当前位置:文档之家› 水力计算

水力计算

水力计算
水力计算

宽顶堰上闸孔出流的水力计算

[日期:06/21/2006 20:09:00] 来源:作者:

[字体:大中

小]

在水利工程中,闸门的类型主要有弧形闸门和平板闸门两种。闸门的底坎型式主要有平顶堰型和曲线实用堰型两种。

根据闸前水头、闸孔开度e和下游水深等的不同,闸孔出流有不同的水流流态。设收缩断面的跃后共轭水深为,为下游水深。当<,在收缩断面后先形成一段壅水曲线,然后再在下游发生水跃,称为远驱式水跃;当=, 水跃发生在收缩断面处,称为临界式水跃。在这两种情况下,下游水位均不影响闸孔泄流量,称为闸孔自由出流。而当>,水跃发生在收缩断面上游,且淹没了收缩断面,发生淹没水跃。此时的下游水位影响了闸孔泄流量,称为闸孔淹没出流。

一、平顶堰上的闸孔自由出流

(一)平板闸门下的自由出流

水流通过闸孔后,因受惯性影响而发生垂向收缩,在距离闸门(0.5~1)处出现水深最小的收缩断面,其流线近似平行,可看作渐变流断面,此时,称为垂直收缩系数。对断面1-1与C-C写能量方程

+0+

式中为水流从断面1-1至断面C-C的局部水头损失。

经整理得

式中:=称为闸孔的流速系数。

设闸孔宽度为,则收缩断面面积,通过闸孔的流量

=(8-6)

式中:称为闸孔流量系数,它与过闸水流的收缩程度,收缩断面的流速分布和闸孔水头损失等因素有关。

底部为锐缘的平面闸门值可根据表查得。

平板闸门的流速系数与闸坎形式、闸门底缘形状和闸门的相对开度等因素有关,目前尚无准确的计算方法,一般计算可由表查得。

在实际工程中,为了实测流量系数,就需要先测和,然后再算出值。但在实测收缩水深值时比较困难,而且还不容易测准确,为便于应用,可将上式改写为

=(8-7)

其中闸孔流量系数,其大小可按下列的经验公式计算=0.60-0.18

(8-8)

应用范围0.1<<0.65

例8-3 某泄洪闸,闸门采用矩形平板门,当闸孔开度e=2m时,闸前水头=8.0m。已知闸孔宽=10m,流速系数取0.97,下游水深较小,为自由出流,求过闸流量。

解:

(1)按公式(8-6)计算流量

由==0.25<0.65, 故为闸孔出流。

查表8-1得垂直收缩系数=0.622 ,流量系数=0.603,==0.622

2=1.244m

初步计算取≈=8m,得

Q=

=0.603102=138.8 m3/s

根据初步计算的流量,求行近流速=1.74m/s

则=8.154m

Q=0.603102=140.4 m3/s

(2)按公式(8-7)计算流量

流量系数=0.60-0.18=0.60-0.180.25=0.556

初步计算取≈=8m,

Q==0.556102=139.3 m3/s

m/s , 则=8.155m

Q=0.556102=140.6m3/s

(二)弧形闸门下的自由出流

弧形闸门的闸孔出流水流特性与平板闸门相似,其不同点在于,孤形闸门的挡水面板更接近于流线的形状,对水流的影响小于平板闸门。

弧形闸门时的垂直收缩系数,主要与闸门下缘切线与水平方向夹角的大小有关,一般可根据表8-3确定。表中值按下式计算

cos=

式中符号如图所示。

由于弧形闸门在出流时,收缩断面水深更难测定,因而常采用流量系数来计算流量

=(0.97-0.81(8-9)

适用条件是:250<≤900 , 0<<0.65

例8-4 单孔弧形闸门自由出流,闸宽=5m,弧形闸门半径=5m,=3.5m,闸门开度=0.6m,闸前水头=3m,试计算过闸流量。

解:

先判断出流性质==0.2<0.65,为闸孔出流

cos==0.58

所以=54.60 则流量系数

=(0.97-0.81)-(0.56-0.81)

=0.66

过闸流量

Q==0.6650.6=15.18 m3/s

二、宽顶堰上的闸孔淹没出流

前面已指出,闸孔淹没出流的判别标准是下游水深大于收缩水深的共轭水深,即ht>。当闸孔为淹没出流时,其泄流能力比同样情况下自由出流的泄流能力要小,可用小于1.0的淹没系数反映淹没对闸孔出流的影响,即

(8-10)

式中-闸孔自由出流的流量系数,

-淹没系数,可由及查图得到。为上下游水位差。

例8-5某无坎平底闸,设矩形平面闸门。闸前水头=5.04,闸孔净宽=7.0m,闸门开度=0.6m,下游水深=3.92m,流速系数=0.97,求过闸流量。

解:

