当前位置:文档之家› 开关电源的冲击电流控制方法

开关电源的冲击电流控制方法

开关电源的冲击电流控制方法
开关电源的冲击电流控制方法

开关电源的冲击电流控制方法

开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路。

由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。

图3.通信系统的最大冲击电流限值(AC/DC电源)

图4.通信系统在标称输入电压和最大输出负载时的冲击电流限值(DC/DC电源)

欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击电流限值[4],图4为通信系统在DC/DC电源供电,标称输入电压和最大输出负载时的最大冲击电流限值[5]。图中It为冲击电流的瞬态值,Im为稳态工作电流。

冲击电流的大小由很多因素决定,如输入电压大小,输入电线阻抗,电源内部输入电感及等效阻抗,输入电容等效串连阻抗等。这些参数根据不同的电源系统和布局不同而不同,很难进行估算,最精确的方法是在实际应用中测量冲击电流的大小。在测量冲击电流时,不能因引入传感器而改变冲击电流的大小,推荐用的传感器为霍尔传感器。

2. AC/DC开关电源的冲击电流限制方法

2.1 串连电阻法

对于小功率开关电源,可以用象图5的串连电阻法。如果电阻选得大,冲击电流就小,但在电阻上的功耗就大,所以必须选择折衷的电阻值,使冲击电流和电阻上的功耗都在允许的范围之内。

图5. 串连电阻法冲击电流控制电路(适用于桥式整流和倍压电路,其冲击电流相同)串连在电路上的电阻必须能承受在开机时的高电压和大电流,大额定电流的电阻在这种应用中比较适合,常用的为线绕电阻,但在高湿度的环境下,则不要用线绕电阻。因线绕电阻在高湿度环境下,瞬态热应力和绕线的膨胀会降低保护层的作用,会因湿气入侵而引起电阻损坏。

图5所示为冲击电流限制电阻的通常位置,对于110V、220V双电压输入电路,应该在R1和R2位置放两个电阻,这样在110V输入连接线连接时和220V输入连接线断开时的冲击电流一样大。对于单输入电压电路,应该在R3位置放电阻。

2.2 热敏电阻法

在小功率开关电源中,负温度系数热敏电阻(NTC)常用在图5中R1,R2,R3位置。在开关电源第一次启动时,NTC的电阻值很大,可限制冲击电流,随着NTC的自身发热,其电阻值变小,使其在工作状态时的功耗减小。

用热敏电阻法也由缺点,当第一次启动后,热敏电阻要过一会儿才到达其工作状态电阻值,如果这时的输入电压在电源可以工作的最小值附近,刚启动时由于热敏电阻阻值还较大,它的压降较大,电源就可能工作在打嗝状态。另外,当开关电源关掉后,热敏电阻需要一段冷却时间来将阻值升高到常温态以备下一次启动,冷却时间根据器件、安装方式、环境温度的不同而不同,一般为1分钟。如果开关电源关掉后马上开启,热敏电阻还没有变冷,这时对冲击电流失去限制作用,这就是在使用这种方法控制冲击电流的电源不允许在关掉后马上开启的原因。

2.3 有源冲击电流限制法

对于大功率开关电源,冲击电流限制器件在正常工作时应该短路,这样可以减小冲击电流限制器件的功耗

图6. 有源冲击电流限制电路(桥式整流时的冲击电流大)在图6中,选择R1作为启动电阻,在启动后用可控硅将R1旁路,因在这种冲击电流限制电路中的电阻R1可以选得很大,通常不需要改变110V输入倍压和220V输入时的电阻值。在图6中所画为双向可控硅,也可以用晶闸管或继电器将其替代。

图6所示电路在刚启动时,冲击电流被电阻R1限制,当输入电容充满电后,有源旁路电路开始工作将电阻R1旁路,这样在稳态工作时的损耗会变得很小。

在这种可控硅启动电路中,很容易通过开关电源主变压器上的一个线圈来给可控硅供电。由开关电源的缓启动来提供可控硅的延迟启动,这样在电源启动前就可以通过电阻R1将输入电容充满电。

3. DC/DC开关电源的冲击电流限制方法

3.1 长短针法

图7所示电路为长短针法冲击电流限制电路,在DC/DC电源板插入时,长针接触,输入电容C1通过电阻R1充电,当电源板完全插入时,电阻R1被断针短路。C1代表DC/DC 电源的所有电容量

