当前位置:文档之家› 新能源给薄膜电容器业带来发展机遇

新能源给薄膜电容器业带来发展机遇

新能源给薄膜电容器业带来发展机遇
新能源给薄膜电容器业带来发展机遇

新能源给电容器业带来发展机遇

近日,国务院召开常务会议,审议并通过了《国务院关于加快培育和发展战略性新兴产业的决定》,节能环保、新一代信息技术、生物科技、高端装备制造、新能源、新材料、新能源汽车七个产业将被重点培育,加快推进。

会议确定,将对七大产业加大财税金融等政策扶持力度,并设立战略性新兴产业发展专项基金。相对于传统产业,七大产业起步较晚,目前,在市场热点显得难以为继的背景下,七大产业无疑将成为新兴奋点,其细分领域的上百家上市公司有望受益,而国家新能源汽车的各项支持政策也正在紧锣密鼓地制定中,目前已知的《节能与新能源汽车发展规划(2010年至2020年)》,在其草案中显示,中央财政将投入超过1000亿元发展新能源汽车产业。各行各业,都将目光注视到新能源会给各自的行业所带来的新机遇。

在新能源及新能源汽车领域中,对于电容器业而言,不但作为为新能源控制系统、电源管理系统、电源逆变及直流交流切换系统的等相关上游企业是一次难得的历史性机遇,同时,无疑给不可或缺的电容器业也带来了一次难得的发展机遇。

一、新能源领域

新能源又称非常规能源,是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。

现在国家都在大力提倡使用风能、太阳能,这是清洁能源。所以现在越来越多公司在设计太阳能发电、风能发电电源管理系统的时候,选型时主要是高电压、大容值的电容器有很大的产品需求。比如风能产品系统,有三处运用电容器到这个产品中,第一个可以选用薄膜电容器做高电压吸收的应用;还有一个是DC- LINK,DC-DC转换过程中,起滤波储能的作用;第三个是并网时的抗干扰电容。见图一所示。

需要说明的是,在这三款电容器中,大家最关注的就是

DC-LINK用电容器,一般用户有两种电容器可以选择,第一个就是铝电解电容器,尤其在DC-DC转换单元,它的工作电压是700伏,容量是3300到4700uF,这些仅仅是在小功率风能系统中的应用。大功率单元场合使用的电容器数量还会成倍增加。

铝电解电容器的最高耐压一般是在450V,那么如何在700伏这个电压值下使用呢?至少需要两只铝电解电容串联达到900伏耐压满足大于700伏的要求,一般像这种稳压和滤波电容器,如果使用铝电解电容器的话,都需要很多铝电解电容器串、并联,才能达到很大的容量值和耐高电压的使用要求。直流应用的场合也可以选择使用薄膜电容器,薄膜电容器的应用场合容量值和铝电解电容器是一样的,但是它的耐电压值可以直接做到700伏,不需要通过串、并联来满足耐压的要求的。

怎样来选择铝电解电容器和薄膜电容器呢?在完全相同的

应用场合,到底是采用铝电解电容器还是采用薄膜电容器呢?如果薄膜电容器能够达到每一元人民币1µF~2µF的电容量,那以后的趋势一定是采用薄膜电容器为主,但有一点强调的目前用薄膜电容器替代铝电解电容器的最大的障碍关键是价格问题。如果从特性角度而言,采用薄膜电容器有以下四个方面的理由:

1.铝电解电容器是液体电容器,首先有一个使用寿命的限制,现在很多太阳能、风能产品最终使用的用户对产品有一个寿命的

要求,必须要大于15年,产品在15年之内必须是可靠的,因为风能产品的维修费用是非常昂贵和困难的。薄膜电容器是固体电容器,它正好可以满足这一使用要求,铝电解电容器有电解液材料的挥发,一般它没有办法达到15年的使用寿命期,如果要达到15年的试验寿命,意味着期间要更换两到三次。

2.第二个优点是,由于薄膜电容器的介质材料的特点,决定了它的ESR值低,因而它的发热量也非常的低,另外,它还可以做到很高的耐纹波电压。

3.第三个特点,有更宽使用环境温度范围的特性,这也是液体电容器和固体电容器的差别,薄膜电容器在低温状态工作的稳定性非常好。

4.薄膜电容器滤波能力比铝电容电容器要强很多倍。滤波要好的话可以采用薄膜电容器,转换的效率更高。这个就是现在在风能、太阳能应用发展的趋势。

所以,对于南通江海电容器股份有限公司将来在薄膜电容器方面的投资决策是十分有必要的,这也必将在未来会带来利润的增长点。

此外,在太阳能运用方面,由于超级电容器充放电次数可达到数十万次以上,寿命特性远远优于其他电池类产品,这样,可以解决特别是在高空及密闭状态免维护的担忧,所以,常常会运用超级电容器作为储能器件来取代传统铅酸蓄电池,传统铅酸蓄

电池充电寿命一般在500次左右。譬如,太阳能路灯、交通信号灯就有应用的实例。

当然,新能源行业除对耐高压、大电容量电解电容器、薄膜电容器和超级电容器行业带来市场需求外,对其他常规电容器的需求也会带来新的增长。在新能源领域的应用,除笔者举例外,在其他场合具体应用的案例还不胜枚举。

二、新能源汽车领域

最新消息,10月 4日在天津开幕的今年第四次联合国气候谈判会议上,科技部发布的《中国2010发展中的清洁能源科技》报告提出,今年底我国将在公共交通领域推广应用2万辆新能源汽车。

这份报告指出,中国政府已将新能源汽车作为战略新兴产业之一大力发展。2009年,首批13个“十城千辆”工程示范城市,在公交、出租、公务、环卫和邮政等公共服务领域率先推广使用新能源汽车。截至2009年底,全国示范推广各类新能源汽车近5000辆,有70多款新产品投入市场。示范工程有力地带动了民间资本对动力电池、驱动电机的投入,到2011年,可形成15

万辆整车和关键零部件生产能力。

这份报告还明确指出,到2010年底,中国“十城千辆”示范工程将在公共交通领域推广应用2万辆以上国产新能源汽车,带动市场应用15万辆以上。2015 年,中国新能源汽车保有量将发展

到100万辆以上,2020年,新能源汽车市场规模将达到千万辆级,实现中国汽车工业的技术战略转型。

电动汽车用动力集成系统是涉及多个技术领域、产业领域的高技术密集型产品,也是电动汽车的核心技术和产业竞争的焦点。通过国家十几年的重点支持,我国虽然在电动汽车用电机及驱动系统、蓄电池系统、充电技术设备相关关键技术和产品研究方面取得了重大进展,但与国外系统集成产品的性能还存在较大差距。

作为在该行业中,对电容器有以下几个方面的运用:

1. 充电机(桩)及充电站系统

由于中航集团、国家电网、南方电网、中石油、中海油等产业巨头的积极介入,将我国节能和新能源产业的热度催生到了一个空前的高度,无疑将对我国新能源汽车的发展起着重要的意义。同时与原有石化供给系统共建充电站系统不但便捷,且成本更为节约,对于充电站的普及和电动汽车的普及也起着更为积极的作用。

目前充电方案有以下四种方案:

1)换电池的方案:支持该方案的有日产、安凯客车、南车时代

2)插电充电方案:支持该方案的有上汽、比亚迪

3)混合动力方案:支持该方案的有通用、丰田、福特、大

4)增程方案:支持该方案的以国外几个知名品牌为主

无论以上何种方案,总会基于AC-AC,AC-DC,DC-DC及

DC-AC转换技术平台,在滤波过程中,电解电容器是必不可少的元器件。特别要提出的,在低压DC-DC转换系统中,固态高分子电解电容器也是首选和优选的器件,因为固态高分子电解电容器具有低ESR,长寿命,宽温等特性而特别适合在北方户外低温状态工作的特点。有些充电系统还会使用到辅助单元系统,如:EPS/UPS、高压变频器、高压开关电源系统,这些都是电容器行业传统的市场。

2. 电动汽车电源管理系统

作为动力电池的管理系统,除对各种电池组电源管理外,还要对于电源的输出进行管理,包括汽车控制辅助单元电源的管理,有些系统设计还要考虑上下坡能量的补偿和吸收等等,作为车载用电子元器件有着许多使用环境不确定性的特点,因此对其会有更为苛刻的要求。

在混合动力系统中,作为能量的补偿和吸收的方案有些采用超级电容器组储能的方式,因此,对于超大容量的超级电容器将有着很大的需求,上海世博会电动汽车就是很好的运用实例。同时,作为超大容量超级电容器的快速成长及产业化,电动汽车业的发展会起到一定的推波助澜的作用。

结语

新能源及新能源汽车业的发展无疑是一场新的能源革命,标志着新兴工业和产业变革的高潮已经来临,给各关联行业带来了机遇和挑战,作为配套用基础电子元器件的电容器业也同样带来了诸多发展机遇,特别是耐高压、大容量铝电解电容器,固态高分子铝电解电容器,薄膜电容器,超级电容器将会带来长足发展的良机。

固态电容全面分析

四:固态电容全面分析 第一点,固态电容为高频电解电容,受此范围限制,高频电容普遍容量做的都不高,固态电容在耐压超过16V后容量显著减小,到20V 为330UF,25V,35V均为220UF。50V56UF,63V39UF。高频电容还有一点就是在低频情况下,性能不太好,阻抗很大,工作频率在100KHz 到300KHz效果最理想。第二点,固态电容受体积限制,不同于铝电解,体积可以理论上无限大,而且由于技术材料不同,最高电压仅63V。最低电压2.5V。所以限制了很多的用途,比如电源的输入端无法选用。第三点,固态电容成本高,是铝电解电容的数倍。材料工艺各不相同,而且没有全球化大规模的生产,目前全球生产厂家大约在10-15家。量没走的上去,成本高是在所难免的。第四点,关于固态电容的选型。滤高频的情况下,固态电容的容量可以选择液态铝电解容量的1/4到1/5。电压无须抛高。例如工作电压2.4V纹波电压不超过2.8V就可以选用2.5V的固态电容,如果纹波电压超过2.8V就要选用4V的了。不过选型毫无疑问也是受到实际线路板的设计限制,具体情况具体分析。第五点,固态电容的寿命问题。固态电容的标准寿命为105度2000H,95度6600小时,85度20000H,75度66000H,65度200000H。20万小时超过20年。第六点,固态电容的温度特性。固态电容耐温性能非常良好,由于内部电解质为固体,没有电解液的沸点,冰点等诸多问题,永不爆浆。而且更加耐高低温,在温度105度工作环境下,依然运行良好,-55度时依然能够工作,容量损失不大。 固态电容的PEDT专利到期,固态电容可望取代传统电容 综合媒体报道,台湾铝质电解电容器厂商近几年来都积极投入固态电容研发制造行列,不过由于桌面计算机需求减缓、日系厂商产能大增之下,固态电容器价格竞争转趋激烈,台系厂商虽仍具备价格优势,但是还是不如国内固态电容生产厂家,而各家厂家都在上游介电材料PEDT专利到期后(上游关键原料PEDT专利原掌握在德国H.C.Strack公司 ,过去为拜耳子公司,2007年售予凯雷集团),固态电容价格也更加平民化,进而取代传统铝质电容市场,台系厂商和中国大陆厂商或能抢得一席之地,占领一部分日系固态电容厂家的市场份额。固态电容主要是为解决传统铝电解电容器遇高热出现爆浆的问题,在下游应用端如高阶主板、高阶STB、通讯基地台、高阶电源供应器、LCD TV、服务器、VGA卡、游戏机等,在效能及质量提升的趋势下,固态电容有机会逐步取代传统式的液态铝质电解电容器。由于VISTA 及SANTA相继上市后,对于软、硬体的要求大幅提升,软硬件平台必须进行整合以发挥最大效能,因此对于上游被动组件质量的稳定性、耐用度、耐热度要求也相对提升,固态电容因而需求大增。目前使用台系固态电容和大陆国内固态电容厂家的产品,主要为台系2线MB 厂及大陆当地MB大厂,台湾1线MB大厂目前对台系或大陆国内厂家的固态电容产品还处于认证阶段,或者小量使用,属于试用性质。虽台系固态电容价格较日系同规格产品平均低20%,在成本考虑下,台系厂商极力争取1线大厂采用台系固态电容,取代日系固态电容。而台系固态电容厂家又面临国内生产厂家的在市场上紧跟压力,国内固态电容厂家的价格更有优势,交货期好,服务业好,不少日系固态电容使用厂家也有将部分竞争压力大得产品换成了大陆国内厂家的固态电容,也再试用阶段。H.C.Strack公司上游介电材料PEDT全球专利到期后,固态成本和售价下滑,市场普及,并有全面取代铝质电容的机会。

关于投产高压金属化薄膜电容器的可行性报告 薄膜CB80高压电容

关于投产高压金属化薄膜电容器的可行性报告 薄膜CB80高压电容 关于投产高压金属化薄膜电容器的可行性报告 一.高压金属化薄膜电容器发展状况及市场状况 随着电力、电子技术的普及和提高,高频脉冲电容器、直流高压电容器、高压并联电容器等特种电容器的需求量越来越大。其用途主要有以下几个方面。 1.高压并联电容器:该电容器是为输压、变压线路使用的高压开关柜专门配套的高压电力电容,以改善线路功率因素为目的。 2.高频脉冲电容器:该电容器功能是利用电容器储存的能量产生脉冲大电流。主要用于电磁加速器、核聚变、脉冲激光电源等性能试验装置。 3.直流高压电容器:该电容器主要在高电压大容量电压换流电源中作滤波电容器用。 二、国外、国内高压金属化薄膜电容器的发展状况及市场状况 近几年来,国外一些厂家开发、研制出的该类型电容器已形成批量生产和投放市场使用。而我国虽然有众多的电容器生产厂家,但该类型的电容器在生产方面还刚刚起步,其品质也无法与