先判断出流性质=0.119<0.65,为闸孔出流

查表8-1得=0.616 ,==0.6160.6=0.37m,取≈0,

则收缩断面的流速=9.28m/s

=4.875

=2.37m

流量系数=0.60-0.18=0.60-0.18=0.579

因>=2.37m,故为淹没出流

由==0.119和,查图得=0.53 ==0.530.5790.67.0=12.87 m3/s

建筑排水塑料管的简便水力计算

建筑排水塑料管的简便水力计算 近十几年来,在我国硬聚氯乙烯管材和管件的生产技术和施工技术以及配套的防火措施都有了很大发展。其用量日趋增加,特别是《建筑排水硬聚氯乙烯管道设计规程》(CJJ29-89)简称“规程”的实施,进一步促进了硬聚氯乙烯塑料管的应用。 由于“规程”的编写距今已有10年,其在实施过程中尚存在下列问题: (1)对塑料排水立管通水能力的确定值,近年来提出不同观点和结论,但仍然停留在理论分析上。只有今后在有条件的情况下,结合水工试验才能有完善的结论。本文亦不进行该方面的讨论。 (2)在塑料横管的水力计算方面,“规程”中提供的方法是无可非议的,但由于出版过程的疏忽,横管计算图附图2.3和2.4的适用管径颠倒。再加上4幅水力计算图制版印刷较粗糙,造成内插不便。 另外,有些设计人员忽视了硬聚氯乙烯管和排水铸铁管的水力计算的前提条件n值和约束条件i值的差异,直接使用排水铸铁管的水力计算图表,使其结果失真。 鉴于上述情况,本文就硬聚氯乙烯排水横管提出比较精确的计算方法。 1 理论根据 1.1 计算公式 v=1/nR2/3i1/2 (1) Q=vA (2) 式中 Q——流量,m3/s; v——流速,m/s; n——塑料管的粗糙系统,n=0.009; R——水力半径,m; i——水力坡度;

A——水流断面积,m2。 qn=0.12αNp1/2+qmɑx(3) 该式的各项的含义及其公式的适用范围详见“规程”。 1.2 计算公式的约束条件 “规程”中确认的管径、最小坡度和最大计算充满度见表1。 表1 “规程”中确定的管径、最小坡度、最大充满度 管道坡度的一般取值,“规程”推荐为0.026,在该推荐i值情况下,其对应流速见表2。 从表2可见,后两种管径的相应流速都高于有防噪要求的管道的规定范围。这两种较大口径的排水管多用于高层建筑中的管道转折层中或埋地,作为横管使用时存在天然的防噪音条件,又能兼顾到减小转折层的高度及埋深变化较小的客观要求,故一般情况下仍能使用 表2 推荐i值对应的流速 排水铸铁管和硬聚氯乙烯排水管都有最小坡度的限制(约束条件),最小坡度的确定都是根据式(1)计算的流速不得小于排水管的最小允许流速0.6m/s为前提。 由排水铸铁管的通用坡度,根据式(1)不难导出其不同管径、充满度时相应的流速,其值见表3。 表3 不同管径、充满度时铸铁管相应的流速

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

给水管网水力计算基础

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于v d Av Q )4/(2 π==所以管径v Q v Q d /13.1/4== π。但是,仅依靠这个公式还不能完全解决问题,因为在流 量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =0.6-1.0m/s ; ——当直径d>400mm ,经济流速v=1.0~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 这一类的计算,首先应从各管段末端开始,向水塔方向求出各管段的流量,然后选用经

有压引水系统水力计算

一、设计课题 水电站有压引水系统水力计算。 二、设计资料及要求 1、设计资料见《课程设计指导书、任务书》; 2、设计要求: (1)、对整个引水系统进行水头损失计算; (2)、进行调压井水力计算球稳定断面; (3)、确定调压井波动振幅,包括最高涌波水位和最低涌波水位; (4)、进行机组调节保证计算,检验正常工作状况下税基压力、转速相对值。 三、调压井水力计算求稳定断面 <一>引水道的等效断面积:∑= i i f L L f , 引水道有效断面积f 的求解表 栏号 引水道部位 过水断面f i (m 2 ) L i (m) L i/f i

所以引水道的等效断面积∑= i i f L L f =511.28/21.475=23.81 m 2 <二>引水道和压力管道的水头损失计算: 引水道的水头损失包括局部水头损失 h 局和沿程水头损失h 沿两部分 压力管道的水头损失包括局部水头损失h 局和沿程水头损失h 沿两部分 1, 2 2g 2h Q ?ξ局局= g :重力加速度9.81m/s 2 Q :通过水轮机的流量取102m 3/s ω :断面面积 m 2 ξ:局部水头损失系数 局部水头损失h 局计算表 栏号 引水建筑物部位及运行 工况 断面面积 ω(m 2 ) 局部水头损失系数 局部水头损失 10-6Q 2(m ) 合计(m) (1) 进 水 口 拦污栅 61.28 0.12 0.017 0.307 (2) 进口喇叭段 29.76 0.10 0.060 (3) 闸门井 24.00 0.20 0.184 (4) 渐变段 23.88 0.05 0.046 (5) 隧 洞 进口平面转弯 23.76 0.07 0.066 0.204 (6) 末端锥管段 19.63 0.10 0.138 (7) 调 压 正常运行 19.63 0.10 0.138 2.202 (1) 拦污栅 61.28 4.1 0.067 (2) 喇叭口进水段 29.76 6.0 0.202 (3) 闸门井段 24.00 5.6 0.233 (4) 渐变段 2 3.88 10.0 0.419 (5) D=5.5m 23.76 469.6 19.764 (6) 锥形洞段 21.65 5.0 0.231 (7) 调压井前管段 19.63 10.98 0.559

