当前位置:文档之家› 第4章 数学规划模型(投影版)

第4章 数学规划模型(投影版)

19-20 第5章 5.6 5.6.1 匀速圆周运动的数学模型 5.6.2 函数y=Asin(ωx+φ)的图象

5.6 函数y =A sin(ωx +φ) 5. 6.1 匀速圆周运动的数学模型 5.6.2 函数y =A sin(ωx +φ)的图象 1.φ对y =sin(x +φ),x ∈R 的图象的影响 2.ω(ω>0)对y =sin(ωx +φ)的图象的影响 3.A (A >0)对y =A sin(ωx +φ)的图象的影响 1.把函数y =sin x 的图象向左平移π 3个单位长度后所得图象的解析式为

( ) A .y =sin x -π 3 B .y =sin x +π 3 C .y =sin ? ?? ?? x -π3 D .y =sin ? ?? ?? x +π3 D [根据图象变换的方法,y =sin x 的图象向左平移π 3个单位长度后得到y =sin ? ?? ?? x +π3的图象.] 2.为了得到函数y =4sin ? ????12x -π6,x ∈R 的图象,只需将函数y =4sin ? ????x -π6, x ∈R 的图象上的所有点( ) A .横坐标伸长到原来的2倍,纵坐标不变 B .横坐标缩短到原来的1 2倍,纵坐标不变 C .纵坐标伸长到原来的2倍,横坐标不变 D .纵坐标缩短到原来的1 2倍,横坐标不变 A [函数y =4sin ? ???? x -π6的图象上各点横坐标伸长为原来的2倍,纵坐标不 变,得到y =4sin ? ?? ?? 12x -π6的图象.] 3.函数y =A sin(ωx +φ)+1(A >0,ω>0)的最大值为5,则A =________. 4 [由已知得A +1=5,故A =4.] 三角函数图象之间的变换 【例1】 (1)将函数y =2cos ? ? ???2x +π3的图象向左平移π3个单位长度,再向下 平移3个单位长度,则所得图象的解析式为________. (2)将y =sin x 的图象怎样变换可得到函数y =2sin2x +π 4+1的图象?

第四章 数学规划模型

第四章 数学规划模型 【教学目的】:深刻理解线性规划,非线性规划,动态规划方法建模的基本特点,并能熟练建立一些实际问题的数学规划模型;熟练掌握用数学软件(Matlab ,Lindo ,Lingo 等)求解优化问题的方法。 【教学重点难点】: 教学重点:线性规划和非线性规划的基本概念和算法,解决数学规划问题的一般思路和 方法,线性规划模型、整数规划模型、非线性规划模型的构建及其Matlab 与Lingo 实现。 教学难点:区分线性规划模型和非线性模型适用的实际问题,以及何时采用线性模型, 何时采用非线性模型,线性模型与非线性模型的转化。 【课时安排】:10学时 【教学方法】:采用多媒体教学手段,配合实例教学法,通过对典型例题的讲解启发学生思维,并给与学生适当的课后思考讨论的时间,加深知识掌握的程度。安排一定课时的上机操作。 【教学内容】: 在众多实际问题中,常常要求决策(确定)一些可控制量的值,使得相关的量(目标)达到最佳(最大或最小)。这些问题就叫优化问题,通常需要建立规划模型进行求解。称这些可控制量为决策变量,相关的目标量为目标函数;一般情况下,决策变量x 的取值是受限制的,不妨记为x ∈Ω,Ω称为可行域,优化问题的数学模型可表示为 Max(或Min)f(x), x ∈Ω 一般情况下,x 是一个多元变量,f(x)为多元函数,可行域比较复杂,一般可用一组不等式组来表示,这样规划问题的一般形式为 () x Min f x . ()0,1,2,,i st g x i m ≤= 虽然,该问题属于多元函数极值问题,但变量个数和约束条件比较多,一般不能用微分法进行解决,而通过规划方法来求解;这里讨论的不是规划问题的具体算法,主要是讨论如何将一个实际问题建立优化模型,并利用优化软件包进行求解。 根据目标函数和约束函数是否为线性,将规划模型分为线性规划和非线性规划。 4.1线性规划 线性规划(LP)研究的实际问题多种多样的,它在工农业生产、经济管理、优化设计与控