图7. 长短针法冲击电流限制电路

这种方法的缺陷是插入的速度不能控制,如插入速度过快,电容C1还没充满电时,短针就已经接触,冲击电流的限制效果就不好。

也可用热敏电阻法来限制冲击电流,但由于DC/DC电源的输入电压较低,输入电流较大,在热敏电阻上的功耗也较大,一般不用此方法。

3.2 有源冲击电流限制法

3.2.1 利用MOS管限制冲击电流

利用MOS管控制冲击电流可以克服无源限制法的缺陷。MOS管有导通阻抗Rds_on低和驱动简单的特点,在周围加上少量元器件就可以做成冲击电流限制电路。

MOS管是电压控制器件,其极间电容等效电路如图8所示。

图8. 带外接电容C2的N型MOS管极间电容等效电路

MOS管的极间电容栅漏电容Cgd、栅源电容Cgs、漏源电容Cds可以由以下公式确定:

公式中MOS管的反馈电容Crss,输入电容Ciss和输出电容Coss的数值在MOS管的手册上可以查到。

电容充放电快慢决定MOS管开通和关断的快慢,为确保MOS管状态间转换是线性的和可预知的,外接电容C2并联在Cgd上,如果外接电容C2比MOS管内部栅漏电容Cgd 大很多,就会减小MOS管内部非线性栅漏电容Cgd在状态间转换时的作用。

外接电容C2被用来作为积分器对MOS管的开关特性进行精确控制。控制了漏极电压线性度就能精确控制冲击电流。

电路描述:

图9所示为基于MOS管的自启动有源冲击电流限制法电路。MOS管 Q1放在DC/DC 电源模块的负电压输入端,在上电瞬间,DC/DC电源模块的第1脚电平和第4脚一样,然后控制电路按一定的速率将它降到负电压,电压下降的速度由时间常数C2*R2决定,这个斜率决定了最大冲击电流。

C2可以按以下公式选定:

R2由允许冲击电流决定:

其中Vmax为最大输入电压,Cload为C3和DC/DC电源模块内部电容的总和,Iinrush 为允许冲击电流的幅度。

图9. 有源冲击电流限制法电路

D1用来限制MOS管 Q1的栅源电压。元器件R1,C1和D2用来保证MOS管Q1在刚上电时保持关断状态。

上电后,MOS管的栅极电压要慢慢上升,当栅源电压Vgs高到一定程度后,二极管D2导通,这样所有的电荷都给电容C1以时间常数R1×C1充电,栅源电压Vgs以相同的速度上升,直到MOS管Q1导通产生冲击电流。

以下是计算C1和R1的公式:

其中Vth为MOS管Q1的最小门槛电压,VD2为二极管D2的正向导通压降,Vplt为产生Iinrush冲击电流时的栅源电压。Vplt可以在MOS管供应商所提供的产品资料里找到。

MOS管选择

以下参数对于有源冲击电流限制电路的MOS管选择非常重要:

l 漏极击穿电压 Vds

必须选择Vds比最大输入电压Vmax和最大输入瞬态电压还要高的MOS管,对于通讯系统中用的MOS管,一般选择Vds≥100V。

l 栅源电压Vgs

稳压管D1是用来保护MOS管Q1的栅极以防止其过压击穿,显然MOS管Q1的栅源电压Vgs必须高于稳压管D1的最大反向击穿电压。一般MOS管的栅源电压Vgs为20V,推荐12V的稳压二极管。

l 导通电阻Rds_on.

MOS管必须能够耗散导通电阻Rds_on所引起的热量,热耗计算公式为:

其中Idc为DC/DC电源的最大输入电流,Idc由以下公式确定:

其中Pout为DC/DC电源的最大输出功率,Vmin为最小输入电压,η为DC/DC电源在输入电压为Vmin输出功率为Pout时的效率。η可以在DC/DC电源供应商所提供的数据手册里查到。MOS管的Rds_on必须很小,它所引起的压降和输入电压相比才可以忽略。

图10. 有源冲击电流限制电路在75V输入,DC/DC输出空载时的波形设计举例

已知: Vmax=72V

Iinrush=3A

选择MOS管Q1为IRF540S

选择二极管D2为BAS21

按公式(4)计算:C2>>1700pF。选择 C2=0.01μF;