鸿业暖通-风管水力计算使用说明

目录 目录 目录 (1) 第 1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第 2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

鸿业暖通空调软件 第 1 章 风管水力计算使用说明 1.1 功能简介 命令名称: FGJS 功 能: 风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

第 1 章风管水力计算使用说明 如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。

水带系统水力计算资料

第二节水带系统水力计算 一、了解水带压力损失计算方法 每条水带的压力损失,计算公式如下:hd= SQ2 式中:hd――每条20米长水带的压力损失,104 Pa S ――每条水带的阻抗系数, Q――水带内的流量,L/ s 注:1mH2O=104 Pa(1米水柱=104帕);1Kg/cm2=105 Pa(1千克/厘米2) 二、了解水带串、并联系统压力损失计算方法 同型、同径水带串联系统压力损失计算: 压力损失叠加法:公式Hd=nhd 式中:Hd――水带串联系统的压力损失,104 Pa; n――干线水带条数,条; hd――每条水带的压力损失,104 Pa 。 阻力系数法:公式Hd=nSQ2 式中:Hd――水带串联系统的压力损失,104 Pa; n――干线水带条数,条; S――每条水带的阻抗系数; Q――干线水带内的流量,L/ s 。 不同类型、不同直径水带串联系统压力损失计算: 压力损失叠加法:公式Hd =hd1+ hd2+ hd3+…+ hdn 式中:Hd――水带串联系统的压力损失,104 Pa;

hd1、hd2、hd3、hdn――干线内各条水带的压力损失,104 Pa 。 阻力系数法:公式:Hd=S总Q2 Hd――水带串联系统的压力损失,104 Pa; S总――干线内各条水带阻抗系数之和; Q――干线水带内的流量,L/ s 。 同型、同径水带并联系统压力损失计算: 流量平分法公式:Hd =hd1+ hd2+ hd3+…+ hdn或Hd=S总(Q∕n)2 式中:Hd――并联系统水带的压力损失,104 Pa; hd1、hd2、hd3、hdn――任一干线中各条水带的压力损失,104 Pa; S总――并联系统中任一干线中各条水带阻抗系数之和;Q――并联系统的总流量,L/ s n――并联系统中干线水带的数量,条。 阻力系数法公式:Hd=S总Q2或S总=S∕n2 式中:Hd――并联系统水带的压力损失,104 Pa; S总――并联系统总阻抗系数之和; Q――并联系统的总流量,L/ s S――每条干线的阻抗; n――并联系统中干线水带的数量,条 灭火剂喷射器具应用计算

风路系统水力计算

风路系统水力计算 1 水力计算方法简述 目前,风管常用的的水力计算方法有压损平均法、假定流速法、静压复得法等几种。 1.压损平均法(又称等摩阻法)是以单位长度风管具有相等的摩擦压力损失 m p ?为前提 的,其特点是,将已知总的作用压力按干管长度平均分配给每一管段,再根据每一管段的风量和分配到的作用压力,确定风管的尺寸,并结合各环路间压力损失的平衡进行调整,以保证各环路间的压力损失的差额小于设计规范的规定值。这种方法对于系统所用的风机压头已定,或对分支管路进行压力损失平衡时,使用起来比较方便。 2.假定流速法 是以风管内空气流速作为控制指标,这个空气流速应按照噪声控制、风管本身的强度,并考虑运行费用等因素来进行设定。根据风管的风量和选定的流速,确定风管的断面尺寸,进而计算压力损失,再按各环路的压力损失进行调整,以达到平衡。各并联环路压力损失的相对差额,不宜超过15%。当通过调整管径仍无法达到要求时,应设置调节装置。 3.静压复得法(略,具体详见《实用供热空调设计手册》之11.6.3) 对于低速机械送(排)风系统和空调风系统的水力计算,大多采用假定流速法和压损平均法;对于高速送风系统或变风量空调系统风管的水力计算宜采用静压复得法。工程上为了计算方便,在将管段的沿程(摩擦)阻力损失m P ?和局部阻力损失 j P ?这两项进行叠加时, 可归纳为下表的3种方法。 将m P ?与 j P ?进行叠加时所采用的计算方法 计算方法名称 基本关系式 备注 单位管长压力损失法(比摩阻法) 管段的全压损失 ) (2 222j m e j m P l p V l V d P l P P ?+?=+= ?+?=?ρζρ λ P ?——管段全压损失,Pa ; m p ?——单位管长沿程摩擦阻力,Pa/m 用于通风、空 调的送(回)风和排风系统的压力损失计算,是最常用的方法 当量长度法 2222ρ ζρ λV V d l e e = 风管配件的当量长度 λζ e e d l = 常见用静压 复得法计算高速风管或低速风管系统的压力损失。提供各类常用风管配

各种计算公式

计算公式 1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10、圆的面积=圆周率×半径×半径 ?=πr 11、长方体的表面积=(长×宽+长×高+宽×高)×2 12、长方体的体积 =长×宽×高 V =abh 13、正方体的表面积=棱长×棱长×6 S =6a 14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a 15、圆柱的侧面积=底面圆的周长×高 S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圆柱的体积=底面积×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h

18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长周长=边长×4

管路水力计算(最新)