国外一些厂家生产的产品进行比较,其品质差别和市场占有率主要如下; 1.国外该类型电容器的发展及市场状况:现在国外具有先进水平的生产厂家有ABB、GE、METAR等公司,这些公司生产的电容器主要特点是在恒定容量和恒定电压下,其尺寸和重量均为国产的一半,其使用寿命确保在20年以上。现METAR公司已开发、研制出50万伏高压并联电容器并投入使用,现占领国内100%市场。 2.国内该类型电容器的发展及市场状况:现在国内的生产家生产的同类型电容器产品其尺寸和重量均比国外的产品要大得多和重得多,其使用寿命在5年到10年之间。30到50万伏的高压并联电容器还在研制中,未能进行批量生产并投入使用。 三、投产电容器的目的及项目: 1.投产目的:为了满足国外、国内市场对具有高电压、大电流负载承受能力、高安全性的金属化薄膜高电压电容器越来越大的市场需求,对该类型的电容器的开发、研制和对现有电容器生产设备及工艺技术的改造也势在必行。针对此现像,公司经研究自身在国际上的销售网 络优势,决定出资引进国外先进设备,以满足国外、国内市场对该类型电容器越来越大的需求,填补国内空白、不足之处。 2.电容器项目及其用途如下: 2.1 高电压并联电容器:该电容器是为30到50万伏输压、变压线路使用的高压开关柜专门配套的高压电力电容,全世界需

薄膜电容器基本构造和分类教学文案

薄膜电容器基本构造 和分类

塑料薄膜电容( Plastic Film Capacitor )往往被简称为薄膜电容( Film Capacitor )或 FK 电容。其以塑料薄膜为电介质。 在应用上薄膜电容具有的一些的主要特性:无极性,绝缘阻抗高,频率特性优异 ( 频率响应宽广 ) ,介质损失小。基於以上的优点,薄膜电容器被大量使用在模拟电路上。尤其是在信号交连的部份,必须使用频率特性良好,介质损失极低的电容器,方能确保信号在传送时,不致有太大的失真情形发生。在所有的塑胶薄膜电容当中,又以聚丙烯 (PP) 电容和聚苯乙烯 (PS) 电容的特性最为显着。 1 基本构造: 薄膜电容内部构成方式主要是:以金属箔片(或者是在塑料上进行金属化处理而得的箔片)作为电极板,以塑料作为电介质。通过绕卷或层叠工艺而得。箔片和薄膜的不同排列方式又衍生出多种构造方式。图 1 是薄膜电容得典型示意图。

2 基本分类: 薄膜电容主要分类法有:按电介质分类;按薄膜(介质)和箔片(电极板)的排列方式分类;按结构分类;按线端方式分类。 从电介材质上分类: 从应用特性角度看,关键特性的表现还是缘于其电介质的不同。按电介质的不同 DIN 41379 对薄膜电容作了如下划分: T 型:即 PE T - Polyethylene terephthalate (聚乙烯对苯二酸盐( 或酯 ) ) P 型:即 P P - Polypropylene (聚丙烯)

N 型:即 PE N - Polyethylene naphthalate (聚乙烯石脑油) 以 M 作前缀表示为金属化薄膜的电容。 MFP 及 MFT 电容由金属箔片和金属化塑料薄膜构成,并不在 DIN 41379 阐述的范围内。

电容器基本知识

電容器基本知識 一、定義:由兩金屬极板加以絕緣物質隔離所構成的可儲存電能的元件稱為電容器 二、代號:“C” 三、單位:法拉(F) 微法(uF) 納法(nF) 皮法(pF) 1F=106 uF =109nF=1012 pF 四、特性:通交流、阻直流 因電容由兩金屬片構成,中間有絕緣物,直流電無法流過電容,但通上交流電時,由於電容能充放電所致,所以能通上交流 五、作用:濾波、耦合交變信號、旁路等 六、電容的串聯、並聯計算 1.串聯電路中,總容量=1÷各電容容量倒數之和 例: 2.並聯電路中,總容量=各電容容量之和 例: 七、電容的標示: 1.直標法:直接表示容量、單位、工作電壓等。如1uF/50V 2.代表法:用數字、字母、符號表示容量、單位、工作電壓等 如:“104”表示容量為“100000pF” “Z”表示容量誤差“+80% -20%” “”表示工作電壓“50V” 八、電容的分類 1.按介質分四大類 1).有機介質電容器(極性介質與非極性介質,一般有真合介質、漆膜介質等)

2).無機介質電容器(雲母電容器、陶瓷電容器、波璃釉電容器 3).電解電容器(以電化學方式形式氧化膜作介質,如鋁Al2O3鉭Ta2O5) 4).氣體介質電容器(真空、空氣、充氣、氣膜復合) 2.按結構分四大類 1).固定電容器 2).可變電容器 3).微調電容器(半可變電容器) 4).電解電容器 3.按用途分 1).按電壓分低壓電容器、高壓電容器 2).按使用頻率分低頻電容器(50周/秒或60周/秒)和高頻電容器(100K周/秒) 3).按電路功能分:隔直流、旁路、藕合、抗干擾(X2)、儲能、溫度補償等 九、我司主要使用之電容: 1).電解電容 2).陶瓷電容(包括Y電容與積層電容、SMD電容) 3).塑膠薄膜電容(包括金屬薄膜電容器、X2電容器、嘜拉電容器) 電解電容(E/C) 一、概述 電解電容的構造是由陽箔、陰箔、電解紙、電解液之結合而成的,陽箔經化成後含有一高介電常數三氧化鋁膜(Al2O3),此氧化膜當作陽箔與陰箔間的絕緣層,氧化膜的厚度即為箔間之距離(d),此厚度可由化成來加以控制,由於氧化膜的介電常數高且厚度薄,故電解電容器的容量較其他電容高。電解電容的實值陽极是氧化膜接觸之電解液,而陰箔只是將電流傳屋電解液而已,電解紙是用來幫助電解液及避免陽箔、陰箔直接接觸因磨擦而使氧化膜磨損。 即電解電容器是高純度之鋁金屬為陽极,以陽极氧化所開氧化膜作為電介質,以液體電解液為電解質,另與陰极鋁箔所構成之電容器。

薄膜电容器选型与应用

薄膜电容器选型与行业应用 ————光伏逆变器行业 变频器行业 风电行业 交流滤波电容 其他场合 一、光伏行业DC-link电容 DC-link电容(大功率27μF-30μF/KW 薄膜电容) 二、变频器行业DC-link电容 输入电压等级 DC-Link 电容 吸收电容 LC 交流滤波电容 220V.AC-440V.AC 薄膜电容电压 Un=700V.DC 0.1-2μF/1200V.DC Un=450V.AC 660V.AC-690V.AC 薄膜电容电压 Un=1100V.DC 0.47-2.5μF/1600V.DC Un=850V.AC 1140V.AC 薄膜电容电压 Un=2000V.DC 0.47-3μF/3000V.DC Un=1140V.AC 2000μF/1200VDC SVG客户的选型 420/470 uf –1100/1200V .DC 500/1200/2000/3000 uf –1200V .DC 功率P DC-Link 电容 吸收电容 交流滤波电容 500KW 园柱SCREW 型 400μF-500μF/1100V .DC 27-30只并联 采用6只 方块铜片型 0.47-1.5μF/1600V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 250KW 园柱SCREW 型 200-420 多只并联总容量在6000uf 采用3只 方块铜片型 0.47-1.5μF/1600V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 100K 园柱SCREW 型 420uf 6只并联 方块铜片型 1μF/1200V .DC 金属盒三角接法SCREW 型 3×200μF/450V .AC 50K 方块导针型 10μF-50μF 多只并联 方块铜片型 0.47μF/1200V .DC 20μF/450V .AC (自己采用三角接法),会选园柱SCREW 型的 备注 采用容量小,多只并联,这样同等容量流过DC-LINK 电容有效电流大, I 总rms≥nI 输出电流 容量选取不是容量越大越好,主要通过IGBT 开关频率和功率选取容量 选择交流电容设计电容的有效电流多少,这主要载波频率有关系