数学建模 图与网络模型及方法

第五章 图与网络模型及方法 §1 概论 图论起源于18世纪。第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”.哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。 图论中所谓的“图"是指某类具体事物和这些事物之间的联系.如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。当 然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功.欧拉为了解决 这个问题,采用了建立数学模型的方法.他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”.问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河. 图与网络是运筹学(Operat ions Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域.下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都是图与网络的基本问题. 我们首先通过一些例子来了解网络优化问题. 例1 最短路问题(SPP -shorte st pat h p rob lem ) 一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地的公路网纵横交错,因此有多种行车路线,这名司机应选择哪条线路呢?假设货柜车的运行速度是恒定的,那么这一问题相当于需要找到一条从甲地到乙地的最短路。 例2 公路连接问题 某一地区有若干个主要城市,现准备修建高速公路把这些城市连接起来,使得从其中任何一个城市都可以经高速公路直接或间接到达另一个城市.假定已经知道了任意两个城市之间修建高速公路的成本,那么应如何决定在哪些城市间修建高速公路,使得总

数学建模_四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

数学规划模型

课程设计 2015年 7 月 5 日

东北石油大学课程设计任务书 课程《数学模型》课程设计 题目应用数学规划模型求解实际数学问题 专业姓名学号 主要内容、基本要求、主要参考资料等 主要内容 简单介绍数学规划模型基本理论及本文所用的规划模型和相关软件LINGO,并通过实例来掌握如何应用数学规划模型求解实际数学问题。并利用本文所介绍的方法来分析林区汽车修理网的布局 课程设计的要求: 1.独立完成建模,并提交一篇建模论文。 2.论文的主要内容包括:摘要,问题的提出,问题的分析,模型假设,模型设计,模型解法与结果,模型结果的分析和检验,包括误差分析、稳定性分析等。模型的优缺点及改进方向。必要的计算机程序。 3.文档格式:参照《东北石油大学课程设计撰写规范》和《数学模型课程设计教学大纲》。 4.课程设计结束时参加答辩。 主要参考资料: [1] 唐焕文,贺明峰,数学模型(第三版),北京:高等教育出版社,2005.3 [2]杨云峰等,数学建模与数学软件,哈尔滨:哈尔滨工程大学出版社,2012.6 [3]陈东彦,李冬梅,王树忠,数学建模,北京:科学出版社,2007 [4] 吴建国等,数学建模案例精编,北京:中国水利水电出版社,2005 [5]胡运权,吴中启,李树青等,运筹学,北京:清华出版社,2003 [6] 焦永兰,管理运筹学,北京:中国铁道出版社,2002 完成期限 2016年6月27日-7月8日 指导教师 专业负责人 2016年7月5日

摘要 人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果。在研究过程中需要处理大量数据,而统计学正是对社会经济数据进行定量分析的重要工具,应用统计方法来整理这些数据,就可以省去不必要的过程。 本文简要介绍了了数学规划模型的概念、特点,以及LINGO软件的发展及用途。本文在求解的过程中主要借助了这个软件。必要的求解过程是利用MATLAB和LINGO来求解的。本文在详细介绍了数学规划模型的几个基本模型的过程中,并且每种模型都举了实例,并且通过LINGO操作,对每种方法所举实例归纳总结了较为简便的求解方法,并且给出了具体答案。最后,本文着重的探讨了典型数学模型应用规划模型方法结合LINGO 求解,在解决林区汽车修理网的布局问题中,很好的体现了规划模型方法在解决典型数学模型问题时应用的广泛性和有效性。 林区的汽车往往需要定期送往不同的修理厂进行大修,不同的汽车分配方案往往需要消耗不同的修理成本. 本文主要利用图论和运筹学理论建立了一套线性规划数学模型,用于求解不同的修理厂规模的条件下最优的汽车分配方案,以及所对应的总费用,并对其进行分析评估。但为寻求最佳的修理厂规模调整方案,本文模拟实际情况中的市场机理,把市场作为资源分配的主要手段,国家(此处为方案制定制者)对市场进行必要的宏观调控。在此方案下得到了相当满意的结果,这也是本文的独到之处。本模型对实际情况中汽车修理分配方案的制定有很大的指导作用.且本模型的处理思想,对市场体制下的很多类似问题都有借鉴作用. 本模型对实际情况中汽车修理分配方案的制定有很大的指导作用.且本模型的处理思想,对市场体制下的很多类似问题都有借鉴作用. 应用规划模型结合实际数学问题可以简化求解步骤,省去繁琐的过程。为实际问题的研究提供了较为简便的方法。 关键词:LINGO;汽车修理网布局;图论;布局规划模型

