当前位置:文档之家› The critical equation of state of three-dimensional XY systems

The critical equation of state of three-dimensional XY systems

The critical equation of state of three-dimensional XY systems
The critical equation of state of three-dimensional XY systems

a r

X i

v

:c o

n

d

-

m

a t

/

1

4

4

v

1

[

c o

n

d

-

m a

t

.

s

t

a

t

-

m e

c h

]

3

1

J a n 2000IFUP-TH/2000-02

The critical equation of state of three-dimensional XY systems

Massimo Campostrini 1,Andrea Pelissetto 2,Paolo Rossi 1,Ettore Vicari 11Dipartimento di Fisica dell’Universit`a di Pisa and I.N.F.N.,I-56126Pisa,Italy 2Dipartimento di Fisica dell’Universit`a di Roma I and I.N.F.N.,I-00185Roma,Italy e-mail:campo@mailbox.difi.unipi.it ,rossi@mailbox.difi.unipi.it ,Andrea.Pelissetto@roma1.infn.it ,vicari@mailbox.difi.unipi.it (February 1,2008)Abstract We address the problem of determining the critical equation of state of three-dimensional XY systems.For this purpose we ?rst consider the small-?eld expansion of the e?ective potential (Helmholtz free energy)in the high-temperature phase.We compute the ?rst few nontrivial zero-momentum n -point renormalized couplings,which parametrize such expansion,by analyz-ing the high-temperature expansion of an improved lattice Hamiltonian with suppressed leading scaling corrections.These results are then used to construct parametric representations of the critical equation of state which are valid in the whole critical regime,satisfy the correct analytic properties (Gri?th’s analyticity),and take into account the Goldstone singularities at the coexistence curve.A systematic approxi-mation scheme is introduced,which is limited essentially by the number of known terms in the small-?eld expansion of the e?ective potential.From our approximate representations of the equation of state,we derive estimates of universal ratios of amplitudes.For the speci?c-heat amplitude ra-tio we obtain A +/A ?=1.055(3),to be compared with the best experimental estimate A +/A ?=1.054(1).Keywords:Critical Phenomena,three-dimensional XY systems,λ-transition of 4He,Critical equation of state,E?ective potential,High-Temperature Expansion.

Typeset using REVT E X

I.INTRODUCTION

In the theory of critical phenomena,continuous phase transitions can be classi?ed into universality classes determined only by a few basic properties characterizing the system,such as the space dimensionality,the range of interaction,the number of components and the symmetry of the order parameter.The renormalization-group theory predicts that,within a given universality class,the critical exponents and the scaling functions are the same for all systems.Here we consider the XY universality class,which is characterized by a two-component order parameter and e?ective short-range interactions.The lattice spin model described by the Hamiltonian

H L=?J s i· s j+ i h i· s i,(1)

where s i is a two-component spin satisfying s i· s i=1,is one of the systems belonging to the XY universality class.It may be viewed as a magnetic system with easy-plane anisotropy, in which the magnetization plays the role of order parameter and the spins are coupled to an external magnetic?eld h.

The super?uid transition of4He,occurring along theλ-line Tλ(P)(where P is the pres-sure),belongs to the three-dimensional XY universality class.Its order parameter is related to the complex quantum amplitude of helium atoms.It provides an exceptional opportunity for an experimental test of the renormalization-group predictions,thanks to the weakness of the singularity in the compressibility of the?uid and to the purity of the sample.Moreover, experiments in a microgravity environment lead to a reduction of the gravity-induced broad-ening of the transition.Recently a Space Shuttle experiment[1]performed a very precise measurement of the heat capacity of liquid helium to within2nK from theλ-transition obtaining an extremely accurate estimate of the exponentαand of the ratio A+/A?of the speci?c-heat amplitudes:

α=?0.01285(38),A+/A?=1.054(1).(2) These results represent a challenge for theorists because the accuracy of the test of the renormalization-group prediction is now limited by the precision of the theoretical calcula-tions.We mention the best available theoretical estimates forα:α=?0.0150(17)obtained using high-temperature expansion techniques[2],α=?0.0169(33)from Monte Carlo simu-lations using?nite-size scaling techniques[3],α=?0.011(4)from?eld theory[4].The close agreement with the experimental data clearly supports the standard renormalization-group description of theλ-transition[5].

In this paper we address the problem of determining the critical equation of state char-acterizing the XY universality class.The critical equation of state relates the thermody-namical quantities in the neighborhood of the critical temperature,in both phases.It is usually written in the form(see e.g.Ref.[8])

H= MMδ?1f(x),x∝tM?1/β,(3) where f(x)is a universal scaling function(normalized in such a way that f(?1)=0and f(0)=1).The universal ratios of amplitudes involving quantities de?ned at zero-momentum

(i.e.integrated in the volume),such as speci?c heat,magnetic susceptibility,etc...,can be obtained from the scaling function f(x).

It should be noted that,for theλ-transition in4He,Eq.(3)is not directly related to the conventional equation of state that relates temperature and pressure.Moreover,in this case, the?eld H does not correspond to an experimentally accessible external?eld,so that the function appearing in Eq.(3)cannot be determined directly in experiments.The physically interesting quantities are universal amplitude ratios of quantities formally de?ned at zero external?eld.