按公式(5)计算:R2=252.5kW。选择 R2=240kW,选择 R3=270W<

按公式(7)计算:C1=0.75μF。选择 C1=1μF;

按公式(8)计算:R1=499.5W。选择 R1=1kW

图10所示为图9电路的实测波形,其中DC/DC电源输出为空载。

3.2.2 利用专用集成电路控制冲击电流和实现热插拔功能

对于复杂的系统,可能需要复杂的控制电路来实现以下功能:

n DC/DC电源开关机控制

n 当输入电压低于DC/DC电源最低工作电压时,关断冲击电流控制电路,当输入电压恢 复正常时,重新启动。

现在有些公司的热插拔芯片可以提供这些功能,如Linear Technology公司的TL1640芯片就提供了简单而有效的冲击电流控制方法。这种芯片可以工作在很宽的输入电压范围,可提供输入过、欠压保护,还可以对DC/DC电源提供开关机信号。

图11.基于LT1640L的冲击电流控制电路

图11所示电路为基于LT1640L的冲击电流控制电路,该电路可以可靠的控制冲击电流、管理热插拔而不引起瞬态过压或欠压。在上电或插入瞬间,MOS管Q1保持在关断状态,将未充电电容C3、DC/DC电源滤波器电容和输入电源隔开,随后MOS管Q1慢慢开通,电容在控制状态下慢慢充电,只有在电容充满电后,PWRGD才给出开关信号让DC/DC电源开始工作。

电路描述:

电阻R3和MOS管Q1的栅极和源极间接外接电容C2作为反馈可以精确控制冲击电流的大小,外接栅极和源极间电容C2的容量可以由以下公式计算得到:

式中:Vth为MOS管Q1的最小门槛电压,Cload为C3和DC/DC电源模块内部电容的总和。

电容C2的容量决定在MOS管Q1导通过程中冲击电流Iinrush的大小,最好将冲击电流Iinrush设定得和DC/DC的最大稳态工作电流一样。改变所要求的冲击电流Iinrush的大小、MOS管型号,甚至MOS管生产厂家,就需要改变外接电容C1、C2的容量。

电阻R18的作用是减小MOS管Q1的关断时间,R3一般在10KW 到15KW之间。电阻R7、R8决定电路的欠压保护点,电阻R9、R10决定电路的过压保护点,由于UV、OV 的比较电平都是1.24V,图11所示的过、欠压保护点分别为74V和30V。C5、C6消除OV、UV端的干扰,C5和C6越接近芯片的各自管脚越好。

R4和C7为芯片LT1640L的低通滤波,C7越接近芯片越好。

设计举例

已知: Vmax=72V

Iinrush=3A

MOS管Q1为IRF540S

选择: R18=270W,R3=12 kW

按公式(11)计算:C2=1380pF。选择 C2=1500pF;

按公式(12)计算:C1=0.058mF。选择 C1=0.1mF

图12. 图11电路在48V输入、输出空载时的冲击电流

图12为图11所示电路在48VDC输入、输出空载时的波形。上电后, ON/OFF端电压被DC/DC电源内部电路抬升,当电容C3和滤波器中电容充满电后,PWRGD输出低电平,将ON/OFF端电压拉低,DC/DC电源开始工作。

图13为图11所示电路在48VDC输入、DC/DC电源输出为30W时的波形。最下面的波形为DC/DC电源的输出波形,PWRGD一给DC/DC电源ON/OFF端输出低电平信号(见图11),DC/DC电源的输出就开始上升。图11由于是DC/DC输出空载,其稳态输入电流几乎为零,图12输出为30W,它有稳态输入电流。图14、图15分别为36V、72V输入,输出为30W时的波形。

图13. 图11电路在48V输入、DC/DC输出为30W时的冲击电流

图14. 图11电路在36V输入、DC/DC输出为30W时的冲击电流

图15. 图11电路在72V输入、DC/DC输出为30W时的冲击电流

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

单端正激式开关电源主电路的设计

单端正激式开关电源主 电路的设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment. The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