高中数学第5章三角函数5.6.1匀速圆周运动的数学模型5.6.2函数y=Asin(ωx+φ)的图象讲义新人教A版

5.6.1 匀速圆周运动的数学模型5.6.2 函数y =A sin(ωx +φ)的 图象 1.φ对y =sin(x +φ),x ∈R 的图象的影响 2.ω(ω>0)对y =sin(ωx +φ)的图象的影响 3.A (A >0)对y =A sin(ωx +φ)的图象的影响 1.把函数y =sin x 的图象向左平移π 3个单位长度后所得图象的解析式为( ) A .y =sin x -π 3 B .y =sin x +π 3 C .y =sin ? ????x -π3 D .y =sin ? ????x +π3 D [根据图象变换的方法,y =sin x 的图象向左平移π3个单位长度后得到y =sin ? ????x +π3的图象.]

2.为了得到函数y =4sin ? ????12x -π6,x ∈R 的图象,只需将函数y =4sin ? ????x -π6,x ∈R 的 图象上的所有点( ) A .横坐标伸长到原来的2倍,纵坐标不变 B .横坐标缩短到原来的1 2倍,纵坐标不变 C .纵坐标伸长到原来的2倍,横坐标不变 D .纵坐标缩短到原来的1 2 倍,横坐标不变 A [函数y =4sin ? ????x -π6的图象上各点横坐标伸长为原来的2倍,纵坐标不变,得到y =4sin ? ????12 x -π6的图象.] 3.函数y =A sin(ωx +φ)+1(A >0,ω>0)的最大值为5,则A =________. 4 [由已知得A +1=5,故A =4.] 三角函数图象之间的变换 【例1】 (1)将函数y =2cos ? ????2x +π3的图象向左平移π3个单位长度,再向下平移3个 单位长度,则所得图象的解析式为________. (2)将y =sin x 的图象怎样变换可得到函数y =2sin2x +π 4+1的图象? [思路点拨] (1)依据左加右减;上加下减的规则写出解析式. (2)法一:y =sin x →纵坐标伸缩→横坐标伸缩和平移→向上平移. 法二:左右平移→横坐标伸缩→纵坐标伸缩→上下平移. (1)y =-2cos 2x -3 [y =2cos ? ????2x +π3的图象向左平移π3个单位长度, 得y =2cos ??????2? ????x +π3+π3=2cos(2x +π)=-2cos 2x , 再向下平移3个单位长度得y =-2cos 2x -3的图象.] (2)[解] 法一:(先伸缩法)①把y =sin x 的图象上所有点的纵坐标伸长到原来的2倍,得到y =2sin x 的图象;②将所得图象上所有点的横坐标缩短到原来的1 2倍,得y =2sin 2x 的图象;③将所得图象沿x 轴向左平移π8个单位,得y =2sin 2? ????x +π8的图象;