As our starting point for the determination of the critical equation of state,we com-pute the?rst few nontrivial coe?cients of the small-?eld expansion of the e?ective poten-tial(Helmholtz free energy)in the high-temperature phase.For this purpose,we analyze the high-temperature expansion of an improved lattice Hamiltonian with suppressed lead-ing scaling corrections[9,10].If the leading non-analytic scaling corrections are no longer present,one expects a faster convergence,and therefore an improved high-temperature ex-pansion(IHT)whose analysis leads to more precise and reliable estimates.We consider a simple cubic lattice and theφ4Hamiltonian

H=?β x,y φx· φy+ x φ2x+λ( φ2x?1)2 ,(4)

where x,y labels a lattice link,and φx is a real two-component vector de?ned on lattice sites.The value ofλat which the leading corrections vanish has been determined by Monte Carlo simulations using?nite-size techniques[3],obtainingλ?=2.10(6).In Ref.[2]we have already considered the high-temperature expansion(to20th order)of the improved φ4Hamiltonian(4)for the determination of the critical exponents,achieving a substantial improvement with respect to previous theoretical estimates.IHT expansions have also been considered for Ising-like systems[10],obtaining accurate determinations of the critical ex-ponents,of the small-?eld expansion of the e?ective potential,and of the small-momentum behavior of the two-point function.

We use the small-?eld expansion of the e?ective potential in the high-temperature phase to determine approximate representations of the equation of state that are valid in the whole critical regime.To reach the coexistence curve(t<0)from the high-temperature phase(t>0),an analytic continuation in the complex t-plane[8,11]is required.For this purpose we use parametric representations[12–14],which implement in a rather simple way the known analytic properties of the equation of state(Gri?th’s analyticity).This approach was successfully applied to the Ising model,for which one can construct a systematic ap-proximation scheme based on polynomial parametric representations[11]and on a global stationarity condition[10].This leads to an accurate determination of the critical equation of state and of the universal ratios of amplitudes that can be extracted from it[11,4,10].XY systems,in which the phase transition is related to the breaking of the continuous symme-try O(2),present a new important feature with respect to Ising-like systems:the Goldstone singularities at the coexistence curve.General arguments predict that at the coexistence curve(t<0and H→0)the transverse and longitudinal magnetic susceptibilities behave respectively as

χT=M

?H~H d/2?2.(5)

In our analysis we will consider polynomial parametric representations that have the correct singular behavior at the coexistence curve.

The most important result of the present paper,from the point of view of comparison with experiments,is the speci?c-heat amplitude ratio;our?nal estimate

A+/A?=1.055(3)(6) is perfectly consistent with the experimental estimate(2),although not as precise.

The paper is organized as follows.In Sec.II we study the small-?eld expansion of the e?ective potential(Helmholtz free energy).We present estimates of the?rst few nontriv-ial coe?cients of such expansion obtained by analyzing the IHT series.The results are then compared with other theoretical estimates.In Sec.III,using as input parameters the critical exponents and the known coe?cients of the small-?eld expansion of the e?ective potential,we construct approximate representations of the critical equation of state.We obtain new estimates for many universal amplitude ratios.These results are then compared with experimental and other theoretical estimates.

II.THE EFFECTIVE POTENTIAL IN THE HIGH-TEMPERATURE PHASE

A.Small-?eld expansion of the e?ective potential in the high-temperature phase

The e?ective potential(Helmholtz free energy)is related to the(Gibbs)free energy of the model.If M≡ φ is the magnetization and H the magnetic?eld,one de?nes

F(M)= M· H?1

(2j)!

a2j M2j.(8) This expansion can be rewritten in terms of a renormalized magnetization?

?F=1

(2j)!

g2j?2j(9)

where

?2=

ξ(t,H=0)2M(t,H)2

χ= x φα(0)φα(x) ,(11)

ξ=

1

g4

A(z),(13) where

A(z)=1

4!

z4+ j=31

g j?1

4

j≥3.(15)

One can show that z∝t?βM,and that the equation of state can be written in the form

H∝tβδ

?A(z)

N+2

χ4

r6=10?5(N+2)

χ24

,(19)

r8=280?280(N+2)

χ24

+

35(N+2)2

χ34

,

r10=15400?7700(N+2)

χ24

+

350(N+2)2

χ44

+1400(N+2)2

χ34?

35(N+2)3

χ44

.

The formulae relevant for the XY universality class are obtained setting N=2. Using theφ4lattice Hamiltonian(4),we have calculatedχand m2≡ x x2 φ(0)φ(x) to20th order,χ4to18th order,χ6to17th order,χ8to16th order,andχ10to15th order, for generic values ofλ.The IHT expansion,i.e.with suppressed leading scaling corrections, is achieved forλ=2.10(6)[3].In Table I we report the series of m2,χ,χ4,χ6,χ8and χ10forλ=https://www.doczj.com/doc/9210967483.html,ing Eqs.(18)and(19)one can obtain the HT series necessary for the determination of g4and r2j.We analyzed the series using the same procedure applied to the improved high-temperature expansions of Ising-like systems in Ref.[10].In order to estimate the?xed-point value of g4and r2j,we considered Pad′e,Dlog-Pad′e and?rst-order integral approximants of the series inβforλ=2.10,and evaluated them atβc.We refer to Ref.[10]for the details of the analysis.Our estimates are

g4=21.05(3+3),(20)

ˉg≡

5

TABLE I.Coe?cients of the high-temperature expansion of m2,χ,χ4,χ6,χ8,χ10.They have been obtained using the Hamiltonian(4)withλ=2.10.

