当前位置:文档之家› 函数与数列极限的定义区别

函数与数列极限的定义区别

函数与数列极限的定义区别
函数与数列极限的定义区别

导读:极限是研究函数最基本的方法,它描述的是当自变量变化时函数的变化趋势.要由数列极限的定义自然地过渡到函数极限的定义,关键在于搞清楚数列也是函数这一点.数列可看作一个定义域为自然数集的函数,其解析表达式为an=f(n). 关键词:极限,数列,函数极限概念是数学分析中

最重要的概念,如连续、导数、积分等都要用极限来定义,而且由极限出发产生的极限方法,是数学分析的最基本的方法.更好的理解极限思想,掌握极限理论,应用极限方法是继续学习数学分析的关键.本文将主要阐述极限的概念、性质、方法等问题.

数列极限的ε-N定义是极限理论的重点与核心.

数列极限1.定义

设有数列{an}与常数A,如果对于任意给定的正数ε(不论它有多么小),总存在正整数N,使得当n>N时,不等式|an-A|<ε都成立,那么就称常数A是数列{ an }的极限,或者称数列{an}收敛于A,记作

读作“当n趋于无穷大时,an的极限等于A或an趋于A”。数列极限存在,称数列{an}为收敛数列,否则称为发散数列.

上述定义的几何意义是:对于任何一个以A为中心,ε为半径的开区间(A-ε,A+ε),总可以在数列{an}中找到某一项aN,使得其后的所有项都位于这个开区间内,而在该区间之外,最多只有{an}的有限项(N项).

对于正整数N 应该注意两点:其一,N是随着ε而存在的,一般来讲,N随着ε的减小而增大,但N不是唯一存在的;其二,定义中只强调了正整数N的存在性,而并非找到最小的N,我们只关注第N项以后的各项均能保持与常数a的距离小于给定的任意小正数ε即可.

2.性质

收敛数列有如下性质:

(1)极限唯一性;

(2)若数列{an}收敛,则{an}为有界数列;

(3)若数列{an}有极限A,则其任一子列{ank}也有极限A;

(4)保号性,即若极限A>0,则存在正整数N1,n>N1时an>0;

(5)保序性,即若,且AN1时an

定理1 (收敛数列与其奇、偶项数列间的关系)数列{an}收敛于a的充分必要条件是它的奇数项数列{a2k-1}和偶数项数列{a2k}都收敛,且收敛于a.

函数极限 1.定义

(1)自变量趋于有限值时函数的极限:-

[论文网 https://www.doczj.com/doc/9917524937.html,]函数f(x)在点x0的某一去心邻域内有定义,如果对于任意给定的正数ε(无论它多么小),总存在正数δ,使得对于满足不等式的一切x,对应的函数值f(x)都满足不等式,则常数A为函数f(x)在x→x0时的极限,记作

上述定义的几何意义是:将极限定义中的四段话用几何语言表述为

1对:任意以两直线为边界的带形区域;

2总:总存在(以点x0位中心的)半径;

3当时:当点x位于以点x0位中心的δ空心邻域内时;

4有:相应的函数f(x)的图像位于这个带形区域之内.

(2)自变量趋于无穷大时函数的极限:设函数f(x)在|x|大于某一正数时有定义,如果任给ε>0,总存在着正数Χ,使得对于适合不等式|x|>Χ的一切x,对应的函数值f(x)都满足不等式|f(x)-A|<ε,则称常数A为函数f(x)当x→∞时的极限,记作

并称y=A为函数y=f(x)的图形的水平渐近线.

2.性质

(1)极限唯一性;

(2)局部有界性

若存在,则存在δ1>0,使得f(x)在去心邻域内是有界的,当x趋于无穷大时,亦成立;

(3)局部保号性

若,则存在δ1>0,使得时,f(x)>0,当x趋于无穷大时,亦成立;

(4)局部保序性

若,,且A0,使得时f(x)

定理2 函数f(x)当x→x0时,极限存在的充分必要条件是函数f(x)当x→x0时的左、右极限都存在些相等,即

利用定义证明极限下面介绍用“ε-δ(或N)”证明极限的一般步骤.

1.极限值为有限的情形:

(1)给定任意小正数ε;

(2)解不等式或,找δ或N;

(3)取定δ或N;

(4)令或,由或成立,推出或.