一、管路水力计算的基本原理 1、一般管段中水的质量流量G,kg/h,为已知。根据G查询热水采暖系统管道水力计算表,查表确定比摩阻R后,该管段的沿程压力损失P y=Rl就可以确定出来。 局部压力损失按下式计算 (1) Σξ--------表示管段的局部阻力系数之和,查表可知。 可求得各个管段的总压力损失 (2)2、也可利用当量阻力法求总压力损失: 当量阻力法是在实际工程中的一种简化计算方法。基本原理是将管段的沿程损失折合为局部损失来计算,即 (3) (4) 式中ξd ——当量局部阻力系数。 计算管段的总压力损失ΔP可写成 (5) 令ξzh = ξd +Σξ 式中ξzh|——管段的这算阻力系数

(6) 又(7) 则(8) 设 管段的总压力损失 (9) 各种不同管径的A值和λ/d值及ξzh可查表。 根据公式(9)编制水力计算表。 3、当量长度法 当量长度法是将局部损失折算成沿程损失来计算的一种简化计算方法,也就是假设某一管段的局部压力损失恰好等于长度为l d的某段管段的沿程损失,即 (10) 式中l d为管段中局部阻力的当量长度,m。 管段的总压力损失ΔP可写成 ΔP = P y+ P j = Rl + Rl d = Rl z h (11) 式中l z h为管段的折算长度,m。 当量长度法一般多用于室外供热管路的水力计算上。

二、热水采暖系统水力计算的方法 1、热水采暖系统水力计算的任务 a、已知各管段的流量和循环作用压力,确定各管段管径。常用于工程设计。 b、已知各管段的流量和管径,确定系统所需的循环作用压力。常用于校核计算。 c、已知各管段管径和该管段的允许压降,确定该管段的流量。常用于校核计算。 2、等温降法水力计算方法 2-1 最不利环路计算 (1)最不利环路的选择确定 采暖系统是由各循环环路所组成的,所谓最不利环路,就是允许平均比摩阻最小的一个环路。可通过分析比较确定,对于机械循环异程式系统,最不利环路一般就是环路总长度最长的一个环路。 (2)根据已知温降,计算各管段流量 式中Q——各计算管段的热负荷,W; t g——系统的设计供水温度,℃; t g——系统的设计回水温度,℃。 (3)根据系统的循环作用压力,确定最不利环路的平均比摩阻R pj

各种管道水头损失的简便计算公式

各种管道水头损失的简便计算公式 (879) 摘要:从计算水头损失的最根本公式出发,将各种管道的计算公式加以推导,得出了计算水头损失的简便公式,使得管道工程设计人员从繁琐的计算中解脱出来,提高了工作效率。 关键词:水头损失塑料管钢管铸铁管混凝土管钢筋混凝土管 在给水工程应用中经常要用到水头损失的计算公式,一般情况下计算水头损失都是从水力摩阻系数λ等基本参数出发,一步一步的代入计算。其实各个公式之间是有一定的联系的,有的参数在计算当中可以抵消。如果公式中只剩下流速、流量、管径这些基本参数,那么就会给计算者省去不少的麻烦。在此我们充分利用了各参数之间以及水头损失与水温的关系,将公式整理简化,供大家参考。 1、PVC-U、PE的水头损失计算 根据《埋地硬聚氯乙烯给水管道工程技术规程》规定,塑料管道沿程水头损失hf应按下式计算: (式1-1) 式中λ—水力摩阻系数; L—管段长度(m); di—管道内径(m);

v—平均流速(m/s); g—重力加速度,9.81m/s2。 因考虑到在通常的流速条件下,常用热塑性塑料给水管PVC-U、PE管一般处于水力光滑区,管壁绝对当量粗糙度对结果的影响非常小或没有影响,故水力摩阻系数λ可按下式计算: (式1-2) 式中Re—雷诺数。 雷诺数Re应按下式计算: (式1-3) 式中γ—水的运动粘滞度(m3/s),在不同温度时可按表1采用。 表1水在不同温度时的γ值(×10-6) 05101520253040 水温℃ 1.78 1.52 1.31 1.14 1.000.890.80 0.66

γ(m3/s) 从前面的计算可知,若要计算水头损失,需将表1中的数据代入,并逐步计算,最少需要3个公式,计算较为繁琐。为将公式和计算简化,以减少工作量,特推导如下: 因具体工程水温的变化较大,水力计算中通常按照基准温度计算,然后根据具体情况,决定是否进行校正。冷水管的基准温度多选择10℃。 当水温为10℃时的γ=1.31×10-6 m3/s,代入式1-3 得(式1-4) 将式1-4代入式1-2 (式1-5) 再将式1-5代入式1-1 得(式1-6) 取L为单位长度时,hf即等同于单位长度的水头损失i,所以 (式1-7) 又因为(式1-8)