i m2χχ4

00.41651792496748423277383?2.0727687239500861203205717.8224779282297038884825 18.19357083273717982769144?66.6409389277329689706620845.247991215093077905035 281.6954441314190452820070?1011.5010295209924286004317983.4651630934745766842 3577.734561420010600288632?10327.4974814820902607880248053.171125799025029980 43288.50395189429008814810?81557.44774033086145414012572480.03564061669203194 516096.6021109696857145564?536525.34584114957966023421718902.5365937343351130 670442.2092664445625747715?3075097.70592321924332973156737903.631432308532083 7282678.282078376456985396?15817337.6236306593687791998806344.593851737549288 81058442.95252211500336034?74543191.49651668032972855750852421.81974869997198 93744677.84665924694446919?326778866.93761039964032230428100948.8992362353297 1012635750.8707582942375013?1347823157.99877343602884149865516252.140441504474 1140959287.0765118834279901?5277067971.27466652475816694034037396.324618345020 12128268696.512235415964465?19750695382.32839078997883046464352917.44305602911 133********.322878356697650?71066114622.316375358117412757807364908.6407194560 141153973293.83499223649654?246972985495.95255738197651244942192011.6695801488 153337461787.55665279189948?832179913942.254869433972198319718730601.629272462 169454326701.58705373223814?2727546459564.59095483523

1726288539415.6469228911099

TABLE II.Estimates ofˉg≡5g4/(24π),r6,and r8.

IHT HT d=3g-exp.?-exp.

ˉg 1.396(4) 1.411(8), 1.406(8)[15] 1.403(3)[4] 1.425(24)[22,16]

1.415(11)[16] 1.40[20]

=z+1

?z

r2m.(26)

(2m?1)!

The function H(M,t)representing the external?eld in the critical equation of state(24) satis?es Gri?th’s analyticity:it is regular at M=0for t>0?xed and at t=0for M>0?xed.The?rst region corresponds to small z in Eq.(24),while the second is related to large z,where F(z)has an expansion of the form

F(z)=zδ n=0F∞n z?n/β.(27)

To reach the coexistence curve,i.e.t<0and H=0,one should perform an analytic continuation in the complex t-plane[8,11].The spontaneous magnetization is related to the complex zero z0of F(z).Therefore,the description of the coexistence curve is related to the behavior of F(z)in the neighbourhood of z0.

B.Goldstone singularities at the coexistence curve

The physics of the broken phase of N-vector models(including XY systems which cor-respond to N=2)is very di?erent from that of the Ising model,because of the presence of Goldstone modes at the coexistence curve.The singularity ofχL for t<0and H→0

is governed by the zero-temperature infrared-stable?xed point[23–25].This leads to the prediction

f(x)≈c f(1+x)2/(d?2)for x→?1,(28) where x∝tM?1/βand f(x)is the scaling function introduced in Eq.(3)(as usual,x=?1 corresponds to the coexistence curve).This behavior at the coexistence curve has been veri?ed in the framework of the large-N expansion to O(1/N)(i.e.next-to-leading order) [23,26].

The nature of the corrections to the behaviour(28)is less clear.Settingω=1+x and y=HM?δ,it has been conjectured thatωhas the form of a double expansion in powers of y and y(d?2)/2near the coexistence curve[27,28,25],i.e.for y→0

ω≡1+x=c1y+c2y1??/2+d1y2+d2y2??/2+d3y2??+ (29)

where?=4?d.This expansion has been derived essentially from an?-expansion analy-sis[29].Note that in three dimensions this conjecture predicts an expansion in powers of y1/2,or equivalently an expansion of f(x)in powers ofωforω→0.

The asymptotic expansion of the d-dimensional equation of state at the coexistence curve has been computed analytically in the framework of the large-N expansion[22],using the O(1/N)formulae reported in Ref.[23].It turns out that the expansion(29)does not strictly hold for values of the dimension d such that

2m

2

(f1(ω)+logωf2(ω))+O(N?2) ,(31)

N

where the functions f1(ω)and f2(ω)have a regular expansion in powers ofω.Moreover,

f2(ω)=O(ω2),(32) so that the logarithms a?ect the power expansion only at the next-next-to-leading order.A possible interpretation of the large-N analysis is that the expansion(31)holds for all values of N,so that Eq.(29)is not correct due to the presence of logarithms.The reason of their appearance is however unclear.Neverthless,it does not contradict the conjecture that the behavior near the coexistence curve is controlled by the zero-temperature infrared-stable Gaussian?xed point.In this case logarithms would not be unexpected,as they usually appear in the reduced-temperature asymptotic expansion around Gaussian?xed points(see e.g.Ref.[32]).

C.Parametric representations

In order to obtain a representation of the critical equation of state that is valid in the whole critical region,one may use parametric representations,which implement in a simple

way all scaling and analytic properties[12–14].One may parametrize M and t in terms of R andθaccording to

M=m0Rβm(θ),(33)

t=R(1?θ2),

H=h0Rβδh(θ),

where h0and m0are normalization constants.The variable R is nonnegative and measures the distance from the critical point in the(t,H)plane;it carries the power-law critical singularities.The variableθparametrizes the displacements along the line of constant R. The functions m(θ)and h(θ)are odd and regular atθ=0and atθ=1.The constants m0 and h0can be chosen so that m(θ)=θ+O(θ3)and h(θ)=θ+O(θ3).The smallest positive zero of h(θ),which should satisfyθ0>1,represents the coexistence curve,i.e.T