关于投产高压金属化薄膜电容器的可行性报告.doc

关于投产高压金属化薄膜电容器的可行 性报告 关于投产高压金属化薄膜电容器的可行性报告一.高压金属化薄膜电容器发展状况及市场状况随着电力、电子技术的普及和提高,高频脉冲电容器、直流高压电容器、高压并联电容器等特种电容器的需求量越来越大。其用途主要有以下几个方面。 1.高压并联电容器:该电容器是为输压、变压线路使用的高压开关柜专门配套的高压电力电容,以改善线路功率因素为目的。 2.高频脉冲电容器:该电容器功能是利用电容器储存的能量产生脉冲大电流。主要用于电磁加速器、核聚变、脉冲激光电源等性能试验装置。 3.直流高压电容器:该电容器主要在高电压大容量电压换流电源中作滤波电容器用。 二、国外、国内高压金属化薄膜电容器的发展状况及市场状况近几年来,国外一些厂家开发、研制出的该类型电容器已形成批量生产和投放市场使用。而我国虽然有众多的电容器生产厂家,但该类型的电容器在生产方面还刚刚起步,其品质也无法与国外一些厂家生产的产品进行比较,其品质差别和市场占有率主要如下; 1.国外该类型电容器的发展及市场状况:现在国外具有先进水平的生产厂家有abb、ge、metar等公司,这些公司生产的电容器主要特点是在恒定容量和恒定电压下,其尺寸和重量均为国产的一半,其使用寿命确保在20年以上。现metar公司已开发、研制出50万伏高压并联电容器并投入使用,现占领国内100%市场。 2.国内该类型电容器的发展及市场状况:现在国内的生产家生产的同类型电容

器产品其尺寸和重量均比国外的产品要大得多和重得多,其使用寿命在5年到XX年之间。30到50万伏的高压并联电容器还在研制中,未能进行批量生产并投入使用。 三、投产电容器的目的及项目: 1.投产目的:为了满足国外、国内市场对具有高电压、大电流负载承受能力、高安全性的金属化薄膜高电压电容器越来越大的市场需求,对该类型的电容器的开发、研制和对现有电容器生产设备及工艺技术的改造也势在必行。针对此现像,公司经研究自身在国际上的销售网 络优势,决定出资引进国外先进设备,以满足国外、国内市场对该类型电容器越来越大的需求,填补国内空白、不足之处。 2.电容器项目及其用途如下: 2.1 高电压并联电容器:该电容器是为30到50万伏输压、变压线路使用的高压开关柜专门配套的高压电力电容,全世界需求量非常大。我国在此方面尚属空白。如:中国的三峡工程、平顶山,沈阳和西安高压开关厂为50万伏输压、变压线路项目配套的开关柜采用电容全部从国外进口。 2.2 小型化高频脉冲电容器及直流高压电容器:可用于电磁加速器、核聚变脉冲激光电源等性能试验装置及冲击电压、电流发生装置。 四、高压金属化薄膜电容器投产后市场预测: 因国内对金属化薄膜高电压并联电容器、高频脉冲电容器、直流高压电容器的需求量越来越大且其现在供给状况为全部依靠进口,故如该类型产品在国内生产,将具备很强的市场竞争力。其市场销售预测为: 1.高电压并联电容器:现国内为50万伏输变线项目配套采用该电容100%全

薄膜电容和铝电解电容在直流支撑应用的换算关系-中文

替代电解电容的薄膜电容技术 DC-Link电容器应用 在过去多年的发展中,使用金属化膜以及膜上金属分割技术的DC滤波电容得到了长足的发展,现在薄膜生产商开发出更薄的膜,同时改进了金属化的分割技术极大的帮助了这种电容的发展,聚丙烯薄膜电容能够比电解电容更加经济地覆盖600VDC 到2200VDC的电压范围。薄膜电容具有的许多优势,使它替代电解电容成为工业和电力电子功率变换市场的趋势。 这些优点包括了: 承受高的有效电流的能力 能承受两倍于额定电压的过压 能承受反向电压 承受高峰值电流的能力 长寿命,可长时间存储 但是,只种替代并非“微法对微法”的替代,而是功能上的替代. 当然,尽管膜电容技术有了长足的进展,但不是所有的应用领域都能替代电解电容。 电解电容技术 典型的电解电容的最大标称电压为500 到600V。所以在要求更高电压的情况下,使用者必须将多只电容串联使用。同时,由于各电容的绝缘电阻不同,使用者必须在每个电容上连接电阻以平衡电压。 此外,如果超过额定电压1.5倍的反向电压被加在电容上时,会引起电容内部化学反应的发生。如果这种电压持续足够长的时间,电容会发生爆炸,或者随着电容内部压力的释放电解液会流出。为了避免这种危险,使用者必须给每个电容并联一个二极管。在特定应用中电容的抗浪涌能力也是考察电容的重要指标。实际上,对电解电容而言,允许承受的最大浪涌电压是VnDC的1.15或1.2倍(更好的电解电容)。这种情况迫使使用者不得不考虑浪涌电压而非标称电压。 直流支撑滤波:高电流设计和电容值设计 a) 使用电池供电的情况 应用为电车或电叉车 在这种情况下,电容被用来退耦。膜电容特别适合这种应用。因为直流支撑电容的主要标准是有效值电流的承受能力。这意味着直流支撑电容能够以有效值电流来设计 以电车为例,要求的数据 工作电压: 120VDC 允许的纹波电压: 4V RMS 有效值电流: 80 A RMS @ 20 kHz 最小容值为

