中去所以我们首先需要的是屏蔽的电缆,示波器探头的屏蔽电缆通过们于探头尖端的接地线和被测电路连接,从而保证了很好的屏 蔽。 示波器探头带宽 和示波器一们,示波器探头也具有其允许的有限带宽。如果我们使用一台100MHz的示波器和一个100MHz的探头,那么它们组合起来的响应就小于100MHz,探头的电容和示波器的输入电容相加,这就减小了系统的带宽,加大了显示的上升时间tr见第一章1.3节上升 时间。 使用1.3节的公式 tr(ns)=350/BW(MHz) 如果示波器和探头各自均为100MHz带宽,其上升时间均为tr=3.5ns 。则有效系统上 升时间就由下式给出: trsystem=sqr(t2rscope+t2rprobe) =sqr(3.52+3.52)ns =sqr(24.5)2ns =4.95ns 根据4.95ns的系统上升时间求得,系统带宽为350/4.95MHz=70.7MHz。 Fluke公司给所有示波器配备的探头都能使示波器保证在探头尖端获得规定的示波器带宽,从上述的计算可以看出,视觉要求探头本射的带宽要比示波器的带宽宽得多。 示波器探头负载效应 当我们进行测量时,我们常常以为测得的电压和电路中未连入示波器时是完全一样的。 实际上,每个示波器探头都有其输入阻抗,输入阻抗包含了电阻、电容和电感分量。由于探头引入的额外负载,所以连入探头后就会影响被测电路我以当我们分析测量结果时必须

差分探头的详细介绍

示波器差分探头与差分探头的详细介绍与选择方法 新的有源探头体系结构使GHz级以上的千兆信号的完整性测量变得更加容易、精度也更高,但这只对于了解探头的工作原理和探头的两种拓扑结构之间优劣的用户而言的。 宽带宽示波器和有源探头的用户历来可以在单端探头和差分探头之间作出选择。测量单端信号(对地参考电压),你使用的是单端探头,而测量差分信号 (正电压对负电压),你使用的是差分探头。那么,为什么你不能只买差分探头来测量差分信号和单端信号呢?实际情况是,你可以这样做,但又存在实实在在的理由使你不能这么做。与单端探头相比,差分探头价格较贵,使用不大方便,带宽也较窄。 新的探头体系结构,如 Agilent 113X 系列的体系结构可以探测差分信号,也可以探测单端信号,而且基本上使人们不反对使用差分探头。这些探头是通过可互换的端头来提供这种能力的,而各种可互换的头经过优化,可以点测、插入插座和焊入探头。这种结构给有源探头的用户提出了新问题:测量单端信号,到底该用差分探头还是该用单端探头?答案是应由性能和可用性两个方面的权衡结果来定夺。 只要使用Agilent 1134A型 7 GHz 探头放大器的简化模型 (图1) 和已测数据以及焊入的差分和单端探头端头 (图 2),你就可以比较它们的带宽、保真度、可用性、共模抑制特性、可重复性和尺寸大小等方面的差别。这些探头端头的物理连线几何形状相同,所以它们之间的主要性能差别是由差分拓扑结构和单端拓扑结构引起的。探头性能测量是采用 Agilent E2655A 纠偏/性能验证夹具和 Agilent 8720A 20 GHz 向量网络分析仪或者 Agilent Infiniium DCA (数字通信分析仪)采样示波器进行的。

各类仪器的校准方法

各类仪器的校准方法 数字万用表 一、范围 本标准适用本单位所有用于测量电信、电压的计量器具在使用的量程范围内的首次检定,后续检定和使用中检验。 二、技术要求 1.工作环境 环境温度为20℃±5,相对湿度不大于75%RH。无电磁场干扰。 2.检定标准 以K E I T H L E Y-2000型6位半数字万用表为基准,进行比对检定。 3.检定周期 新购的此类仪器须进行首次检定,使用中的此类仪器须每年检定一次,检定合格的方可使用。 4.误差范围 在量程范围内,测量相对误差应小于0.5%。 5.检定人员 须指定专业人员进行检定并作好检定记录。 三、检定方法 1.外观检查受检仪器的外观是否完好,各功能键和旋钮无松动,工作正常,电源充足。 2.受控仪器在切换测量标准后,先须校零,将输入两端短接,显示值应为0,不为零时,可调 整到零。 3.将信号源与基准万用表和受检仪器进行连接,检定电压时,须并联连接,检定电流时,须 串联连接。 4.受检仪器在各测量标位至少取3个点进行比对,记录3次测量平均值。 5.受检仪器的相对误差按以下公式计算。 基准表示值-受检表示值 相对误差= ×100% 测量范围 四、记录 将检验结果记录,并填写“数字万用表内校记录”表。