The parametric representation satis?es the requirements of regularity of the equation of state.Singularities can appear only at the coexistence curve(due for example to the logarithms discussed in Sec.III B),i.e.forθ=θ0.Notice that the mapping(33)is not invertible when its Jacobian vanishes,which occurs when

Y(θ)≡(1?θ2)m′(θ)+2βθm(θ)=0.(34)

Thus the parametric representations based on the mapping(33)are acceptable only ifθ0<θl whereθl is the smallest positive zero of the function Y(θ).One may easily verify that the asymptotic behavior(28)is reproduced simply by requiring that

h(θ)≈(θ0?θ)2forθ→θ0.(35) The relation among the functions m(θ),h(θ)and F(z)is given by

z=ρm(θ) 1?θ2 ?β,(36)

F(z(θ))=ρ 1?θ2 ?βδh(θ),(37) whereρis a free parameter[11,10].Indeed,in the exact parametric equation the value ofρmay be chosen arbitrarily but,as we shall see,when adopting an approximation procedure the dependence onρis not eliminated.In our approximation scheme we will?xρto ensure the presence of the Goldstone singularities at the coexistence curve,i.e.the asymptotic behavior(35).Since z=ρθ+O(θ3),expanding m(θ)and h(θ)in(odd)powers ofθ,

m(θ)=θ+ n=1m2n+1θ2n+1,(38)

h(θ)=θ+ n=1h2n+1θ2n+1,

and using Eqs.(36)and(37),one can?nd the relations amongρ,m2n+1,h2n+1and the coe?cients F2n+1of the expansion of F(z).

One may also write the scaling function f(x)in terms of the parametric functions m(θ) and h(θ):

x=1?θ2

m(θ)

1/β

,(39)

f(x)= m(θ)h(1).

In App.A we report the de?nitions of some universal ratios of amplitudes that have been introduced in the literature,and the corresponding expressions in terms of the functions m(θ) and h(θ).

D.Approximate polynomial representations

In order to construct approximate parametric representations we consider polynomial approximations of m(θ)and h(θ).This kind of approximation turned out to be e?ective in the case of Ising-like sistems[11,10].The major di?erence with respect to the Ising case is the presence of the Goldstone singularities at the coexistence curve.In order to take them into account,at least in a simpli?ed form which neglects the logarithms found in Eq.(31), we require the function h(θ)to have a double zero atθ0as in Eq.(35).Polynomial schemes may in principle reconstruct also the logarithms,but of course only in the limit of an in?nite number of terms.

In order to check the accuracy of the results,it is useful to introduce two distinct schemes of approximation.In the?rst one,which we denote as(A),h(θ)is a polynomial of?fth order with a double zero atθ0,and m(θ)a polynomial of order(1+2n):

scheme(A):m(θ)=θ 1+n i=1c iθ2i ,(40)

h(θ)=θ 1?θ2/θ20 2.

In the second scheme,denoted by(B),we set

scheme(B):m(θ)=θ,(41)

h(θ)=θ 1?θ2/θ20 2 1+n i=1c iθ2i .(42)

Here h(θ)is a polynomial of order5+2n with a double zero atθ0.In both schemes the parameterρis?xed by the requirement(35),whileθ0and the n coe?cients c i are determined by matching the small-?eld expansion of F(z).This means that,for both schemes,in order to?x the n coe?cients c i we need to know n+1values of r2j,i.e.r6,...r6+2n.Note that for the scheme(B)

Y(θ)=1?θ2+2βθ2,(43) independently of n,so thatθl=(1?2β)?1.Concerning the scheme(A),we note that the analyticity of the thermodynamic quantities for|θ|<θ0requires the polynomial function Y(θ)not to have complex zeroes closer to origin thanθ0.

In App.B we present a more general discussion on the parametric representations.

TABLE III.Results for the parameters and the universal amplitude ratios using the scheme (A),cf.Eq.(40),and the scheme(B),cf.Eq.(41).The label above each column indicates the scheme,the number of terms in the corresponding polynomial,and the input parameters employed, beside the critical exponentsαandη.Note that the quantities reported in the?rst four lines do not have a physical meaning,but are related to the particular parametric representation employed. Numbers marked with an asterisk are inputs,not predictions.

[(A)n=1;r6,r8][(B)n=1;r6,r8][(B)n=2;r6,r8,r10][(B)n=2;r6,r8,A+/A?]ρ 2.22(3) 2.07(2) 2.04(5) 2.01(4)

θ20 3.84(10) 2.97(10) 2.8(4) 2.5(2)

c1?0.024(7)0.28(3)0.10(6)0.15(5)

c2000.01(2)0.02(1)

0246810

z 0500

1000

1500

F (z ) (A) n =1

(B) n =1

|z 0|

FIG.1.The scaling function F (z )vs.z .The convergence radius of the small-z expansion is

expected to be |z 0|=R 1/24?2.8.

This agreement is not trivial since the small-z expansion has a ?nite convergence radius given by |z 0|=R 1/24?2.8.Therefore,the determination of F (z )on the whole positive real axis from its small-z expansion requires an analytic continuation,which turns out to be e?ectively performed by the approximate parametric representations we have considered.We recall that the large-z limit corresponds to the critical theory t =0,so that positive real values of z describe the high-temperature phase up to t =0.Instead,larger di?erences between the approximations given by the schemes (A)and (B)for n =1appear in the scaling function f (x ),especially in the region x <0corresponding to t <0(i.e.the region which is not described by real values of z ).Note that the apparent di?erences for x >0are essentially caused by the normalization of f (x ),which is performed at the coexistence curve x =?1and at the critical point x =0requiring f (?1)=0and f (0)=1.Although the large-x region corresponds to small z ,the di?erence between the two approximate schemes does not decrease in the large-x limit due to their slightly di?erent estimates of R χ(see Table III).Indeed,for large values of x ,f (x )has an expansion of the form

f (x )=x γ

n =0f ∞n x ?2nβ(45)

with f ∞0=R ?1χ.