水系统水力计算

7.2 空调水系统设计空调水系统设计是空气—水中央空调系统设计的主要内容之一。由于受到建筑空间和使用条件的限制,现代民用建筑大都采用风机盘管加新风的系统形式。特别是写字楼、酒店等高层、综合性建筑,面积大,层数和房间多,功能复杂,使用的空调设备数量和品种也多,而且布置分散,使得空调水系统庞大而复杂,造成管路系统和设备投资大,水泵能耗大,水系统对整个空调系统的使用效果影响也大。因此,在进行空调水系统设计时,应尽量考虑周全,在注意减小投资的同时也不忘为方便日后的运行管理和减少水泵的能耗创造条件。 7.2.1 空调水系统设计的步骤空调水系统设计的一般步骤如下: 1)根据各个空调房间或区域的使用功能和特点,确定用水供冷或供暖的空调设备形式采用大型的组合式空调机或中型柜式风机盘管,还是小型风机盘管。 2)根据工程实际确定每台空调设备的布置位置和作用范围,然后计算出由作用范围的调负荷决定的供水量,并选定空调设备的型号和规格。 3)选择水系统形式,进行供回水管线布置,画出系统轴测图或管道布置简图。 4)进行管路计算(含水泵的选择)。 5)进行绝热材料与绝热层厚度的选择与计算 (参见 6.4 部分内容)。 6)进行冷凝水系统的设计。 7)绘制工程图。空调水系统的管路计算空调水系统的管路计算(又称为水力计算、阻力计算)是在已知水流量和选定流速下确水系统各管段管径及水流阻力,计算出选水泵所需要的系统总阻力。 1. 管径的确定 1)连接各空调设备的供回水支管管径宜与空调设备的进出水接管管径一致,可由相设备样本查得 2)供回水干管的管径 (内径)d ,可根据各管段中水的体积流量和选定的流速由下式d=44v}c v (7 一4) 4v 一水的体积流量,单位为m3/s 一。一水流速度,单位为m/so 在水流量一定的情况下,管内水流速的高低既影响水管管径的大小,又涉及到水流阻力大小,还分别与投资费用和运行费用有关,过低或过高都不经济。一般水系统中管内水流速按表7-i 中的推荐值选用。 显然,由式(7-4 )求出的管径为计算管径,不是符合管道规格的管径,还需以此管径值为依据按管道的规格选定相近管径的管道型号。空调水系统通常使用钢管,主要是镀锌钢管和无缝钢管,当管径蕊DN 125 时可采用镀锌钢管,当管径>DN 125 时要采用无缝钢管。 2. 水流阻力的确定 空调水系统的水流阻力一般由设备阻力、管道阻力以及管道附件和管件阻力三部分组成。设备阻力通常可以在设备生产厂家提供的产品样本上查到,因此进行空调水系统水流阻力计算的主要内容是进行直管段的阻力(摩擦阻力)计算及管道附件(如阀门、水过滤器等)与管件(如弯头、三通等)的阻力(局部阻力)计算。 由流体力学知识可知,空调水系统的水流阻力△ P 的基本计算式为:

风系统水力计算

风道的水力计算 水力计算是通风系统设计计算的主要部分。它是在确定了系统的形式、设备布置、各送、排风点的位置及风管材料后进行的。 水力计算最主要的任务是确定系统中各管段的断面尺寸,计算阻力损失,选择风机。 3.2.1 水力计算方法 风管水力计算的方法主要有以下三种: (1)等压损法 该方法是以单位长度风道有相等的压力损失为前提条件,在已知总作用压力的情况下,将总压力值按干管长度平均分配给各部分,再根据各部分的风量确定风管断面尺寸,该法适用于风机压头已定及进行分支管路阻力平衡等场合。 (2)假定流速法 该方法是以技术经济要求的空气流速作为控制指标.再根据风量来确定风管的断面尺寸和压力损失.目前常用此法进行水力计算。 (3)静压复得法 该方法是利用风管分支处复得的静压来克服该管段的阻力,根据这的断面尺寸,此法适用于高速风道的水力汁算。 3.2.2水力计算步骤 现以假定流速法为例,说明水力计算的步骤: (1)绘制系统轴测示意图,并对各管段进行编号,标注长度和风量。通常把流量和断面尺寸不变的管段划为一个计算管段。 (2)确定合理的气流速度 风管内的空气流速对系统有很大的影响。流速低,阻力小,动力消耗少,运行费用低,但是风管断面尺寸大,耗材料多,建造费用大。反之,流速高,风管段面尺寸小,建造费用低,但阻力大,运行费用会增加,另外还会加剧管道与设备的磨损。因此,必须经过技术经济分析来确定合理的流速,表3-2,表3-3,表3-4列出了不同情况下风管内空气流速范围。

时应首先从最不利环路开始,即从阻力最大的环路开始。确定风管断面尺寸时,应尽量采用通风管道的统一规格。 ⑷其余并联环路的计算 为保证系统能按要求的流量进行分配,并联环路的阻力必须平衡。因受到风管断面尺寸的限制,对除尘系统各并联环路间的压损差值不宜超过10%,其他通风系统不宜超过15%,若超过时可通过调整管径或采用阀门来进行调节。调整后的管径可按下式确定 225 .0''? ? ? ????=P P D D mm 式中 'D ——调整后的管径,m ; D 一原设计的管径,m ; P ?——原设计的支管阻力,Pa ; 'P ?——要求达到的支管阻力,Pa 。 需要指出的是,在设计阶段不把阻力平衡的问题解决,而一味的依靠阀门开度的调节,对多支管的系统平衡来说是很困难的,需反复调整测试。有时甚至无法达到预期风量分配,或出现再生噪声等问题。因此,我们一方面加强风管布置方案的合理性,减少阻力平衡的工作量,另一方面要重视在设计阶段阻力平衡问题的解决。 (5)选择风机 考虑到设备、风管的漏风和阻力损失计算的不精确,选择风机的风量,风压应按下式考虑考虑 L K L L f = m 3/h P K P f f ?= Pa 式中 f L ——风机的风量,m 3 /h ; L ——系统总风量,m 3 /h ; f P ——风机的风压,Pa ; P ?——系统总阻力,Pa ; L K ——风量附加系数,除尘系统L K =-;一般送排风系统L K =;