薄膜电容的国内外应用现状及性能分析

薄膜电容的国内外应用现状及性能分析 随着现在全球倡导低碳环保,绿色出行,新能源电动汽车的发展越来越迅速,而薄膜电容凭借自己的优势——优于一般的工作性能和让其他电容难以企及的可靠性为新能源电动汽车发展带来了发展的机遇。 标签:绿色;薄膜;新能源 Abstract:With the global promotion of low-carbon environmental protection and green travel,new energy electric vehicles are being developed more and more rapidly. And the thin film capacitors,with their own advantages superior to the general performance and reliability other capacitors fail to reach,have brought new opportunities for the development of new energy electric vehicles. Keywords:green;thin film;new energy 1 国内外现状 在全世界有很多的薄膜电容制造商,但是能被称为世界级的也就日本的Nichicon,德国的Wima,意大利的ICEL,美国的CDE等。其中,WIMA的产品方向主要用于制造高品质的音响,Nichion的产品主要在电子产品方向,而CDE 则是做专业的变频器薄膜电容。世界上薄膜电容器除了以上说的那些,还有一些也是做的比较好,像日本NISSI、荷兰飞利浦虽不如上面那些声名赫赫,但也有些名气,而如台湾凯励、昱电、华容等稍逊一些公司也有一些市场份额。而在产量方面来说,全球薄膜电容的大半部分则是日本松下电工和德国EPCOS、美国Kemet一起占据着。作为全球的前五大薄膜电容器厂商——法拉电子公司,也在积极大力拓展变频家电和新能源市场,因为这些市场上薄膜电容器的缺口还是很大的。目前它生产的交流薄膜电容器可以应用于像新能源混合动力汽车、风电能、太阳能等现在发展方向大好多个领域,也在竞争激烈的薄膜电容器中分得一杯羹。现在市场需要高频、大容量、大电流、低阻抗、高电压、高dv/dt的薄膜电容,所以这为以后薄膜电容器的发展提供了方向。 通过查阅大量的资料来看,我认为国家将在电网建设、电气化铁路建设、节能照明及混合动力汽车等方面会投入大量的资金和技术支持。消费类电子产品的快速发展和不断更新换代的速度不容小觑,將会推动数字化、信息化及网络化建设的进一步快速发展,使我国科技永远走在前列,而薄膜电容器也变得越来越重要、越来越不可或缺。 聚酯薄膜在我国原先应用于磁带、计算机记录带等磁性材料方面,现在大多用于食品包装和电子部件、光学部件、电容器方面,这是一种进步也是一种新的发展趋势,证明我国越来越能发现其的多种用途。而现在中国大陆的电容器产能大量,但多数还是为低端产品。中国电子元件行业协会电容器分会秘书长潘大男就指出:“现如今国内的电容器企业应顺应市场的变化,同时也密切关注前瞻性

2021固态电容器行业现状及前景趋势

2021年固态电容器行业现状及前景趋势

目录 1.固态电容器行业现状 (4) 1.1固态电容器行业定义及产业链分析 (4) 1.2固态电容器市场规模分析 (7) 1.3固态电容器市场运营情况分析 (7) 2.固态电容器行业存在的问题 (10) 2.1行业服务无序化 (10) 2.2供应链整合度低 (10) 2.3基础工作薄弱 (10) 2.4产业结构调整进展缓慢 (10) 2.5供给不足,产业化程度较低 (11) 3.固态电容器行业前景趋势 (12) 3.1固态电容器行业技术发展趋势 (12) 3.2消费类电子是最大应用市场 (12) 3.3微型化和大容量化 (12) 3.4薄膜电容向超薄化、耐高温方向发展 (13) 3.5延伸产业链 (13) 3.6行业协同整合成为趋势 (14) 3.7生态化建设进一步开放 (14) 3.8服务模式多元化 (15) 3.9细分化产品将会最具优势 (15)

3.10呈现集群化分布 (15) 3.11需求开拓 (16) 3.12行业发展需突破创新瓶颈 (17) 4.固态电容器行业政策环境分析 (18) 4.1固态电容器行业政策环境分析 (18) 4.2固态电容器行业经济环境分析 (18) 4.3固态电容器行业社会环境分析 (18) 4.4固态电容器行业技术环境分析 (19) 5.固态电容器行业竞争分析 (20) 5.1固态电容器行业竞争分析 (20) 5.1.1对上游议价能力分析 (20) 5.1.2对下游议价能力分析 (20) 5.1.3潜在进入者分析 (21) 5.1.4替代品或替代服务分析 (21) 5.2中国固态电容器行业品牌竞争格局分析 (22) 5.3中国固态电容器行业竞争强度分析 (22) 6.固态电容器产业投资分析 (23) 6.1中国固态电容器技术投资趋势分析 (23) 6.2中国固态电容器行业投资风险 (23) 6.3中国固态电容器行业投资收益 (24)

薄膜电容器在新能源汽车上的运用

薄膜电容器在新能源汽车上的运用厦门法拉电子股份有限公司赖五福 薄膜电容器是一种应用于直流滤波场合的电容器。由于它跟传统电容相比有寿命长、温度稳定性好等优点,更适用于新能源汽车中的逆变器直流滤波。【摘要】本文主要介绍薄膜电容器优点、采用的先进技术、相关的选型标准及应用分析。 能源,薄膜电容器,电解电容器,逆变器,新能源汽车【关键词】 1.引言容理论上不会产生短路击穿的现象,这大 大提高了这类电容的安全性,典型的失效随着工业的迅速发展、人口的增长和人 民生活水平的提高,能源短缺已成为世界性模式是开路。在特定应用中电容的抗峰值问题,能源安全受到越来越多国家的重视。电压能力也是考察电容的重要指标。实际随着“汽车社会”的逐渐形成,汽车保有量上,对电解电容而言,允许承受的最大浪在不断地呈现上升趋势,全球汽车行业的发涌电压是1.2倍,这种情况迫使使用者不得 展面临着能源和环保的双重压力,各个国家不考虑峰值电压而非标称电压。为了将来在世界汽车业中占得一席之地,纷 b.良好的温度特性,产品温度使用范图1 电机控制器主回路示意图围广,可以从-40?-105? 纷推出了各自的的新能源汽车的规划蓝图,

直流支撑薄膜电容器采用的高温聚丙并大力发展新能源汽车。 新能源汽车是指采用非常规的车用烯薄膜,具有聚酯薄膜和电解电容没有的燃料作为动力来源,新能源汽车包括混合温度稳定性,具体如下图5,图6。动力汽车、纯电动汽车、燃料电池电动汽从图5中可以看出,随着温度的升高,车、氢发动机汽车、其他新能源(如高效聚丙烯膜电容器容量总体是下降的,但下[1]储能器、二甲醚)汽车等各类别产品。降的比例是很小的,大概是300PPM/?; 电机,电池和电机控制技术是新能源而聚酯膜不管是在高温阶段还是在低温汽车的三大核心。电机控制技术的核心就阶段,容量随温度变化则大了很 多,为是需要高效电机控制的逆变器技术,高效 +200+600PPM/?。从图6可以看出,聚~ 电机控制的逆变器技术则需要一个功能强丙烯膜介质电容图2 第一代丰田Prius电机控制器大的IGBT模块和一个与之匹配的直流支撑器的损耗随温度变化基本不变的,但聚酯 膜介质电容器在低温和高温显示变化规律电容器,如图1所示。 是不一样的。本文主要介绍薄膜电容的优点、采用的 先进技术、相关的选型标准及应用分析。由于聚丙烯膜介质电容器具有良好