开关电源浪涌吸收方法

开关电源的冲击电流控制方法 开关电源的输入一般有滤波器来减小电源反馈到输入的纹波,输入滤波器一般有电容和电感组成∏形滤波器,图1. 和图2. 分别为典型的AC/DC电源输入电路和DC/DC电源输入电路。 由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,还会由于共同输入阻抗而干扰附近的电器设备。

图3.通信系统的最大冲击电流限值(AC/DC电源) 图4.通信系统在标称输入电压和最大输出负载时的冲击电流限值(DC/DC电源) 欧洲电信标准协会(the European Telecommunications Standards Institute)对用于通信系统的开关电源的冲击电流大小做了规定,图3为通信系统用AC/DC电源供电时的最大冲击电流限值[4],图4为通信系统在DC/DC电源供电,标称输入电压和最大输出负载时的最大冲击电流限值[5]。图中It为冲击电流的瞬态值,Im为稳态工作电流。 冲击电流的大小由很多因素决定,如输入电压大小,输入电线阻抗,电源内部输入电感及等效阻抗,输入电容等效串连阻抗等。这些参数根据不同的电源系统和布局不同而不同,很难进行估算,最精确的方法是在实际应用中测量冲击电流的大小。在测量冲击电流时,不能因引入传感器而改变冲击电流的大小,推荐用的传感器为霍尔传感器。

2. AC/DC开关电源的冲击电流限制方法 2.1 串连电阻法 对于小功率开关电源,可以用象图5的串连电阻法。如果电阻选得大,冲击电流就小,但在电阻上的功耗就大,所以必须选择折衷的电阻值,使冲击电流和电阻上的功耗都在允许的范围之内。 图5. 串连电阻法冲击电流控制电路(适用于桥式整流和倍压电路,其冲击电流相同)串连在电路上的电阻必须能承受在开机时的高电压和大电流,大额定电流的电阻在这种应用中比较适合,常用的为线绕电阻,但在高湿度的环境下,则不要用线绕电阻。因线绕电阻在高湿度环境下,瞬态热应力和绕线的膨胀会降低保护层的作用,会因湿气入侵而引起电阻损坏。 图5所示为冲击电流限制电阻的通常位置,对于110V、220V双电压输入电路,应该在R1和R2位置放两个电阻,这样在110V输入连接线连接时和220V输入连接线断开时的冲击电流一样大。对于单输入电压电路,应该在R3位置放电阻。 2.2 热敏电阻法 在小功率开关电源中,负温度系数热敏电阻(NTC)常用在图5中R1,R2,R3位置。在开关电源第一次启动时,NTC的电阻值很大,可限制冲击电流,随着NTC的自身发热,其电阻值变小,使其在工作状态时的功耗减小。 用热敏电阻法也由缺点,当第一次启动后,热敏电阻要过一会儿才到达其工作状态电阻值,如果这时的输入电压在电源可以工作的最小值附近,刚启动时由于热敏电阻阻值还较大,它的压降较大,电源就可能工作在打嗝状态。另外,当开关电源关掉后,热敏电阻需要一段冷却时间来将阻值升高到常温态以备下一次启动,冷却时间根据器件、安装方式、环境温度的不同而不同,一般为1分钟。如果开关电源关掉后马上开启,热敏电阻还没有变冷,这时对冲击电流失去限制作用,这就是在使用这种方法控制冲击电流的电源不允许在关掉后马上开启的原因。

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y-Cap 会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但

单端正激式开关电源-主电路地设计

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment. The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation 目录 前言 (1)

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

分析电流控制型开关电源方案

分析电流控制型开关电源方案 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。 电压控制型开关电源会对开关电流失控,不便于过流保护,并且响应慢、稳定性差。与之相比,电流控制型开关电源是一个电压、电流双闭环控制系统,能克服电流失控的缺点,并且性能可靠、电路简单。据此,我们用UC3842芯片设计了一个电流控制型开关电源。为了提高输出电压的精度,系统没有采用离线式结构,而采用直接反馈式结构。本系统在设计上充分考虑了电磁兼容性和安全性,可广泛应用于

工业、家电、视听和照明设备。 电流控制型开关电源的原理框图 电流型控制是针对电压型控制的缺点而发展起来的,在保留了电压控制型的输出电压反馈控制部分外,又增加了一个电流反馈环节,其原理框如图1所示。 图1 电流控制型开关电源的原理框图 电流控制型开关电源是一个电压、电流双闭环控制系统,内环为电流控制环,外环为电压控制环。当U O变化导致UF变化,或I变化导致US变化时,从而改变UO,达到输出电压稳定的目的。 电流型控制芯片UC3842 UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而