We also considered the case n =2,using the estimate r 10=?13(7).In this case the scheme (A)was not particularly useful because it turned out to be very sensitive to r 10,whose estimate has a relatively large https://www.doczj.com/doc/9210967483.html,bining the consistency condition θ0<θl (which excludes values of r 10<~?10when using the central values of α,η,r 6and r 8)with the IHT estimate of r 10,we found a rather good result for A +/A ?,i.e.A +/A ?=1.053(4).

?1.0?0.50.00.5 1.0

x 0.00.5

1.0

1.5

2.0f (x ) (A) n =1 (B) n =1

FIG.2.The scaling function f (x )vs.x .

On the other hand,the results for the other universal amplitude ratios considered,such as R χ,R c ,R 4,etc...,although consistent,turned out to be much more imprecise than those obtained for n =1,for example R χ=1.2(3).This fact may be explained noting that,except for the small interval ?10<~r 10<~?9(this interval corresponds to the central values of the other input parameters),the function Y (θ),cf.Eq.(34),has zeroes in the the complex plane which are closer to the origin than θ0.Therefore,the parametric function g 2(θ)related to the magnetic susceptibility (see App.A 2),and higher-order derivatives of the free-energy,

have poles within the disk |θ|<θ0.On the other hand,in the case n =1,θ20was closer to

the origin than the zeroes of Y (θ)for the whole range of values of the input parameters.

For these reasons,for n =2,we present results only for the scheme (B).Combining the consistency condition θ0<θl ,which restricts the acceptable values of r 10(for example using the central estimates of the other input parameters it excludes values |r 10|>~12),with the IHT estimate r 10=?13(7),we arrive at the results reported in Table III (third column of data).The reported value has been obtained using r 10≈?9.The coe?cients c i ,reported in Table III,turn out to be relatively small in both schemes,and decrease rapidly,supporting our choice of the approximation schemes.The results of the various approximate parametric representations are in reasonable agreement.Their comparison is useful to get an idea of the systematic error due to the approximation schemes.There is a very good agreement for A +/A ?,which is the experimentally most important quantity.Our ?nal estimate is

A +/A ?=1.055(3).(46)

We mention that approximately one half of the error is due to the uncertainty on the critical

TABLE IV.Estimates of universal amplitude ratios obtained in di?erent approaches.The ?-expansion estimates of R c and Rχhave been obtained by setting?=1in the O(?2)series calculated in Refs.[34].

IHT–PR HT,LT d=3exp.?-exp.experiments A+/A? 1.055(3) 1.08[35] 1.056(4)[36] 1.029(13)[37] 1.054(1)[1]

1.058(4)[38]

1.067(3)[39]

1.088(7)[40]

R c0.12(1)0.123(3)[44]0.106

=0.12(1),(48)

B2

Rχ≡C+Bδ?1

=|z0|2=7.6(4),(50)

(C+)3

F∞0≡lim z→∞z?δF(z)=0.0303(3),(51)

0

F.Conclusions

Starting from the small-?eld expansion of the e?ective potential in the high-temperature phase,we have constructed approximate representations of the critical equation of state valid in the whole critical region.We have considered two approximation schemes based on polynomial representations that satisfy the general analytic properties of the equation of state(Gri?th’s analyticity)and take into account the Goldstone singularities at the coexistence curve.The coe?cients of the truncated polynomials are determined by matching the small-?eld expansion in the high-temperature phase,which has been studied by lattice high-temperature techniques.The schemes considered can be systematically improved by increasing the order of the polynomials.However,such possibility is limited by the number of known coe?cients r2j of the small-?eld expansion of the e?ective potential.We have shown that the knowledge of the?rst few r2j already leads to satisfactory results,for instance for the speci?c-heat amplitude ratio.Through the approximation schemes we have presented in this paper,the determination of the equation of state may be improved by a better determination of the coe?cients r2j,which may be achieved by extending the high-temperature expansion. We hope to return on this issue in the future.

Finally we mention that the approximation schemes which we have proposed can be applied to other N-vector models.Physically relevant values are N=3and N=4. The case N=3describes the critical phenomena in isotropic ferromagnets[45].The case N=4is interesting for high-energy physics:it should describe the critical behavior of ?nite-temperature QCD with two?avours of quarks at the chiral-symmetry restoring phase transition[47].

APPENDIX A:UNIVERSAL RATIOS OF AMPLITUDES

1.Notations

Universal ratios of amplitudes characterize the critical behavior of thermodynamic quan-tities that do not depend on the normalizations of the external(e.g.magnetic)?eld,order parameter(e.g.magnetization)and temperature.Amplitude ratios of zero-momentum quan-tities can be derived from the critical equation of state.We consider several amplitudes derived from the singular behavior of the speci?c heat

C H=A±|t|?α,(A1) the magnetic susceptibility in the high-temperature phase

1

χ=

C+4t?γ?2βδ,(A3)

3

the second-moment correlation length in the high-temperature phase

ξ=f+t?ν,(A4) and the spontaneous magnetization on the coexistence curve

M=B|t|β.(A5) Using the above normalizations for the amplitudes,the zero-momentum four-point coupling g4,cf.Eq.(18),can be written as

g4=?