2. 极限值为无穷大的情形(仅以极限为+∞与自变量为例):

(1)给定任意大正数G;(2)解不等式;(3)取定;(4)令,由成立,推出. 利用极限的定义证明问题关键是步骤(2),应该非常清楚从哪一种形式的不等式推起,最后得到一个什么形式的式子,由此即可找到所需要的(或N). 极限存在准则1.夹逼准则(1 )数列极限的夹逼准则

如果数列{an},{bn}及{cn}满足下列条件:

1存在N,n>N时,bn≤an≤cn;

2

则数列{an}的极限存在,且 .

(2)函数极限的夹逼准则

(以x→x0和x→∞为例)如果

1(或|x|>M)时,有

2(或),则(或)

(3)一个重要不等式

时,

2.单调有界数列必有极限

3.柯西(Cauchy)极限存在准则

数列{an}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m,n>N时,有|xn-xm|<ε.

数列极限与函数极限的联系数列可看作一个定义域为自然数集的函数,当自变量从小到大依次取自然数时,便得到相应的一系列函数值, 其解析表达式为an=f(n);函数是连续的,数列相当于一个函数中的一些独立的点,表现在图形上数列是无数的点,而函数是一段曲线;把数列中的n用x来替换后如果函数f(x)存在极限则数列也必定有极限,但是反之不成立。

数列{an}的极限一般都是指n的变化使得极限值的产生,而n是一个正整数,函数的极限中自变量x可以趋向任何值,由此可知函数的极限更广泛。

计算极限的常用方法1. 利用洛必达法则

三这是最常用的方法,主要针对未定型极限:

注意与其他工具(无穷小代换、变量代换、不定式因子的分离、各种恒等变形、泰勒公式等)相结合.

2. 利用已知极限

……

3. 利用泰勒公式

4. 利用迫敛性

5. 利用定积分求和式极限

6. 利用数列的递推关系计算极限

7. 利用级数的收敛性计算极限

8. 利用积分中值定理计算极限

计算数列和函数极限的关键是综合运用各种计算极限的方法,并不断总结,才能较好地掌握计算极限的方法.

极限概念是数学分析中最重要的概念,如连续、导数、积分等都要用极限来定义,而且由极限出-

[论文网 https://www.doczj.com/doc/9917524937.html,]发产生的极限方法,是数学分析的最基本的方法.更好的理解极限思想,掌握极限理论,应用极限方法是继续学习数学分析的关键.本文将主要阐述极限的概念、性质、方法等问题.

数列极限的ε-N定义是极限理论的重点与核心.

数列极限1.定义

设有数列{an}与常数A,如果对于任意给定的正数ε(不论它有多么小),总存在正整数N,使得当n>N时,不等式|an-A|<ε都成立,那么就称常数A是数列{ an }的极限,或者称数列{an}收敛于A,记作

读作“当n趋于无穷大时,an的极限等于A或an趋于A”。大全,函数。。大全,函数。。数列极限存在,称数列{an}为收敛数列,否则称为发散数列.

上述定义的几何意义是:对于任何一个以A为中心,ε为半径的开区间(A-ε,A+ε),总可以在数列{an}中找到某一项aN,使得其后的所有项都位于这个开区间内,而在该区间之外,最多只有{an}的有限项(N项).

对于正整数N 应该注意两点:其一,N是随着ε而存在的,一般来讲,N随着ε的减小而增大,但N不是唯一存在的;其二,定义中只强调了正整数N的存在性,而并非找到最小的N,我们只关注第N项以后的各项均能保持与常数a的距离小于给定的任意小正数ε

即可.

2.性质

收敛数列有如下性质:

(1)极限唯一性;

(2)若数列{an}收敛,则{an}为有界数列;

(3)若数列{an}有极限A,则其任一子列{ank}也有极限A;

(4)保号性,即若极限A>0,则存在正整数N1,n>N1时an>0;

(5)保序性,即若,且AN1时an

定理1 (收敛数列与其奇、偶项数列间的关系)数列{an}收敛于a的充分必要条件是它的奇数项数列{a2k-1}和偶数项数列{a2k}都收敛,且收敛于a.

函数极限 1.定义

(1)自变量趋于有限值时函数的极限:函数f(x)在点x0的某一去心邻域内有定

,如果对于任意给定的正数(无论它多么小),总存在正数,使得对于满足不等式的一切x,对应的函数值f(x)都满足不等式,则常数A为函数f(x)在xx0时的极限,记作上述定义的几何意义是:将极限定义中的四段话用几何语言表述为 1对:任意以两直线为边界的带形区域; 2总:

总存在(以点x0位中心的)半径;

3当时:当点x位于以点x0位中心的δ空心邻域内时;

4有:相应的函数f(x)的图像位于这个带形区域之内.