电容器生产工艺讲义

电容器基础培训资料 一、基本常识 1、什么叫电容器及表示法、薄膜电容器主要用途 两个金属导体,中间隔一介质,在电场的作用下,可储存电荷的一种装置。 表示法——并用字母“C”表示,单位为μF,法拉(F)=106微法(μF)=1012皮法(pF) 用途:主要用于单相电机的启动与运转、灯具的补偿或触发作用。 2、本公司生产电容器的型号 CBB60型——塑壳、圆柱型结构、有导线或端子引出,用于电机; CBB61型——塑壳、方型结构、有导线或端子引出,用于电机; CBB65型——铝壳,圆柱型结构,有导线或端子引出,用于电机、灯具; CBB65A/B型——铝壳防爆圆柱型或椭圆形结构,均为端子引出,用于电极、压缩机、灯具; CBB80型——白色塑壳、圆柱型结构,其引出为接插件(刺破性连接)。专用于灯具配套。 BKMJ型——专用直流高压脉冲电容器 二、工艺流程图: 三、具体工艺 1、卷绕: ①卷绕间温度-10℃~+26℃,相对湿度≤60%; ②跑偏≤0.5mm,错边0.8~1.2mm,容量:圆芯-3%~+1%,扁芯-7%~-4%; ③卷前应检查辊轴的转动灵活性,核对穿膜路线是否正确,膜面质量检查:膜有无划伤、擦伤、氧化、起皱; 190机张力=膜宽x膜厚x 1.8~2.0/100,180机张力=膜宽x膜厚x 1.2~1.5/10 ④试装外壳。

2、压扁芯子压扁 ①冷压:上下对称排放,冷压压力≥0.6MPa。 3、喷金、点焊: ①喷金厚度为0.6±0.1mm; ②喷金后芯子端面根据制造工作单或其他工艺文件规定预点焊焊点,焊接时间不大于3秒,点焊温度 320℃~420℃; ③如点焊的芯子直径小于20mm时,允许用100W的电烙铁,其余须用200W电烙铁; ④去除外包纸时,千万不可划伤芯子,并检查芯子表面应无残留喷金灰尘,特别注意两极连极现象发生。 4、热聚合:按《电容器芯子热聚合工艺汇总表》 ①芯子热聚合后降温60℃以下,方可流入下一道工序; ②严防温度失控,发生质量大事故。 5、半测: ①赋能:交流低压50V、交流高压250V、直流低压100V/μm 直流高压:5μm为710V、6μm为852V、7、8μm为1278V、9、10μm为1420V; ②交流耐压:2Un0+20,5S ③C、tgδ测量,1KHz ,具体见《芯子和成品电容量、损耗角正切测量要求数据汇总表》; ④严防错测、漏测。 ⑤BKMJ脉冲电容: 直流脉冲电容:直流高压赋能电压按上表交流电压计算,即2.84x交流数 极间耐电压:交流:按以上膜厚的交流电压值的1.8倍,历时2s,无击穿现象。 直流:1.2倍Un,历时10s,无击穿现象。 6、电容器芯子点焊引出端 ①点焊产品外观质量要求无严重打火痕迹,引出端应半埋于喷金层下,焊接强度要求沿芯子喷金面方向 引出端能承受30N拉力。 ②点焊位置应避免靠近芯子边缘和芯管,以防止焊伤芯子和打火,同一位置不允许连续点焊2次以上。 7、焊接装配:焊接注意防止烫伤芯子;装配注意极壳绝缘。 8、灌注: ①环氧预处理:≥60℃、≥0.5h; ②固化剂桶(4kg/桶),充分搅拌至少3分钟,每桶环氧封小样 ③《电容器灌注工艺、环氧树脂固化条件汇总表》 9、成品测试: ①交流耐压测试:T-T:2Un0+20(V)/5s; T-C: 2000V AC/10s, 铝壳:T-C:2500V AC/10s; BKMJ 型T-T:1.2Un/10s; T-C:Un≤3KV AC3KV AC /10s 、Un>3KV AC 1.2Un(AC)/10s ②电容、损耗角正切测量:1KHz 具体见《芯子和成品电容量、损耗角正切测量要求数据汇总表》 ③严防错测、漏测。 10、电容器产品打印、包装、入库: 打印前核对图纸、做好首检。

(整理)铝电解电容器市场分析

铝电解电容器市场分析 第一章铝电解电容器定义、分类及应用 一、铝电解电容器行业定义 铝电解电容器是指由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极而制成的电容器。 电容器是应用最为广泛的电子元件,几乎用电的地方都会用到电容器。电容器是三大基础电子元器件(电阻、电容及电感器)之一,在电子元器件产业中占有重要的地位,是电子线路中必不可少的基础电子元器件,在整机使用的电子元件中,电容器用途最广泛、用量最大,约占全部电子元件用量的40%;铝电解电容器作为电容器中的重要分支,又占三大类电容器(电解电容器、陶瓷电容器和有机薄膜电容器)产量的30%以上。 二、铝电解电容器行业主要产品分类 按照不同电解质划分,铝电解电容器可划分为液态铝电解电容器和固体铝电解电容器。 按照不同应用领域划分,铝电解电容器可又划分为消费类铝电解电容器、工业类铝电解电容器和军用级铝电解电容器等。 其中消费类铝电解电容器主要用于电视、音响、显示器、计算机及空调等消费类市场;工业类铝电解电容器主要用于工业和通讯电源、专业变频器、数控和伺服系统、风力发电及汽车等工业领域。

三、产品应用领域 电容器是三大基础电子元器件(电阻、电容及电感器)之一,在电子元器件产业中占有重要的地位,是电子线路中必不可少的基础电子元器件,电容器产业的发展水平在很大程度上影响着我国电子信息产业的发展,是国家重点发展的产业。 近年来,铝电解电容器通过自身的不断改进、完善和创新,不断朝小体积、大容量、低成本、高频低阻抗方向发展,性能优势更为明显,应用领域不断拓宽,市场需求越来越大;因性能上乘、价格低廉、用途广泛,近20年来在世界范围内得到很大发展,其产值约占整个电容器市场的三分之一,其年增长率稳定保持在8%左右,并且未来可能进一步扩大市场份额。电容器产业的发展水平在很大程度上影响着我国电子信息产业的发展,是国家重点发展的产业。 铝电解电容器在电子线路中的作用一般概括为:通交流、阻直流,具有滤波、消振、谐振、旁路、耦合和快速充放电的功能,与其它电容器相比,具有体积小、储存电量大、成本低的特性,符合电子整机产品小型化、集成化、低价化的发展趋势。随着现代科技的进步与电容器性能的不断提高,产品已广泛应用于消费类电子产品、通信产品、电脑及周边产品、仪器仪表、自动化控制、汽车工业、光电产品、医疗器械、高速铁路与航空及军事装备等。 全球铝电解电容器应用领域的用量比例为消费性电子产品占45%,工业占23%,资讯13%,通信7%,汽车5%,其他7%。监视器、CD 音响、电视机、电源供应器及主机板产品是铝电解电容器最典型的应用。