开关电源常见故障维修方法

开关电源常见故障及维修方法: 1.保险烧或炸 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 2.无输出,保险管正常 这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 3.有输出电压,但输出电压过高 这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4.输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a.开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该 断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断 开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能 力下降。 d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足从而屡损开关 管 e.300V滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。

反激开关电源主电路工作原理

反激开关电源 一.定义: 直流电压正好激励变压器的初级线圈时,变压器的次级线圈并没有向负载提供输出功率,而是仅在关断变压器初级线圈的激励电压后,才对负载提供输出功率。 二.反激开关电源的主电路 开关管导通时,反激开关电源将电能转化为磁能,存储在变压器中; 开关管关断时,发激开关电源再将存储的磁能转化为电能传送给负载。 电路特点: 1.结构简单,效率高,体积小,造价低 2.输出纹波电压比较大

3.输出功率一般在150W一下,经常作为辅助电源应用在控制系 统中 4.适合多输出小功率场合 三.反激开关电源原理分析 CCM模式 1.开关管T导通 电源电压 in V加在变压器的初级绕组1N上,在次级绕组2N 上产生感应电压 2 2 1 N in N u V N =-,初级绕组电流线性增加,in P P V di dt L =, 电流 P i最大值max min in P P P V I I DT L -- =+,变压器铁心被磁化,磁通线 性增加, () 1 in V DT N + ?Φ=。 2.开关管T关断 初级绕组开路,次级绕组工作,次级绕组电压 2 N o u V =,次级绕

组电流线性下降, S o S di V dt L =,电流S i 最小值 min m (1)o S S ax S V I I D T L --=- -,变压器铁心去磁,磁通线性减小,()2 (1)o V D T N -?Φ= -。 3. 基本关系: ()()+-?Φ=?Φ?211(1)(1)o in V N D D V N D n D =?=?--,其中12 N n N = 开关管T 电压应力:1 21in T in o V N V V V N D =+ =- 二极管D 的电压应力:2 1o D o in V N V V V N D =+ = 此时,负载电流o I 等于二极管电流的平均值,即 min m 1 ()(1)2 o S S ax I I I D --=+- 由变压器工作原理 1min 2min 1max 2m P S P S ax N I N I N I N I ----== 可得 2max 11 12in P o P V N I I DT N D L -= +- 11m max 22112in S ax P o P V N N I I I DT N D N L --= =+- 临界模式 此时有min 0P I -=且min 0S I -=,则有下列式子成立:

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动, 应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种PWM空制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1.开关电源控制电路原理分析 DC- DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成 另一等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间 长度来控制平均输出电压,这种方法也称为脉宽调制[PWM法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode con trol )和电流型 控制(current modecontrol )。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PW信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个—阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图即为电压型控制的原理框图。 1

采用UC3843的电流型开关电源

采用UC3843的电流型开关电源 电压控制型开关电源会对开关电流失控,不便于过流保护,并且响应慢、稳定性差。与之相比,电流控制型开关电源是一个电压、电流双闭环控制系统,能克服电流失控的缺点,并且性能可靠、电路简单。据此,我们用UC3842芯片设计了一个电流控制型开关电源。为了提高输出电压的精度,系统没有采用离线式结构,而采用直接反馈式结构。本系统在设计上充分考虑了电磁兼容性和安全性,可广泛应用于工业、家电、视听和照明设备。 电流控制型开关电源的原理框图 电流型控制是针对电压型控制的缺点而发展起来的,在保留了电压控制型的输出电压反馈控制部分外,又增加了一个电流反馈环节,其原理框如图1所示。 图1 电流控制型开关电源的原理框图 电流控制型开关电源是一个电压、电流双闭环控制系统,内环为电流控制环,外环为电压控制环。当U O 变化导致UF变化,或I变化导致US变化时,都会使PWM电路的输出脉冲占空比发生变化,从而改变UO,达到输出电压稳定的目的。 电流型控制芯片UC3842 UC3842是一块功能齐全、较为典型的单端电流型PWM控制集成电路,内包含误差放大器、电流检测比较器、PWM锁存器、振荡器、内部基准电源和欠压锁定等单元。它提供8端口双列直插塑料封装和14端口塑料表面贴装封装,内部结构如图2所示。 图2 UC3842内部电路