(2)自变量趋于无穷大时函数的极限:设函数f(x)在|x|大于某一正数时有定义,如果任给ε>0,总存在着正数Χ,使得对于适合不等式|x|>Χ的一切x,对应的函数值f(x)都满足不等式|f(x)-A|<ε,则称常数A为函数f(x)当x→∞时的极限,记作

并称y=A为函数y=f(x)的图形的水平渐近线.

2.性质

(1)极限唯一性;

(2)局部有界性

若存在,则存在δ1>0,使得f(x)在去心邻域内是有界的,当x趋于无穷大时,亦成立;

(3)局部保号性

若,则存在δ1>0,使得时,f(x)>0,当x趋于无穷大时,亦成立;

(4)局部保序性

若,,且A0,使得时f(x)

定理2 函数f(x)当x→x0时,极限存在的充分必要条件是函数f(x)当x→x0时的左、右极限都存在些相等,即

利用定义证明极限下面介绍用“ε-δ(或N)”证明极限的一般步骤.

1.极限值为有限的情形:

(1)给定任意小正数ε;

(2)解不等式或,找δ或N;

(3)取定δ或N;

(4)令或,由或成立,推出或.

2. 极限值为无穷大的情形(仅以极限为+∞与自变量为例):

(1)给定任意大正数G;

(2)解不等式;

(3)取定δ;

(4)令,由成立,推出.

利用极限的定义证明问题关键是步骤(2),应该非常清楚从哪一种形式的不等式推起,最后得到一个什么形式的式子,由此即可找到所需要的δ(或N).

极限存在准则1.夹逼准则

(1)-

[论文网 https://www.doczj.com/doc/9917524937.html,]数列极限的夹逼准则

如果数列{an},{bn}及{cn}满足下列条件:

1存在N,n>N时,bn≤an≤cn;

2

则数列{an}的极限存在,且 .

(2)函数极限的夹逼准则

(以x→x0和x→∞为例)如果

1(或|x|>M)时,有

2(或),则(或)

(3)一个重要不等式

时,

2.单调有界数列必有极限

3.柯西(Cauchy)极限存在准则

数列{an}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m,n>N时,有|xn-xm|<ε.

数列极限与函数极限的联系数列可看作一个定义域为自然数集的函数,当自变量从小到大依次取自然数时,便得到相应的一系列函数值, 其解析表达式为an=f(n);函数是连续的,数列相当于一个函数中的一些独立的点,表现在图形上数列是无数的点,而函数是一段曲线;把数列中的n用x来替换后如果函数f(x)存在极限则数列也必定有极限,但是反之不成立。大全,函数。。

数列{an}的极限一般都是指n的变化使得极限值的产生,而n是一个正整数,函数的极限中自变量x可以趋向任何值,由此可知函数的极限更广泛。

计算极限的常用方法1. 利用洛必达法则

三这是最常用的方法,主要针对未定型极限:

注意与其他工具(无穷小代换、变量代换、不定式因子的分离、各种恒等变形、泰勒公式等)相结合.

2. 利用已知极限

……

3. 利用泰勒公式

4. 利用迫敛性

5. 利用定积分求和式极限

6. 利用数列的递推关系计算极限

7. 利用级数的收敛性计算极限

8. 利用积分中值定理计算极限

计算数列和函数极限的关键是综合运用各种计算极限的方法,并不断总结,才能较好地掌握计算极限的方法.

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

函数极限的定义的多种表达

函数极限的定义 林芳 20101101903 数学科学学院 2010级(1)班 指导教师 韩刚 摘要 极限是数分中的重要内容,用定义证明极限类型题都要用到它。本文就给出二十四个函数极限的定义。 关键词 极限 1函数在一点的极限的定义 1.1函数在0x 点的极限的定义 设函数f(x)在0x 点的附近(但可能除掉点本身)有定义,又设A 是一个定数。如果对任意给定的ε>0,一定存在δ>0,使得当0<0x x -<δ时,总有A x f -)(<ε,我们就称A 是函数在点0x 的极限,记为 A x f x x =→0 )(lim , 或者记为 f(x)→A(x 0x →). 这时也称函数f(x)在0x 点极限存在,其极限值是A. 1.2函数在点0x 右侧的极限的定义 设函数f(x)在(0x ,η+0x )内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0