薄膜电容器的使用要求和电性能参数

薄膜电容器的使用要求和电性能参数 电磁加热设备把工频的交流电或纯直流电,通过半桥/全桥逆变技术,变为高频交流电(1KHz—1MHz).高频交流电通过各种电感性负载后会产生高频交变磁场.当金属物体处于高频交变磁场中,金属分子会产生无数小涡流. 涡流使金属分子高速无规则运动,金属分子间互相碰撞、磨擦而产生热能,最终达到把电能转换为热能的目的.电磁加热设备在我们的工作和生活中大量的频繁的使用.例如电磁炉/电磁茶炉,电磁炉,高频淬火机,封口机,工业熔炼炉等等.本文以三相大功率电磁灶为例, 浅析薄膜电容器在电磁加热设备中的应用. 一电磁灶三相全桥电路拓扑图 二 C1—C6功能说明 新晨阳 C1/C2:三相交流输入滤波、纹波吸收, 提高设备抗电网干扰的能力 C1,C2和三相共模电感组成Pi型滤波,在设备中起电磁干扰抑制和吸收的作用.该电路一方面抑制IGBT由于高速开关而产生的电磁干扰通过电源线传送到三相工频电网中,影响其他并网设备的正常使用.另一方面防止同一电网中其他设备产生的电磁干扰信号通过电源线传送到三相工频电网中,影响电磁加热设备自身的正常使用.(对内抑制自身产生的干扰,对外抵抗其他设备产生的干扰,具有双面性) EMC=EMI+EMS 在实际使用中,C1可以选择MKP-X2型(抑制电磁干扰用固定电容器),容量范围在 3μF-10μF之间,额定电压为275V.AC-300V.AC. 采用Y型接法,公共端悬空不接地. C2可以选择MKP型金属化薄膜电容器,容量范围在3μF-10μF之间,额定电压为450V.AC- 500V.AC ,采用三角形接法.

C1和C2原则上选用的电容量越大,那么对于电磁干扰的抑制和吸收效果越好.但是电容量越大,那么设备待机时的无功电流就越大.耐压方面要根据设备使用地域的电网情况而合理保留一定的余量,防止夜间用电量非常小的时候,电网电压过高而导致电容器电压击穿或寿命受到一定的影响. C3: 整流后平滑滤波、直流支撑(DC-Link),吸收纹波和完成交流分量的回路。 C3和扼流圈L组成LC电路,把三相桥式整流后的脉动直流电变为平滑的直流电,供后级逆变桥及负载使用.在电磁灶机芯实际电路中,C3一般是由几十微法的薄膜电容器组成.该 位置的薄膜电容器其实所起的作用是直流支撑(DC-LINK),负责纹波的吸收和完成交流分量的回路,而不是很多人所认为的(滤波).几十微法的电容量,对于几十千瓦的负载来说,所起到的滤波作用是非常小的,直流母线的电压波形根本就无法变得很平滑.由于IGBT的高速开关,会产生大量的高次谐波电流及尖峰谐波电压.如果没有电容器作为谐波电流和尖峰电压的吸收,那么直流母线回路会产生大量的自激振荡,影响IGBT等的安全使用及缩短寿命时间.因此,使用薄膜电容器作为直流母线纹波电压和纹波电流的吸收是目前国内外最常用的方法之一。 C3原则上选用的电容量越大,那么吸收效果越好.但是需要注意的是电容量过大,容易导致设备刚合闸上电的时候,由于电容器的瞬间充电电流过大而导致整流桥,保险管等过流击穿.在电磁灶机芯里,一般的选用原则是:半桥方案(1.5μF/KW) 全桥方案(1.2μF/KW).该配置是根据常规的薄膜电容器能承受的2A/μF的设计工艺所推断。 例如电磁灶半桥20KW机型,需要的C3容量是20*1.5=30μF C3的总纹波电流是 30*2=60A 全桥20KW机型,需要的C3容量是20*1.2=24μF(实际可取25-30μF) C3的总纹波电流是25*2=50A 建议实际选取的电容量及电容器能允许承受的纹波电流值不能低于上述建议值。 C3位置必须要考虑电路实际需要的纹波电流值是否小于所选用的薄膜电容器能承受的总纹波电流值(还要保留一定的电流余量),否则假如电路需要60A的纹波电流,而选择的电容器总共能承受的纹波电流只有40A,那么会导致薄膜电容器发热严重,长期过热运行,大大降低薄膜电容器的使用寿命,严重的导致薄膜电容器膨胀鼓包,甚至起火燃烧.耐压方面,一般选择额定电压为800-1000V.DC即可. C4: IGBT的尖峰电压/电流吸收、缓冲和抑制,防止IGBT击穿

电容器行业发展现状及前景趋势分析

电容器行业发展现状及前景趋势分析 资料来源:前瞻网:2013-2017年中国电容器行业产销需求与投资预测分析报告,百度报告名称可查看报告详细内容。 电容器,简称电容,顾名思义,是“装电的容器”,是一种容纳电荷的器件。电容器是电子产品不可或缺的关键基础元件,被广泛应用于消费类电子产品、通信产品、电脑产品、仪器仪表、自动化控制、汽车工业、光电产品、铁路及军工等领域。 电容器行业发展现状: 近年来,随着电子信息技术的日新月异,数码电子产品的更新换代速度越来越快,以平板电视(LCD和PDP)、笔记本电脑、数码相机等产品为主的消费类电子产品产销量持续增长,带动了电容器产业增长。中国电容器无论从数量上、质量上,还是服务上,都能够满足电子整机及家用电器发展的需要,并带动了相关材料、设备行业的发展,已经成为全球电容器生产大国。 2011年我国电容器销售总额达67亿美元,在2010年的基础上增长了5%。陶瓷电容器为2011年的主流产品,占电容器总销量的60%,销售额达40亿美元。铝电解电容器占25%,其它钽电容器和薄膜电容器占15%。 2012年,我国电容器进口额为85.25亿美元,同比增长5.8%;进口量为7874.64万千克,同比减少8.9%;进口平均价格为108.25美元/千克,同比增长16.2%。 电容器行业前景趋势分析: 自改革开放以来,日本、韩国及中国台湾地区将电容器制造业转向中国内地,世界电子信息整机制造业在中国内地设厂,跨国公司在中国内地采购,国内市场整机生产所需的电容器有较大增长,中国越来越成为全球电容器消费的重要市场。另外,电容器的应用领域也在不断扩大,电容器行业在未来数年内存在较大的发展空间。 前瞻网:2013-2017年中国电容器行业产销需求与投资预测分析报告,共十二章。首先介绍了电容器的定义、种类、特性等,接着分析了国内电容器行业的现状,并对中国电容器及其配套设备制造行业的财务状况进行了详实的分析,然后具体介绍了电解电容器、片式多层陶瓷电容器、薄膜电容器、超级电容器、电容器技术的发展。最后分析了国内重点电容器制造企业的经营状况。 (复制转载请注明出处,否则后果自负!)