C+4

m0Rγg2(θ),g2(θ)=

2βδθh(θ)+(1?θ2)h′(θ)

g(θ0)

,(A12)

R c≡αA+C+

(C+)3

=|z0|2=ρ2[m(θ0)]2 θ20?1 ?2β,(A14) Rχ≡C+Bδ?1

Using Eqs.(36)and(37)one can compute F(z)and obtain the small-z expansion coef-?cients of the e?ective potential r2j.The constant F∞0,which is related to the behavior of F(z)for z→∞,cf.Eq.(27),is given by

F∞0≡lim z→∞z?δF(z)=ρ1?δ[m(1)]?δh(1).(A16) Using the relations(39)concerning the scaling function f(x),one can easily obtain the constant c f,which is related to the behavior of f(x)for x→?1,cf.Eq.(28),

c f≡lim x→?1(1+x)?2f(x).(A17) We consider also the universal amplitude ratio R+ξ≡(A+)1/3f+which can be obtaine

d from th

e estimates o

f R4,R c and g4:

R+ξ≡(A+)1/3f+= R4R c

m≡ρm(θ)and h(θ),but it is easy to get convinced that one of the two functions can be chosen arbitrarily.For de?niteness,let’s take

m≡ρm(θ),which we may symbolically write in the form of a functional equation,

δ

m ρh(θ)

keeping z?xed.By expanding m(θ)according to Eq.(38)and treating the coe?cientsρand c n≡m2n+1as variational parameters,we may turn the above equation into a set of partial di?erential equations(keeping z?xed)

d

(1?θ2)βδ =0,(B2)

d

(1?θ2)βδ =0,(B3) which must be satis?ed exactly for all i by the function h(θ).Simple manipulations lead to the following explicit form:

Y(θ) h+ρ?h?θ+2βδθh ,(B4)

Y(θ)?h

+2βδθh ,(B5)

where Y(θ)is de?ned in Eq.(43).In turn,by expanding

h(θ,ρ,c i)=θ+

n=1h2n+1(ρ,c i)θ2n+1,(B6)

and substituting into the above equations one obtains an in?nite set of linear di?erential recursive equations for the coe?cients h2n+1,which generalize the relations found in Ref.[10], where the case m(θ)=θwas analyzed.A typical approximation to the exact parametric equation of state amounts to a truncation of h to a polynomial form.We may in this case re?ne the approximation by reinterpreting the?rst recursion equations involving a coe?cient h2t+1which is forcefully set equal to zero as stationarity conditions,which force the parametersρand c i into the values minimizing the unwanted dependence of the truncated F(z)on the parameters themselves,i.e.on the choice of the function

θ20 p

,(B7)

which includes both the Ising model in three dimensions(p=1)and general O(N)symmetric models with Goldstone bosons in d dimensions(p=2/(d?2)).It is easy to recognize that the following relationship must then hold:

1

θ20

.(B8)

Global stationarity implies that the stability conditions may be extracted from the variation of any physical quantity.In particular we may concentrate on the universal zero of F(z), z0,noting that z0=z(θ0),cf.Eq.(36).As a consequence of the above results,the simplest models can all be described by the parametrization

z0

= (1?θ20)β(1+c1θ20).(B9)

6

Let us?rst consider the case c1=0.The minimization procedure leads to

6γ(γ?p)

ρ2=

.(B10)

(1?2β)γ

Setting p=1one immediately recognizes the linear parametric model representation for the Ising model[12–14].Unfortunately when p=2the solution is not physically satisfactory, because it givesθ20<0for all N≥2,and therefore the scheme is useless for models with Goldstone singularities.

Let us now include c1.Requiring z0to be stationary with respect to variations of both parameters,we obtain

6γ(γ?p+1)

ρ2=

,

(3?2β)γ

2(γ?p)+(2β?1)

c1=γ

√3?2β 32β β.(B12) In the Ising model the above solution reduces to

ρ2=2γ,(B13)

3

θ20=

(β+γ)?1.

3

Note that,substituting the physical values of the critical exponentsβandγfor the N=1 model,c1turns out to be a very small number(c1=0.04256)and the predicted numerical value of z0is2.8475,consistent within1%with the linear parametric model prediction[10]. It is fair to say that in the Ising case the above solution has a status which is comparable

伯努利方程推导

根据流体运动方程P F dt V d ??+=ρ1 上式两端同时乘以速度矢量 ()V P V F V dt d ???+?=???? ??ρ 1 22 右端第二项展开—— () ()V P V P V F V dt d ???-???+?=???? ? ?ρρ1122 利用广义牛顿粘性假设张量P ,得出单位质量流体微团的动能方程 () E V div p V P div V F V dt d -+?+?=??? ? ?? ρρ1 22 右第三项是膨胀以及收缩在压力作用下引起的能量转化项(膨胀:动能增加<--内能减少) 右第四项是粘性耗散项:动能减少-->内能增加 热流量方程:用能量方程减去动能方程 反映内能变化率的热流量方程 ()() dt dq V P div V F V T c dt d +?+?=+ ρυ12/2 () E V div p V P div V F V dt d -+?+?=???? ? ? ρρ122 得到 ()()E V div p T c dt d dt dq dt dq E V div p T c dt d -+=++-= ρ ρυυ / 对于理想流体,热流量方程简化为: ()V d i v p T c dt d dt dq ρυ+= 这就是通常在大气科学中所用的“热力学第一定律”的形式。 由动能方程推导伯努利方程: 对于理想流体,动能方程简化为:() V div p V P div V F V dt d ρρ+?+?=??? ? ??122无热流量项。 又因为() V pdiv p V z pw y pv x pu V P div -??-=??? ???++-=???????)()()(故最终理想流体的动能方 程可以写成: p V V F V dt d ??-?=???? ? ?ρ 22 【理想流体动能的变化,仅仅是由质量力和压力梯度力对流体微团作功造成的,而与热能不 发生任何转换。】 假设质量力是有势力,且质量力位势为Φ,即满足:Φ-?=F 考虑Φ为一定常场,则有: dt d V V F Φ- =Φ??-=?