8端口双列直插塑料封装的UC3842各管端口功能简介。 ①端口COMP是内部误差放大器的输出端。 ②端口VFB是反馈电压输入端,与内部误差放大器同相输入端的+2.5V基准电压进行比较,产生误差电压,控制脉冲的宽度。 ③端口ISENSE是电流传感端。在应用电路中,在MOSFET的源极串接一个小阻值的取样电阻,将脉冲变压器的电流转换成电压并送入③端口,控制脉冲的宽度。 ④端口RT/CT是定时端。锯齿波振荡器的振荡频率f=1.8/(RT?CT),电流模式工作频率可达500kHz。 ⑤端口GND是接地。 ⑥端口OUTPUT是输出端,此端口为图腾柱式输出,驱动电流的峰值高达l.0A。 ⑦端口VCC是电源。当供电电压低于16V时,UC3824不工作,此时耗电在1mA以下。芯片工作后,输入电压可在10~30V之间波动,工作电流约为15mA。 ⑧端口VREF是基准电压输出,可输出精确的+5V基准电压,电流可达50mA。 UC3842构成电流控制型开关电源 1 电路组成 UC3842构成的电流控制型开关电源电路如图3所示。 图3 UC3842构成电流控制型开关电源 2 工作原理 220V交流电先通过滤波网络滤掉各种干扰。电阻R1主要用来消除断电瞬间残留的电压,热敏电阻RT1可以限制浪涌电流,压敏电阻VDR保护电路免受雷电的冲击。然后,再经过B1整流、C4滤波,获得约300V直流电压后分两路输出:一路经开关变压器T加到MOSFET Q1的漏极,另一路经R3加到C17的正端。当C17的正端电位升到≥R16时,⑦端口得工作电压,UC3842电路启动,⑥端口电位上升,Q1开始导通,同时⑧端口的5V电压通过内电路建立。C17容量最好在lO0μF以上,否则电源将出现打嗝现象。C12滤波电容消除在开关时会产生尖峰脉冲,C11为消噪电容,R6、C13决定锯齿波振荡器的振荡频率,R9、C15用来确定误差放大器的增益和频响。C14起斜坡补偿作用,能提高采样电压的可靠性。正常工作后,线圈N2上的高频电压经过D2、R17、C18、D3为UC3842提供工作电压。

48V50A开关电源整流模块主电路设计

48V/50A开关电源整流模块主电路设计 高频开关电源系统具有体积小,重量轻,高效节能,输出纹波小,输出杂音电压小和动态响应性能好等很多优点,现已开始逐步地取代整流式电源而成为现代通讯设备的新型基础电源系统。随着电子技术,电力电子技术,自动控制技术和计算机控制技术的发展,高频开关电源系统的性能也越来越好。通信用开关电源系统作为开关式稳压电源的一种形式,它的设计内容和设计方法都具有自己的特殊性。 要设计一套通信用开关电源系统,首先要明白对它的全面要求,然后再设计系统的各个部分。高频开关电源主回路和控制回路所用的电路形式,元器件,控制方式都发展很快。它们的设计具有特殊的内容和方法。 1设计要求和具体电路设计 通信基础开关电源系统的关键部分是开关电源整流模块。整流模块的规格很多,结合在工 作中遇到的实际情况,提出该模块设计的硬指标如下: 1) 电网允许的电压波动范围 单相交流输入,有效值波动范围:220 V±20%,即176~264 V;频率:45~65 Hz。 2) 直流输出电压,电流 输出电压:标称-48V,调节范围:浮充,43~56?5V;均充,45~58V。 输出电流:额定值:50A。 3) 保护和告警性能 ①当输入电压低到170 VAC或高到270 VAC,或散热器温度高到75 ℃时,自动关机。 ②当模块直流输出电压高到60 V,或输出电流高到58~60 A时,自动关机。 ③当输出电流高到53~55 A时,自动限流,负载继续加大时,调低输出电压。