电容器市场规模及MLCC行业格局分析

MLCC是最重要的电容器品类,下游应用广泛 根据电信号特征的不同,电子元器件可分为主动元件和被动元件。被动元件也叫无源器 件,指令讯号通过而未加以更改的电路元件。从电路性质上看,被动元件自身不消耗电 能,或把电能转变为不同形式的其他能量;同时只需输入信号,不需要外加电源就能正 常工作。被动元件是电子电路产业的基石,主要可分为RCL元件和被动射频器件两大 类,其中RCL元件产值约占被动元件总产值的90%,主要包括电阻、电容和电感三大 类;被动射频器件则包括滤波器、耦合器、天线、巴伦和谐振器等。 图21:电子元器件分类 电容器是用于储存电量和电能被动电子元器件,下游应用广泛。电容器的主要作用为电 荷储存、交流滤波或旁路、切断或阻止直流电压、提供调谐及振荡等,广泛应用于电路 中的隔直通交、耦合、旁路、滤波、调谐回路、能量转换、控制等方面。电容器种类较 多,但基本结构和原理具有一致性,即两片相距很近的金属中间被某物质(固体、气体 或液体)所隔开,就构成了电容器。即两片相距很近的两片金属称为的极板,中间的物

质叫做介质。若给电容器充电,电容器的两极板上就会积累电荷,电容器就有了储能的 作用。电容器两端的电压越高则所容纳的电荷就越多,即储能就越大。作为最常用的电 子元器件之一,电容器在军用和民用领域应用广泛,军用领域包括航空、航天、舰船、 兵器、电子对抗等,民用领域包括消费电子、工业控制、电力设备及新能源、通讯设备、 轨道交通、医疗电子设备及汽车电子等。 图22:电容基本结构 电容器是产值最高的被动元器件,中国市场规模占全球比例超七成。作为主要的电子元 件之一,电容产量约占整个电子元件的40%,产值规模约占被动元件总产值的2/3。根 据中国电子元件行业协会公布的数据显示,2019年全球电容器市场规模达220亿美元, 其中我国电容器行业市场规模为1102亿元,占全球额比重达71%,中国已成为全球最 大的电容器市场。 图23:被动元件2019年产值分布(亿美元)图24:2019年全球电容器行业市场规模分布情况 中国电容器行业市场规模增速高于全球平均水平。2011-2019年,中国电容器行业规模 平均增速为6.73%,相比全球平均增速高出2.5个百分点,中国市场的快速增长成为全 球电容器行业规模主要动力。

电容器生产与四大工艺参数共享

薄膜电容器生产工艺和四大参数的关系 戴昭曼 前言 电容器标准从逐批检验到周期试验所考核的性能都是四大参数,即电容量、损耗角正切值(以下简称损耗)、绝缘电阻和耐电压。电容器生产制造过程也是紧紧围绕着保证四个参数符合要求而进行的。四大参数取决于设计与工艺。以下主要讨论金属化电容器的制造工艺对四参数的影响。 电容量 1. 制造过程导致电容量产生偏差的工艺因素 卷绕型电容器的电容量C = 0.177εs / d ε为介质的介电常数s为极板的有效面积d为介质的厚度 电容量与ε、s成正比,与d成反比。文件虽已做了精确规定,但工艺过程中这三个参数均会发生变化,导致容量偏差。工艺的重点是减少这些偏差,提高容量命中率。 电容量 a. 卷绕工序 ?膜层宽度、厚度或留边等本身有误差。 ?膜的张力从大圈到小圈发生的变化,各台卷绕机张力的误差。 ?压辊压力太小。卷绕过程跑偏,错边误差。 ?空气湿度大时导致芯子容量偏大。 电容量 b. 热压工序 ?芯子厚度误差受力不均匀,造成芯子松紧不一容量分散。 ?热压板不平整。 ?温度误差。 c. 热处理时间或温度误差 电容量 d. 内含浸 ?真空度误差 ?时间误差 ? 固化温度的误差。 电容量 2. 提高容量命中率的工艺要点 2.1 准确确定卷绕容量中心值(也称修正值),必须将热(冷)压、热处理和包封等工序容量的变化率都纳入芯子的容量修正值。不同型号、不同规格甚至不同台卷绕机其修正值也不同。 2.2 卷绕过程中定时抽测芯子的容量和高度,控制电容量的离散性。 2.3 抽测压扁定型后芯子容量,发现偏移及时调整卷绕中心值。 2.4 跟踪成品容量分布状态,发现超差及时反馈,以调整容量修正值。 电容量 3. 成品贮存中容量变化规律及相应的措施。 如果产品包封后短时间便进行测试,结果产品存放一段时间,容量会发生变化,造成容量超差,聚酯电容器较为明显,一般往正向偏移。解决途径有以下几种: ? 包封后产品再进行一次热处理。

金属化薄膜电容器

?金属化薄膜电容是以有机塑料薄膜做介质,以金属化薄膜做电极,通过卷绕方式制成(叠片结构除外)制成的电容,金属化薄膜电容器所使用的薄膜有聚乙酯、聚丙 烯、聚碳酸酯等,除了卷绕型之外,也有叠层型。其中以聚酯膜介质和聚丙烯膜介质应用最 广。 目录 ?金属化薄膜电容的作用 ?金属化薄膜电容的特点 ?金属化薄膜电容的缺点及改善 ?金属化薄膜电容的应用及相关要求 金属化薄膜电容的作用 ?金属化薄膜这种型态的电容器具有一种所谓的自我复原作用(Self Healing Action),即假设电极的微小部份因为电界质脆弱而引起短路时,引起短路部份周围的电极金属,会因当时电容器所带的静电能量或短路电流,而引发更大面积的溶融和蒸发而恢复绝缘,使电容器再度回复电容器的作用。 金属化薄膜电容的特点 ?金属化薄膜电容即是在聚酯薄膜的表面蒸镀一层金属膜代替金属箔做为电极,因为金属化膜层的厚度远小于金属箔的厚度,因此卷绕后体积也比金属箔式电容体积小很多。金属化膜电容的最大优点是“自愈”特性。所谓自愈特性就是假如薄膜介质由于在某点存在缺陷以及在过电压作用下出现击穿短路,而击穿点的金属化层可在电弧作用下瞬间熔化蒸发而形成一个很小的无金属区,使电容的两个极片重新相互绝缘而仍能继续工作,因此极大提高了电容器工作的可靠性。不同种类的金属化薄膜电容特点如下表:

金属化薄膜电容的缺点及改善 ?从原理上分析,金属化薄膜电容应不存在短路失效的模式,而金属箔式电容器会出现很多短路失效的现象(如27-PBXXXX-J0X 系列)。金属化薄膜电容器虽有上述巨大的优点,但与金属箔式电容相比,也有如下两项缺点: 一是容量稳定性不如箔式电容器,这是由于金属化电容在长期工作条件易出现容量丢失以及自愈后均可导致容量减小,因此如在对容量稳定度要求很高的振荡电路使用,应选用金属箔式电容更好。 另一主要缺点为耐受大电流能力较差,这是由于金属化膜层比金属箔要薄很多,承载大电流能力较弱。为改善金属化薄膜电容器这一缺点,目前在制造工艺上已有改进的大电流金属化薄膜电容产品,其主要改善途径有 1)用双面金属化薄膜做电极; 2)增加金属化镀层的厚度; 3)端面金属焊接工艺改良,降低接触电阻。 金属化薄膜电容的应用及相关要求 ?金属化薄膜电容具有优异的电气特性、高稳定性和长寿命,可以满足各种不同的应用。目前,电容制造商一直在不断改进这种产品,以在较小的封装尺寸内提供更大的电容量。 电容制造商能够根据具体的应用,通过选择适当的电介质来优化金属化薄膜电容的特性。例如,聚脂薄膜在普通应用中表现出良好的特性,具有高介电常数( 使其在金属化薄膜电容中获得最高的单位体积电容量) 、高绝缘强度、自我复原特点和良好的温度稳定

相关主题
文本预览
相关文档 最新文档