伯努利方程的推导

第八节伯努利方程 ●本节教材分析 本节属于选学内容,但对于一些生活现象的解释,伯努利方程是相当重要的.本节主要讲述了理想流体,理想流体的定常流动,然后结合功和能的关系推导出伯努利方程,最后运用伯努利方程来解释有关现象. ●教学目标 一、知识目标 1知道什么是理想流体,知道什么是流体的定常流动. 2知道伯努利方程,知道它是怎样推导出来的. 二、能力目标 学会用伯努利方程来解释现象. 三、德育目标 通过演示,渗透实践是检验真理的惟一标准的思想. ●教学重点 1.伯努利方程的推导. 2.用伯努利方程来解释现象. ●教学难点 用伯努利方程来解释现象. ●教学方法 实验演示法、归纳法、阅读法、电教法 ●教学用具 投影片、多媒体课件、漏斗、乒乓球、两张纸 ●教学过程 用投影片出示本节课的学习目标: 1.知道什么是理想气体. 2.知道什么是流体的定常流动. 3.知道伯努利方程,知道它是怎样推导出来的,会用它解释一些现象. 学习目标完成过程: 一、导入新课 1.用多媒体介绍实验装置 把一个乒乓球放在倒置的漏斗中间 2.问:如果向漏斗口和两张纸中间吹气,会出现什么现象? 学生猜想: ①乒乓球会被吹跑; ②两张纸会被吹得分开. 3.实际演示: ①把乒乓球放在倒置的漏斗中间,向漏斗口吹气,乒乓球没被吹跑,反而会贴在漏斗上

不掉下来; ②平行地放两张纸,向它们中间吹气,两张纸不但没被吹开,反而会贴近 4.导入:为什么会出现与我们想象不同的现象,这种现象又如何解释呢?本节课我们就来学习这个问题. 二、新课教学 1.理想流体 (1)用投影片出示思考题: ①什么是流体? ②什么是理想流体? ③对于理想流体,在流动过程中,有机械能转化为内能吗? (2)学生阅读课文,并解答思考题: (3)教师总结并板书 ①流体指液体和气体; ②液体和气体在下列情况下可认为是不可压缩的. a:液体不容易被压缩,在不十分精确的研究中可以认为液体是不可压缩的. b:在研究流动的气体时,如果气体的密度没有发生显著的变化,也可以认为气体是不可压缩的. ③a:流体流动时,速度不同的各层流体之间有摩擦力,这叫流体具有粘滞性. b:不同的流体,粘滞性不同. c:对于粘滞性小的流体,有些情况下可以认为流体没有粘滞性. ④不可压缩的,没有粘滞性的流体,称为理想流体.对于理想流体,没有机械能向内能的转化. 2 定常流动 (1)用多媒体展示一段河床比较平缓的河水的流动. (2)学生观察,教师讲解. 通过画面,我们可以看到河水平静地流着,过一会儿再看,河水还是那样平静地流着,各处的流速没有什么变化,河水不断地流走,可是这段河水的流动状态没有改变,河水的这种流动就是定常流动. (3)学生叙述什么是定常流动 流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动就叫定常流动. (4)举例:自来水管中的水流,石油管道中石油的流动,都可以看作定常流动. (5)学生阅读课文,并回答下列思考题: ①流线是为了表示什么而引入的? ②在定常流动中,流线用来表示什么? ③通过流线图如何判断流速的大小? (6)学生答: ①为了形象地描绘流体的流动,引入了流线; ②在定常流动中,流线表示流体质点的运动轨迹; ③流线疏的地方,流速小;流线密的地方,流速大. 3.伯努利方程 (1)设在右图的细管中有理想流体在做定常流动,且流动 方向从左向右,我们在管的a1处和a2处用横截面截出一段流 体,即a1处和a2处之间的流体,作为研究对象.设a1处的横截面积为S1,流速为V1,高度