示波器 示波器探头校准规范 使用的技术要求指标:电压衰减 误差应小于±5% ,频带宽度大于30MHz 1.外观检查。 被检100:1示波器探头外观应完整无损,有无接触不良现象。 2.电压衰减校准。 2.1.将数字示波器与校准仪通过100:1探头相连接好。 2.2.设置数字示波器增益控制旋钮校准位置,置示波器校准 仪脉冲输出方式,使显示波形与数字示波器的刻度相对应(数字示波器输入幅度衰减应设置在100:1状态),此时,调节“V”误差旋钮,直到脉冲的上下基线与示波器水平刻度完全重合,读出示波器校准仪表头误差读数。 2.4.误差应小于±5%。 3.频带宽度的校准 4.1将示波器与合成信号发生器通过100:1探头连接好。 4.2.合成信号发生器输出频率置100KHz调节输出电压,使示波器屏幕显示高度为 Ho为检验工作的80%左右(通常为6div)。 4.3.保持发生器输出电压不变,均匀地改变发生器的频率,记下各频率点的波形高度 Hi则频带宽度下降的dB数,(频带宽度下降的dB数=20lgHi/Ho(dB))。 其中:Hi─各频率点显示的幅度高度。 Ho─基准频率点显示幅度的高度。 4.4.当合成信号发生器的频率向示波器上限频率继续升高时,显示高度下降为 0.707Ho(即4.2div)时对应的频率为100:1示波器探头带宽实测值,应大于30MHz。 6.校准条件 6.1.环境温度:(20±5)℃ 6.2.相对湿度:≤80% 7.标准器具: 7.1.示波器校准仪型号:S06 机身编号:08047 7.2合成信号发生器型号:6061A 机身编号:9646914 数字示波器型号:HP-54600B 机身编号:38421026 8.校准结果的处理和校准周期 8.2.经校准合格的100:1示波器探头,发给并在机身上加贴校准合格证标识;校 准有部分超差,给准用证,并注明准用范围;不合格的贴上“禁止使用”标识

示波器探头基础知识

精心整理 ScopeArt先生”团队成员 示波器探头是示波器使用过程中不可或缺的一部分,它主要是作为承载信号传输的链路,将待测信号完整可靠的传输至示波器,以进一步进行测量分析。很多工程师很看重示波器的选择,却容易忽略对示波器探头的甄别。试想如果信号经过前端探头就已经失真,那再完美的示波器所测得的数据也会有误。所以正确了解探头性能,有效规避探头使用误区对我们日常使用示波器来说至关重要! 1 对于DC L,寄图1 ?图2无源探头示意图

无源探头一般使用通用型BNC接口与示波器相连,所以大多数厂家的无源探头可以在不同品牌的示波器上通用(某些厂家特殊接口标准的探头除外),但由于示波器一般无法自动识别其他品牌的探头类型,所以此时需要手动在示波器上设置探头衰减比,以保证示波器在测量时正确补偿探头带来的信号衰减。 图3所示为日常最为常见的一类无源探头原理示意图,它由输入阻抗Rprobe、寄生电容Cprobe、传输导线(一般1至1.5米左右)、可调补偿电容Ccomp组成。此类无源探头一般输入阻抗为10M?,衰减比因子为10:1。 ?图3 Vscope 1衰减因 很小, ?图4R&SRT-ZH10高压探头

还有一类无源探头,其衰减比为1:1,信号未经衰减直接经过探头传输至示波器,其耐压能力不及其它无源探头,但它具备测试小信号的优势。由于不像10:1衰减比探头那样信号需要示波器再放大10倍显示,所以示波器内部噪声未放大,测量噪声更小,此类更适用于测试小信号或电源纹波噪声。 图5R&SHZ-1541:1/10:1可调衰减比无源探头 无源传输线探头是另一类特殊的无源探头,其特点是输入阻抗相对较低,一般为几百欧姆,支持图6 量50? ? 图 需要注意的是,由于传输线探头的低阻抗,它的负载效应会比较明显。因此,此类探头仅适用于与低输出阻抗(几十至100欧姆)的电路测试。对于更高输出阻抗的电路,我们可以选择使用高阻有源探头的方案,将在后续详述。 图8R&SRT-ZZ808.0GHz无源传输线探头 ??????

相关主题
文本预览
相关文档 最新文档