实用堰水力计算公式

1、 游水位较低,水流在流出堰顶时将产生第二次跌落。 2、 4、 100 >H δ时,用明渠流理论解决不能用堰流理论。f h 不可忽略。 同一堰,当堰上水头H 较大时,视为实用堰;当堰上水头较小时,视为宽顶堰。 §8-2 堰流的基本方程 以宽顶堰为例来推求堰流的基本方程 取渐变流断面1-1 C-C (近似假设渐变流) 以堰顶为基准面, 列两断面能量方程: g v g v h g v H c c c 2222 2 000? α α++=+ 02H g v H =+ α作用水头 c h 与H 有关,引入一修正系数k 。则 00 H h k c = 机0kH h co =。修正系数k 取决于堰口的 形状和过流断面的变化。 代入上式,整理得: 21211 gH k gH k v c -=++= ?? α 2 3 0021H g b k k b RH v b h v Q c c c -===? 2 3 02H g mb = 式中:b ——堰宽 ?——流速系数 ?α?+= 1 m ——流量系数,k k m -=1? 适用:堰流无侧向收缩 注:堰流存在侧向收缩或堰下游水位对堰流的出水能力产生影响时,可对此公式进行修正。 §8-3 薄壁堰 一、一、分类: 矩形薄壁堰→较大流量 按堰口形状: 三角形薄壁堰→较小流量 梯形薄壁堰→较大流量 1、 1、 矩形薄壁堰 ① ① 矩形薄壁堰的自由出流;在无侧向收缩的影响时,其流量公式为: 2 3 02H g mb Q = 上式为关于流速的隐式方程,了;两边均含有流速,一 般计算法进行计算,较复杂,于是,为计算简便,将上式改写成: 2 3 02H g b m Q =

9.水系统水力计算

9 空调水系统方案确定和水力计算 9.1 冷冻水系统的确定 9.1.1 冷冻水系统的基本形式 9.1.1.1 双管制、三管制和四管制系统 (1)双管制系统夏季供应冷冻水、冬季供应热水均在相同管路中进行。优点是系统简单,初投资少。绝大多数空调冷冻水系统采用双管制系统。但在要求高的全年空调建筑中,过渡季节出现朝阳房间需要供冷而背阳房间需要供热的情况,这时改系统不能满足要求。 (2)三管制系统分别设置供冷、供热管路,冷热回水管路共用。优点是能同时满足供冷供热的要求,管路系统较四管制简单。其最大特点是有冷热混合损失,投资高于两管制,管路复杂。 (3)四管制系统供冷、供热分别由供回水管分开设置,具有冷热两套独立的系统。优点是能同时满足供冷、供热要求,且没有冷热混合损失。缺点是初投资高,管路系统复杂,且占有一定的空间。 9.1.1.2 开式和闭式系统 (1)开式水系统与蓄热水槽连接比较简单,但水中含氧量较高,管路和设备易腐蚀,且为了克服系统静水压头,水泵耗电量大,仅适用于利用蓄热槽的低层水系统。 (2)闭式水系统不与大气相接触,仅在系统最高点设置膨胀水箱。管路系统不易产生污垢和腐蚀,不需克服系统静水压头,水泵耗电较小。 9.1.1.3 同程式和异程式系统 (1)同程式水系统除了供回水管路以外,还有一根同程管,由于各并联环路的管路总长度基本相等,各用户盘管的水阻力大致相等,所以系统的水力稳定性好,流量分配均匀。高层建筑的垂直立管通常采用同程式,水平管路系统范围大时宜尽量采用同程式 (2)异程式水系统管路简单,不需采用同程管,水系统投资较少,但水量分配。调节较难,如果系统较小,适当减小公共管路的阻力,增加并联支管的阻力,并在所有盘管连接支路上安装流量调节阀平衡阻力,亦可采用异程式布置。 9.1.1.4 定流量和变流量系统 (1)定流量水系统中的循环水量保持定值,负荷变化时可以通过改变风量或改变供回水温度进行调节,例如用供回水支管上三通调节阀,调节供回水量混合比,从而调节供水温度,系统简单操作方便,不需要复杂的自控设备,缺点是水流量不变输送能耗