4) 效率和功率因数 模块的效率不低于88%,功率因数不低于0.99。 5) 其他指标 模块的其他性能指标都要满足“YD/T731”和“入网检验实施细则”等行业标准。 由于模块的输出功率不大,可采用如下的基本方案来设计主电路: 1) 单相交流输入,采用高频有源功率因数校正技术,以提高功率因数; 2) 采用双正激变换电路拓扑形式,工作可靠性高; 3) 主开关管采用 V MOSFET,逆变开关频率取为50 kHz; 4) 采用复合隔离的逆变压器,一只变压器双端工作; 5) 采用倍流整流电路,便于绕制变压器。 依照上述方案,即可设计出主电路的基本形式如图1。 图1 48V/50A整流模块DC/DC主电路基本形式 以下即可按照模块设计的要求来确定主电路中各元器件的基本参数。 1) 输出整流管的选择 输出整流二极管的工作波形如图2所示。

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

开关电源电压型与电流型控制方式解析

开关电源电压型与电流型控制方式比较 河北科技大学电气工程学院 张刚 开关电源主要有两部分组成:控制器和功率级。功率级采用各种电力电子器件、电阻、电感、电容和变压器等实现期望电压输出。控制器实现期望输入电压的控制,是电源系统精度和稳定性的核心。其实质是控制PWM 的占空比实现期望输出,由于具体实现占空比调节的时反馈信号的取样方式不同,PWM 控制有电压型控制方式和电流型控制方式。网上总有网友对开关电源电压型控制与电流型控制的提问,回答的方式也各式各样,本人发表一下对该概念的理解,希望对同行有所裨益。 一、电压型控制方式 电压型控制方式出现较早, 该控制方式以电源的输出电压为反馈信号,该反馈信号与给 定值的偏差经比较器放大后与锯齿波比较产生控制脉冲。电压型控制方式的原理图如图1所示: V V r 图1 电压型PWM 控制原理图 电压型控制将输出电压与V R 参考电压V ref 的偏差信号e 经PI 型误差放大器与振荡器产生 的锯齿波进行比较,产生PWM 控制脉冲,其控制系统框图如图2所示: 图2 电压型PWM 控制系统框图 PWM 的输出占空比正比于控制电压,也就决定了输出电压其输出波形如图3所示。

CLO CK V e V T Q 图3 电压型PWM 控制输出PWM 波形 电压型控制方式的优点是: 1)单闭环控制简化了系统的分析与设计; 2)高增益斜坡输入提高了系统的噪声抑制; 3)低阻抗输出提高了系统的互联能力; 电压型控制的缺点: 1)负载输出电压变化后才进行调节,滞后性较大; 2)输出加入滤波器,增加了系统的复杂性。 二、电流型控制方式 电流型控制方式提出于80年代早期,在电压型控制的基础上,对电感电流增加一个内环,形成电压反馈信号组成外环,电压外环的输出偏差作为电流内环的给定,与电流反馈信号比较产生控制脉冲,控制系统结构框图如图4所示: 图4 电流型PWM 控制系统框图 电流型控制方式的实现原理图如图5所示: V V r 图5 电流型PWM 控制原理图

开关电源各种保护电路实例详细解剖

输入欠压保护电路 输入欠压保护电路一 1、概述(电路类别、实现主要功能描述): 该电路属于输入欠压电路,当输入电压低于保护电压时拉低控制芯片的供电Vcc,从而关闭输出。 2、电路组成(原理图): 3、工作原理分析(主要功能、性能指标及实现原理): 当电源输入电压高于欠压保护设定点时,A点电压高于U4的Vref,U4导通,B点电压为低电平,Q4导通,Vcc供电正常;当输入电压低于保护电压时,A 点电压低于U4的Vref,U4截止,B点电压为高电平,Q4截止,从而Vcc没 有电压,此时Vref也为低电平,当输入电压逐渐升高时,A点电压也逐渐升高,当高于U4的Vref,模块又正常工作。R4可以设定欠压保护点的回差。4、电路的优缺点 该电路的优点:电路简单,保护点精确 缺点:成本较高。 5、应用的注意事项: 使用时注意R1,R2的取值,有时候需要两个电阻并联才能得到需要的保护点。还需要注意R1,R2的温度系数,否则高低温时,欠压保护点相差较大。输入欠压保护电路二 1、概述(电路类别、实现主要功能描述): 输入欠压保护电路。当输入电压低于设定欠压值时,关闭输出;当输入电压 升高到设定恢复值时,输出自动恢复正常。 2、电路组成(原理图):