数学建模实验答案__数学规划模型二

实验05 数学规划模型㈡(2学时) (第4章数学规划模型) 1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102 (1) (LP)在模型窗口中输入以下线性规划模型 max z = 2x1 + 3x2 + 4x3 s.t. 1.5x1 + 3x2 + 5x3≤ 600 280x1 + 250x2 + 400x3≤ 60000 x1, x2, x3≥ 0 并求解模型。 ★(1) 给出输入模型和求解结果(见[101]): (2) (IP)在模型窗口中输入以下整数规划模型 max z = 2x1 + 3x2 + 4x3 s.t. 1.5x1 + 3x2 + 5x3≤ 600 280x1 + 250x2 + 400x3≤ 60000 x1, x2, x3均为非负整数

并求解模型。 LINGO 函数@gin 见提示。 ★(2) 给出输入模型和求解结果(见[102]模型、结果): 2.(求解)原油采购与加工(非线性规划NLP ,LP 且IP )p104~107 模型: 已知 ?? ? ??≤≤+≤≤+≤≤=)15001000(63000)1000500(81000)5000(10)(x x x x x x x c 注:当500 ≤ x ≤ 1000时,c (x ) = 10 × 500 + 8( x – 500 ) = (10 – 8 ) × 500 + 8x

112112221112212211 1121 12 1222 11122122max 4.8() 5.6()()500100015000.5 0.6 ,,,,0 z x x x x c x x x x x x x x x x x x x x x x x x =+++-+≤++≤≤≥+≥+≥ 2.1解法1(NLP )p104~106 将模型变换为以下的非线性规划模型: 112112221231112212211 1121 12 1222 123122312311122122max 4.8() 5.6()(1086)50010000.5 0.6 (500)0(500)00,,500,,,,0 z x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =+++-+++≤++≤≥+≥+=++-=-=≤≤≥ LINGO 软件设置:局部最优解,全局最优解,见提示。 ★(1) 给出输入模型(见[105]): 注意:模型中不要出现变量相除的形式,转化!

数学规划模型

课程设计

2015年 7 月 5 日

东北石油大学课程设计任务书 课程《数学模型》课程设计 题目应用数学规划模型求解实际数学问题 专业姓名学号 主要内容、基本要求、主要参考资料等 主要内容 简单介绍数学规划模型基本理论及本文所用的规划模型和相关软件LINGO,并通过实例来掌握如何应用数学规划模型求解实际数学问题。并利用本文所介绍的方法来分析林区汽车修理网的布局 课程设计的要求: 1.独立完成建模,并提交一篇建模论文。 2.论文的主要内容包括:摘要,问题的提出,问题的分析,模型假设,模型设计,模型解法与结果,模型结果的分析和检验,包括误差分析、稳定性分析等。模型的优缺点及改进方向。必要的计算机程序。 3.文档格式:参照《东北石油大学课程设计撰写规范》和《数学模型课程设计教学大纲》。 4.课程设计结束时参加答辩。 主要参考资料: [1] 唐焕文,贺明峰,数学模型(第三版),北京:高等教育出版社,2005.3 [2]杨云峰等,数学建模与数学软件,哈尔滨:哈尔滨工程大学出版社,2012.6 [3]陈东彦,李冬梅,王树忠,数学建模,北京:科学出版社,2007 [4] 吴建国等,数学建模案例精编,北京:中国水利水电出版社,2005 [5]胡运权,吴中启,李树青等,运筹学,北京:清华出版社,2003 [6] 焦永兰,管理运筹学,北京:中国铁道出版社,2002