风系统水力计算.docx

3.2风道的水力计算 水力计算是通风系统设计计算的主要部分。它是在确定了系统的形式、设备布 置、各送、排风点的位置及风管材料后进行的。 水力计算最主要的任务是确定系统中各管段的断面尺寸,计算阻力损失,选择 风机。 3.2.1水力计算方法 风管水力计算的方法主要有以下三种: (1)等压损法 该方法是以单位长度风道有相等的压力损失为前提条件,在已知总作用压力的情况下,将总压力值按干管长度平均分配给各部分,再根据各部分的风量确定风管 断面尺寸,该法适用于风机压头已定及进行分支管路阻力平衡等场合。 (2)假定流速法 该方法是以技术经济要求的空气流速作为控制指标.再根据风量来确定风管的 断面尺寸和压力损失.目前常用此法进行水力计算。 (3)静压复得法 该方法是利用风管分支处复得的静压来克服该管段的阻力,根据这的断面尺寸,此法适用于高速风道的水力汁算。 3.2.2水力计算步骤 现以假定流速法为例,说明水力计算的步骤: (1)绘制系统轴测示意图,并对各管段进行编号,标注长度和风量。通常把流量 和断面尺寸不变的管段划为一个计算管段。 (2)确定合理的气流速度 风管内的空气流速对系统有很大的影响。流速低,阻力小,动力消耗少,运行 费用低,但是风管断面尺寸大,耗材料多,建造费用大。反之,流速高,风管段面 尺寸小,建造费用低,但阻力大,运行费用会增加,另外还会加剧管道与设备的磨 损。因此,必须经过技术经济分析来确定合理的流速,表 3-2 ,表 3-3 ,表 3-4 列出了不同情况下风管内空气流速范围。 表 3-2 工业管道中常用的空气流速(m/s) 建筑物类管道系统的 风速靠近风自然通机械通机处的极限 别部位 风风流速吸入空气的百叶 0- 1.02-4 窗 吸风道1-22-6 辅助建筑支管及垂直0.5-1. 2-510- 12风道5 水平总风道 0.5-1. 5-8 近地面的进0.2-0.0.2 -

简便计算公式与试题

“五大定律与两个性质” 一①加法交换律:a+b=b+a ②加法结合律:(a+b)+c=a+(b+c) ③乘法交换律:a×b=b×a④乘法结合律:(a×b)×c=a×(b×c) ⑤乘法分配律:(a+b)×c=a×c+b×c或a×(b+c)=a×b+a×c 乘法分配律就是重点中的难点。 ①减法的性质:a-b-c=a-(b+c) ②除法的性质:a÷b÷c=a÷(b×c) 二①结合律:582+456+544+318 8×(30×125)(加法结合律要注意末尾数字的凑整,见到9想1,见到8想2,见到7想3,见到6想4,见到5想5。而乘法结合律要注意两数相乘是整十,整百,整 千的数。比如25×4=100,125×8=1000) ②乘法分配律:25×6+25×48×(30+125) 21×46-19×46101×897-897 32×10598×36(含有拆数) (可以从形式上理解,还可以从乘法的意义上理解。) ③减法的性质:462-83-117 368-(68+55) ④除法的性质:3200÷25÷4360÷(36× 2) ⑤当既可以用结合律又可以用分配律的时候,最简单的还是用结合律。 88×125,可以是8×125×11=1000×11=11000,还可以是 (8+80)×125=8×125+80×125=1000+10000=11000 学生最容易犯的错误就是: 25+75-25+75=100-100=0 25×4÷25×4=100÷100=1(学生为了简便计算,不管运算顺序了。殊不知简算必须依据某一个运算定 律或性质) 125×(8+3)=125×8×3=1000×3=3000 125×8×4×125=125×(8+4)=125×8+125×4=1000+500=1500。 三、怎样简便就怎样计算。 355+260+140+245 645-180-245 382×101-382 102×99 2×125 4×60×50×8 35×8+35×6-4×35 125×32 25×46 101×56 99×26 1022-478-422 987-(287+135) 478-256-144 36+64-36+64

三种中央空调系统风道水力计算方法

三种中央空调系统风道水力计算方法 如同学过流体力学的人都做过流体分析一样,做过中央空调系统的人都熟悉水力计算,也害怕水力计算。水力计算基本上是中央空调设计计算里面最繁杂的计算之一。很多设计过程中的中央空调风道水力计算,都是采用的经验公式或者估算值,下面制冷快报就为大家介绍几种中央空调风道系统水力计算的方法。 风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。 风道水力计算的主要目的是确定各管段的管径(或断面尺寸)和阻力,保证系统内达到要求的风量分配,最后确定风机的型号和动力消耗。 风道水力计算方法比较多,如假定流速法、压损平均法、静压复

得法等。对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。 1.假定流速法 假定流速法也称为比摩阻法。先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。这是低速送风系统目前最常用的一种计算方法。 2.压损平均法 压损平均法也称为当量阻力法。这种方法以单位管长压力损失相等为前提,在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。 3.静压复得法 静压复得法的含义是,当流体的全压一定时,风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。此方法适用于高速空调系统的水力计算。

各种管道水头损失的简便计算公式教学文案

各种管道水头损失的简便计算公式

各种管道水头损失的简便计算公式 (879) 摘要:从计算水头损失的最根本公式出发,将各种管道的计算公式加以推导,得出了计算水头损失的简便公式,使得管道工程设计人员从繁琐的计算中解脱出来,提高了工作效率。 关键词:水头损失塑料管钢管铸铁管混凝土管钢筋混凝土管 在给水工程应用中经常要用到水头损失的计算公式,一般情况下计算水头损失都是从水力摩阻系数λ等基本参数出发,一步一步的代入计算。其实各个公式之间是有一定的联系的,有的参数在计算当中可以抵消。如果公式中只剩下流速、流量、管径这些基本参数,那么就会给计算者省去不少的麻烦。在此我们充分利用了各参数之间以及水头损失与水温的关系,将公式整理简化,供大家参考。 1、PVC-U、PE的水头损失计算 根据《埋地硬聚氯乙烯给水管道工程技术规程》规定,塑料管道沿程水头损失hf应按下式计算: (式1-1) 式中λ—水力摩阻系数; L—管段长度(m);

di—管道内径(m); v—平均流速(m/s); g—重力加速度,9.81m/s2。 因考虑到在通常的流速条件下,常用热塑性塑料给水管PVC-U、PE管一般处于水力光滑区,管壁绝对当量粗糙度对结果的影响非常小或没有影响,故水力摩阻系数λ可按下式计算: (式1-2) 式中Re—雷诺数。 雷诺数Re应按下式计算: (式1-3)