3、工作原理分析(主要功能、性能指标及实现原理): 输入电压在正常工作范围内时, Va大于VD4的稳压值,VT4导通,Vb为0电位,VT5截止,此时保护电路不起作用;当输入电压低于设定欠压值时,Va小于VD4的稳压值,VT4截止,Vb为高电位,VT5导通,将COMP(芯片的1脚)拉到0电位,芯片关闭输出,从而实现了欠压保护功 能。 R21、VT6、R23组成欠压关断、恢复时的回差电路。当欠压关断时,VT6导通,将R21与R2并联,;恢复时,VT6截止, ,回差电压即为(Vin’-Vin)。 4、电路的优缺点 优点:电路形式简单,成本较低。 缺点:因稳压管VD4批次间稳压值的差异,导致欠压保护点上下浮动,大批量生产时需经常调试相关参数。 5、应用的注意事项: VD4应该选温度系数较好的稳压管,需调试的元件如R2应考虑多个并联以方便调试。 输出过压保护电路 输出过压保护电路一 1、概述(电路类别、实现主要功能描述):

开关电源CCM和DCM工作模式

开关电源Buck 电路CCM 及DCM 工作模式 一、Buck 开关型调整器: 图1 二、CCM 及DCM 定义: 1、CCM (Continuous Conduction Mode),连续导通模式:在一个开关周期内,电感电流从不会到0。或者说电感从不“复位”,意味着在开关周期内电感磁通从不回到0,功率管闭合时,线圈中还有电流流过。 2、DCM ,(Discontinuous Conduction Mode)非连续导通模式:在开关周期内,电感电流总会会到0,意味着电感被适当地“复位”,即功率开关闭合时,电感电流为零。 3、BCM (Boundary Conduction Mode ),边界或边界线导通模式:控制器监控电感电流,一旦检测到电流等于0,功率开关立即闭合。控制器总是等电感电流“复位”来激活开关。如果电感值电流高,而截至斜坡相当平,则开关周期延长,因此,BCM 变化器是可变频率系统。BCM 变换器可以称为临界导通模式或CRM (Critical Conduction Mode )。 图1通过花电感电流曲线表示了三种不同的工作模式。 图2 电感工作的三种模式 电流斜坡的中点幅值等于直流输出电流o I 的平均值,峰值电流Ip 与谷值电流V I 之差为纹波电流。 三、CCM 工作模式及特点 根据CCM 定义,测试出降压变换器工作于连续模式下的波形,如下图3所示。 图3 波形1表示PWM 图形,将开关触发成导通和截止。当开关SW 导通时,公共点SW/D 上的电压为Vin 。相反,当开关断开时,公共点SW/D 电压将摆到负,此时电感电流对二极管D 提供偏置电流,出现负降压——续流作用。 波形3描述了电感两端电压的变化。在平衡点,电感L 两端的平均电压为0,及S1+S2=0。S1面积对应于开关导通时电压与时间的乘积,S2面积对应于开关关断时电压与时间的乘积。S1简单地用矩形高度(in V -out V )乘以D sw T ,而S2也是矩形高度-out V t 乘以(1-D )sw T 。如果对S1和S2求和,然后再整个周期sw T 内平均,得到 (D (in V -out V )sw T -out V (1-D )sw T )/ sw T =0 化简上式可以到CCM 的降压DC 传递函数: out V = D in V =M in V 或M= out V /in V

用TL494制作的ATXC开关电源控制电路图

用TL494制作的ATXC开关电源控制电路图 本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路。 图1 ATX电源的控制电路见图1。控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此种工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。 比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。494内的比较放大器有四个,为叙述方便,在图1中用小写字母

a、b、c、d来表示。其中a是死区时间比较器。因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。为防止这样的事情发生,494设置了死区时间比较器a。从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平。反相器的作用是把输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。339是四比较器集成电路。按管脚的顺序把内部四个比较器设为A、B、C、D比较器。494和339再配合其他电路,共同完成ATX电源的稳压,产生PW-OK信号及各种保护功能。

相关主题
文本预览
相关文档 最新文档