完成期限 2016年6月27日-7月8日 指导教师 专业负责人 2016年7月5日

摘要 人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果。在研究过程中需要处理大量数据,而统计学正是对社会经济数据进行定量分析的重要工具,应用统计方法来整理这些数据,就可以省去不必要的过程。 本文简要介绍了了数学规划模型的概念、特点,以及LINGO软件的发展及用途。本文在求解的过程中主要借助了这个软件。必要的求解过程是利用MATLAB和LINGO来求解的。本文在详细介绍了数学规划模型的几个基本模型的过程中,并且每种模型都举了实例,并且通过LINGO操作,对每种方法所举实例归纳总结了较为简便的求解方法,并且给出了具体答案。最后,本文着重的探讨了典型数学模型应用规划模型方法结合LINGO 求解,在解决林区汽车修理网的布局问题中,很好的体现了规划模型方法在解决典型数学模型问题时应用的广泛性和有效性。 林区的汽车往往需要定期送往不同的修理厂进行大修,不同的汽车分配方案往往需要消耗不同的修理成本. 本文主要利用图论和运筹学理论建立了一套线性规划数学模型,用于求解不同的修理厂规模的条件下最优的汽车分配方案,以及所对应的总费用,并对其进行分析评估。但为寻求最佳的修理厂规模调整方案,本文模拟实际情况中的市场机理,把市场作为资源分配的主要手段,国家(此处为方案制定制者)对市场进行必要的宏观调控。在此方案下得到了相当满意的结果,这也是本文的独到之处。本模型对实际情况中汽车修理分配方案的制定有很大的指导作用.且本模型的处理思想,对市场体制下的很多类似问题都有借鉴作用. 本模型对实际情况中汽车修理分配方案的制定有很大的指导作用.且本模型的处理思想,对市场体制下的很多类似问题都有借鉴作用. 应用规划模型结合实际数学问题可以简化求解步骤,省去繁琐的过程。为实际问题的研究提供了较为简便的方法。 关键词:LINGO;汽车修理网布局;图论;布局规划模型 I

第五章被控过程的数学模型

第5章思考题与习题 5-1 什么是被控过程的数学模型? 解答: 被控过程的数学模型是描述被控过程在输入(控制输入与扰动输入)作用下,其状态和输出(被控参数)变化的数学表达式。 5-2 建立被控过程数学模型的目的是什么?过程控制对数学模型有什么要求? 解答: 1)目的:○1设计过程控制系统及整定控制参数; ○2指导生产工艺及其设备的设计与操作; ○3对被控过程进行仿真研究; ○4培训运行操作人员; ○5工业过程的故障检测与诊断。 2)要求:总的原则一是尽量简单,二是正确可靠。阶次一般不高于三阶,大量采用具有纯滞后的一阶和二阶模型,最常用的是带纯滞后的一阶形式。 5-3 建立被控过程数学模型的方法有哪些?各有什么要求和局限性? 解答:P127 1)方法:机理法和测试法。 2)机理法: 测试法: 5-4 什么是流入量?什么是流出量?它们与控制系统的输入、输出信号有什么区别与联系? 解答: 1)流入量:把被控过程看作一个独立的隔离体,从外部流入被控过程的物质或能量流量称为流入量。 流出量:从被控过程流出的物质或能量流量称为流出量。 2)区别与联系: 控制系统的输入量:控制变量和扰动变量。 控制系统的输出变量:系统的被控参数。

5-5 机理法建模一般适用于什么场合? 解答:P128 对被控过程的工作机理非常熟悉,被控参数与控制变量的变化都与物质和能量的流动与转换有密切关系。 5-6 什么是自衡特性?具有自衡特性被控过程的系统框图有什么特点? 解答: 1)在扰动作用破坏其平衡工况后,被控过程在没有外部干预的情况下自动恢复平衡的特性,称为自衡特性。 2)被控过程输出对扰动存在负反馈。 5-7 什么是单容过程和多容过程? 解答: 1)单容:只有一个储蓄容量。 2)多容:有一个以上储蓄容量。 5-8 什么是过程的滞后特性?滞后又哪几种?产生的原因是什么? 解答: 1)滞后特性:过程对于扰动的响应在时间上的滞后。 2)容量滞后:多容过程对于扰动的响应在时间上的这种延迟被称为容量滞 后。 纯滞后:在生产过程中还经常遇到由(物料、能量、信号)传输延迟引 起的纯滞后。 5-9 对图5-40所示的液位过程,输入量为1Q ,流出量为2Q 、3Q ,液位h 为被控参数,水箱截面为A ,并设2R 、3R 为线性液阻。 (1)列写液位过程的微分方程组; (2)画出液位过程的框图; (3)求出传递函数)()(1s Q s H ,并写出放大倍数K 和时间常数T 的表达式。 解答:

数学规划模型

课程设计 课程数学模型课程设计 题目应用数学规划模型求解实际数学问题 学院数学与统计学院 专业班级信计13-2 学生姓名 学生学号 指导教师 2015年7 月 5 日

东北石油大学课程设计任务书 课程《数学模型》课程设计 题目应用数学规划模型求解实际数学问题 专业姓名学号 主要内容、基本要求、主要参考资料等 主要内容 简单介绍数学规划模型基本理论及本文所用的规划模型和相关软件LINGO,并通过实例来掌握如何应用数学规划模型求解实际数学问题。并利用本文所介绍的方法来分析林区汽车修理网的布局 课程设计的要求: 1.独立完成建模,并提交一篇建模论文。 2.论文的主要内容包括:摘要,问题的提出,问题的分析,模型假设,模型设计,模型解法 与结果,模型结果的分析和检验,包括误差分析、稳定性分析等。模型的优缺点及改进方向。必要 的计算机程序。 3.文档格式:参照《东北石油大学课程设计撰写规范》和《数学模型课程设计教学大纲》。 4.课程设计结束时参加答辩。 主要参考资料: [1]唐焕文,贺明峰,数学模型(第三版),北京:高等教育出版社,2005.3 [2]杨云峰等,数学建模与数学软件,哈尔滨:哈尔滨工程大学出版社,2012.6 [3]陈东彦,李冬梅,王树忠,数学建模,北京:科学出版社,2007 [4]吴建国等,数学建模案例精编,北京:中国水利水电出版社,2005 [5]胡运权,吴中启,李树青等,运筹学,北京:清华出版社,2003 [6]焦永兰,管理运筹学,北京:中国铁道出版社,2002 完成期限2016 年6月27日-7月8日 指导教师 专业负责人 2016年7月5日

摘要 人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果。在研究过程 中需要处理大量数据,而统计学正是对社会经济数据进行定量分析的重要工具,应用统计方法来整 理这些数据,就可以省去不必要的过程。 本文简要介绍了了数学规划模型的概念、特点,以及LINGO软件的发展及用途。本 文在求解的过程中主要借助了这个软件。必要的求解过程是利用MATLAB和LINGO来求解的。本文在详 细介绍了数学规划模型的几个基本模型的过程中,并且每种模型都举了实例,并且通过LINGO操作,对每种方法所举实例归纳总结了较为简便的求解方法,并 且给出了具体答案。最后,本文着重的探讨了典型数学模型应用规划模型方法结合LINGO求解,在解决林区汽车修理网的布局问题中,很好的体现了规划模型方法在解决典型数学模型问题时应用的广泛性和有效性。 林区的汽车往往需要定期送往不同的修理厂进行大修,不同的汽车分配方案往往需要消耗不同的 修理成本.本文主要利用图论和运筹学理论建立了一套线性规划数学模 型,用于求解不同的修理厂规模的条件下最优的汽车分配方案,以及所对应的总费用,并对其进行 分析评估。但为寻求最佳的修理厂规模调整方案,本文模拟实际情况中的市场机理,把市场作为 资源分配的主要手段,国家(此处为方案制定制者)对市场进行必要的宏观调控。在此方案下得 到了相当满意的结果,这也是本文的独到之处。本模型对 实际情况中汽车修理分配方案的制定有很大的指导作用.且本模型的处理思想,对市场体制下的很多类似问题都有借鉴作用. 本模型对实际情况中汽车修理分配方案的制定有很大的指导作用.且本模型的处理思想,对市场体制下的很多类似问题都有借鉴作用. 应用规划模型结合实际数学问题可以简化求解步骤,省去繁琐的过程。为实际问题的研究提 供了较为简便的方法。 关键词:LINGO;汽车修理网布局;图论;布局规划模型

相关主题
文本预览
相关文档 最新文档