式中γ—水的运动粘滞度(m3/s),在不同温度时可按表1采用。 表1水在不同温度时的γ值(×10-6) 从前面的计算可知,若要计算水头损失,需将表1中的数据代入,并逐步计算,最少需要3个公式,计算较为繁琐。为将公式和计算简化,以减少工作量,特推导如下: 因具体工程水温的变化较大,水力计算中通常按照基准温度计算,然后根据具体情况,决定是否进行校正。冷水管的基准温度多选择10℃。 当水温为10℃时的γ=1.31×10-6 m3/s,代入式1-3

《水力分析与计算》课程设计

课程设计任务书 学院:山西水利职业技术学院 专业:水利工程系 班级:水工1034班 姓名:郭瑞 学号:02103444 一、绪言

(一)设计任务 目的意义:为加强对水力学的实践性,是我们更好的联系实际,对已学过的水利分析与计算内容方法有一个全面的,系统的训练和提高,以便我们在以后的更好的适应工作的需要,进行以下的课程设计。 横断面设计:确定渠道边坡、底宽、水深等。 纵断面设计:确定推算水位、确定渠底线、堤顶高程线等。 1.根据题目内容设计成最佳水利断面为梯形断面渠道。 2.基本已知数据L=4km,Z=206.5-202.5=4m,V=5m3/s,中壤土的允许流速为:0.65~0.85。 3.根据设计内容计算渠道断面并校核是否满足流速要求。 (二)提出方案 (1)拟定或估算各设计参数(i、n、m、b等)。 (2)计算设计水深和底宽(h、b),校核不冲不淤。 思考:发生冲刷或淤积,怎么办?调整宽深比或比降 流量一定时,b大,则v小,i大,则v大。 (3)计算最小水深和加大水深。 (4)确定安全超高、堤顶宽。 (5)绘制渠道横断面图。 二、设计方案 (一) 1.引水渠道多为明渠,渠道的过水断面有许多种,考虑到明渠修建在土质地基时,为了避免崩塌和便于施工,在渠道横断面设计中,灌溉渠道水流以明渠均匀流公式计算。明渠均匀流即是水流在渠道中流动,各断面的水深、断面平均流速和流速颁布都沿流向不变。(p129a图) 对于梯形断面渠道:

明渠均匀流的计算公式为: Q=ων=ωC(Ri)1/2 式中ω——过水断面面积 R——水力半径,R=ω/χ χ——湿周 i——渠道的底坡 C——谢才系数,C=(1/n)R1/6 n——渠道糙率 水利最佳断面考虑到条件的允许值的满足要求,参考下表: 由公式得梯形渠道水利最佳断面为: P135例6-1 例6-3 (三)护砌的方式

给水管网水力分析计算

第5章 给水管网水力分析计算 (4h) 5.1 给水管网水力特性分析 管段水力特性: ei n i i i i T Fi i h q q s H H h -=-=-1 ,s i = s fi + s mi + s pi ,h ei : 静扬程 ei n i i i T i F i h q s H H h -±=-=)( (流量方向与管段方向一致时+号) n i i f i T i F i q s H H h )(±=-= (管段上无泵站和局部阻力) ( 用海曾-威廉公式 87 .4852 .1852.167.10D C l q h w i f = ) 管网恒定流方程组求解条件: 节点流量或压力必须有一个已知(定流节点和定压节点) 管网中必须有一个定压节点 管网恒定流方程组求解方法: 树状管网(管段流量可唯一确定,一次计算完成) 环状管网(解环方程组,或解节点方程组,多次计算才能完成) 5.2 树状管网水力分析 求管段流量:从末端开始逆推法 求节点压头:从定压节点开始顺推法 例题:某给水管网如图所示,节点(1) 为清水池,管段[1]上泵站特性为 h p =42.6-311.1q p 1.852,节点(1)水头7.80m ,各节点流量、管段参数见图,管道Cw=100。试进行水力分析,计算各管段流量、各节点水头与自由水头。

节点号(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 地面标高m 9.80 11.50 11.80 15.20 17.40 13.30 12.80 13.70 12.50 15.00 解:第一步:从节点(10)开始逆推法求管段流量 计算各管段压降 第二步:从定压节点(1)开始顺推法求节点水头。

鸿业暖通_风管水力计算使用说明

目录 目录 (1) 第1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

第 1 章风管水力计算使用说明 1.1功能简介 命令名称:FGJS 功能:风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。 3.选择要计算的方法,设置好相应的参数 静压复得法: 是最不利环路最末端的分支管(不是从最 后一根支管)的风速。

相关主题
文本预览
相关文档 最新文档