伯努利方程的推导及其实际应用

伯努利方程的推导及其实际应用总结 楼主:西北荒城时间:2015-03-03 14:08:00 点击:1091 回复:0 一,伯努利方程的推导 1726年,荷兰科学家丹尼尔·伯努利提出了描述理想流体在稳流状态下运动规律伯努利原理,并用数学语言将之精确表达出来,即为伯努利方程。伯努利方程是流体力学领域里最重要的方程之一,学习伯努利方程有助于我们更深刻的理解流体的运动规律,并可以利用它对生活中的一些现象作出解释。同时,作为土建专业的学生,我们将来在实际工作中,很可能要与水、油、气等流体物质打交道,因此,学习伯努利方程也有一定的实际意义。作为将近300岁高龄的物理定律,伯努利方程的理论是非常成熟的,因此不大可能在它身上研究出新的成果。在本文中,笔者只是想结合自己的理解,用自己的方式推导出伯努利方程,并应用伯努利方程解释或解决现实生活中的一些问题。 既然要推导伯努利方程,那么就首先要理解一个概念:理想流体。所谓理想流体,是指满足以下两个条件的流体:1,流体内部各部分之间无黏着性。2,流体体积不可压缩。需要指出的是,现实世界中的各种流体,其内部或多或少都存在黏着性,并且所有流体的体积都是可以压缩的,只是压缩的困难程度不同而已。因此,理想流体只是一种理想化的模型,其在现实世界中是不存在的。但为了对问题做简化处理,我们可以讲一些非常接近理想流体性质的流体视为理想流体。 假设有某理想流体在某细管中做稳定流动。如图,在细管中任取一面积为s1的截面,其与地面的相对高度h1,,流体在该截面上的流速为v1,并且该截面上的液压为p1。某一时刻,有流体流经s1截面,并在dt时间内发生位移dx1运动到新截面s2。由于细管中的水是整体移动的,现假设细管高度为h2处有一截面s3,其上流体在相同的时间内同步运动到了截面s4,流速为v2,共发生位移dx2。则有如下三个事实: 1:截面s1、s2之间流体的体积等于截面s3、s4之间流体的体积,即s1dx1=s2dx2 2:截面s1、s3之间流体的体积等于截面s2、s4之间流体的体积(由事实1可以推知) 3:细管中相应液体的机械能发生了变化。 事实1和事实2实际上是质量守恒的体现,事实3则须用能量守恒来解释,即外力对该段流体做功的总和等于该段流体机械能的变化。因截面s2、s3之间流体的运动状态没有变化,故全部流体机械能的变化实质上是截面s1、s2之间

能量方程(伯努利方程)实验

- 1 - 第3章 能量方程(伯努利方程)实验 3.1 实验目的 1) 掌握用测压管测量流体静压强的技能。 2) 验证不可压缩流体静力学基本方程, 通过对诸多流体静力学现象的实验分析,进一步加深对基本概念的理解,提高解决静力学实际问题的能力。 3) 掌握流速、流量等动水力学水力要素的实验量测技能。 3.2 实验装置 能量方程(伯努利方程)实验装置见图3.1。 图3.1 能量方程(伯努利方程)实验装置图 说明:本实验装置由供水水箱及恒压水箱、实验管道(共有三种不同内径的管道)、测压计、实验台等组成,流体在管道内流动时通过分布在实验管道各处的7根皮托管测压管测量总水头或12根普通测压管测量测压管水头,其中测点1、6、8、12、14、16和18均为皮托管测压管(示意图见 图3.2),用于测量皮托管探头对准点的总水头H ’(=2g u 2 ++r p Z ),其余为普通测压管(示意图 见图3.3),用于测量测压管水头。

- 2 - 图3.2 安装在管道中的皮托管测压管示意图 图3.3安装在管道中的普通测压管示意图 3.3 实验原理 当流量调节阀旋到一定位置后,实验管道内的水流以恒定流速流动,在实验管道中沿管内水流方向取n 个过水断面,从进口断面(1)至另一个断面(i )的能量方程式为: 2g v 2111++r p Z =f i i h r p Z +++2g v 2 i =常数 (3.1) 式中:i=2,3,······ ,n ; Z ──位置水头; r p ──压强水头; 2g v 2 ──速度水头; f h ──进口断面(1)至另一个断面(i )的损失水头。 从测压计中读出各断面的测压管水头(r p Z + ),通过体积时间法或重量时间法测出管道流量,计算不同管道内径时过水断面平均速度v 及速度水头2g v 2 ,从而得到各断面的测压管水头和总水头。 3.4 实验方法与步骤 1) 观察实验管道上分布的19根测压管,哪些是普通测压管,哪些是皮托管测压管。观察管道内径的大小,并记录各测点管径至表3.1。 2) 打开供水水箱开关,当实验管道充满水时反复开或关流量调节阀,排除管内气体或测压管内的气泡,并观察流量调节阀全部关闭时所有测压管水面是否平齐(水箱溢流时)。如不平,则用吸气球将测压管中气泡排出或检查连通管内是否有异物堵塞。确保所有测压管水面平齐后才能进行实验,否则实验数据不准确。 3) 打开流量调节阀并观察测压管液面变化,当最后一根测压管液面下降幅度超过50%时停止调节阀门。待测压管液面保持不变后,观察皮托管测点1、6、8、12、14、16和18的读数(即总水头,取标尺零点为基准面,下同)变化趋势:沿管道流动方向,总水头只降不升。而普通测压管2、3、4、5、7、9、10、11、13、15、17、19的读数(即测压管水头)沿程可升可降。观察直管均匀流同一断面上两个测点2、3测压管水头是否相同?验证均匀流断面上静水压强按动水压强规律分布。弯管急变流断面上两个测点10、11测压管水头是否相同?分析急变流断面是否满足能力方程应用条件?记录测压管液面读数,并测记实验流量至表3.2、表3.3。 4) 继续增大流量,待流量稳定后测记第二组数据(普通测压管液面读数和测记实验流量)。 5) 重复第4步骤,测记第三组数据,要求19号测压管液面接近标尺零点。 6) 实验结束。关闭水箱开关,使实验管道水流逐渐排出。 7) 根据表3.1和表3.2数据计算各管道断面速度水头2g v 2和总水头(2g v 2 ++r p Z ) (分别记录于表3.4和表3.5)。

相关主题
文本预览
相关文档 最新文档