我们就称A 是函数f(x)在点x 0的右极限,记为 0)(lim +→x x x f =A 或f(x 0+0)=A 或 f(x)→A (x 0x →+0) 这时也称函数f(x)在点0x 右极限存在。 1.3函数在0x 点左侧的极限的定义 设函数f(x)在(00,x x η-)内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0<δ<-x x 0时,有A x f -)(<ε,我们就称A 是函数f(x)在点的左极限,记为 0)(lim -→x x x f =A 或 f(00-x )=A 或 f(x))0(0-→→x x A 这时也称函数f(x)在0x 点左极限存在. 2函数在无限远处的极限 2.1函数在无限远处极限的定义 若对任意给定的ε>0,存在X>0,当X x >时,总有ε<-A x f )(,我们说A 是f(x)在无限远处的极限,或者说A 是当x 的极限时)(x f ∞→,记为 ) ()()()(lim ∞→→=∞=∞→x A x f A f A x f x 或 这时也称函数f(x)在无限远处极限存在 2.2函数在正无限远处的极限的定义

数列极限的概念(经典课件)

第二章 数列极限 引言: 在第一章中我们已经指出,数学分析课程研究的对象是定义在实数集上的函数,那么数学分析用什么方法研究实数集上的函数呢?从本质上来说,这个方法就是极限。极限思想和方法贯穿于数学分析课程的始终,几乎所有的概念都离不开极限,是我们数学分析课程的基础。 §1 数列极限的概念 教学内容:数列极限的概念,应用定义证明简单数列的极限,无穷小数列。 教学要求:使学生逐步建立起数列极限的N ε-定义的清晰概念。深刻理解数列发散、单调、有界和无穷小 数列等有关概念。会应用数列极限的N ε-定义证明数列的有关命题,并能运用N ε-语言正确表述数列不以某实数为极限等相应陈述。 教学重点:数列极限的概念。 教学难点:数列极限的N ε-定义及其应用。 教学方法:讲授为主。 教学学时:2学时。 一、数列概念: 1.数列的定义: 简单的说,数列就是“一列数”,是有一定的规律,有一定次序性的“一列数”。 若函数f 的定义域为全体正整数集合N +,则称:f N R +→或+∈N n n f ),(为数列。 若记()n f n a =,则数列n n n f ,2,1),(=就可写作为:12,,,, n a a a ,简记为{}n a ,其中n a 称为 该数列的通项。 2.数列的例子: (1)(1)111:1,,,, 234n n ??---???? ; (2)11111:2,1,1,1,435 n ? ?+ +++???? (3){}2 :1,4,9,16,25, n ; (4){}1 1(1) :2,0,2,0,2, n ++- 二、数列极限的概念: 1.引言: 对于这个问题,先看一个例子:古代哲学家庄周所著的《庄子. 天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”。把每天截下的部分的长度列出如下(单位为尺): 第1天截下 12,第2天截下2111222?=,第3天截下23111222?=,…,第n 天截下1111 222 n n -?=,… 得到一个数列:? ?? ?? ?n 21: 231111 ,,,,,2222n 不难看出,数列12n ?? ? ??? 的通项12n 随着n 的无限增大而无限地接近于零。 一般地说,对于数列{}n a ,若当n 无限增大时,n a 能无限地接近某一个常数a ,则称此数列为收敛数列,常数a 称为它的极限。不具有这种特性的数列就不是收敛的数列,或称为发散数列。

数列的极限函数的极限与洛必达法则的练习题及解析

数列的极限函数的极限与洛必达法则的练习题及解析 一、单项选择题(每小题4分,共24分) 3. 若()0lim x x f x →=∞,()0 lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞??? ? B . ()()0lim x x f x g x →-=∞??? ? C . ()() 01lim 0x x f x g x →=+ D . ()()0 lim 0x x kf x k →=∞≠ 解:()()000lim lim x x x x k kf x k f x k →→≠==?∞∞ ∴选D 6.当n →∞时, 1k n 与1k n 为等价无穷小,则k=( ) A .12 B .1 C .2 D .-2 解:2 211sin lim lim 1,21 1n n k k n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分) 8.2112lim 11x x x →??-= ?--? ? 解:原式()()() 112lim 11x x x x →∞-∞+--+ 10 .n = 解:原式n ≡有理化 11.1201arcsin lim sin x x x e x x -→??+= ??? 解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x x →→== 故 原式=1

12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x →=-,则正整数n = 解:()222200ln 1lim lim sin n n x x x x x x x x →→+?= 20420,lim 02 n x n x n x →<>2,4,n n ∴>< 故3n = 三、计算题(每小题8分,共64分) 14.求0x → 解:原式有理化 16.求0ln cos 2lim ln cos3x x x → 解:原式[][]0ln 1cos 21lim ln 1cos31x x x →--+-变形 注:原式02sin 2cos3lim cos 23sin 3x x x x x →∞?? ?∞??-?- 17.求02lim sin x x x e e x x x -→--- 解: 原式0020lim 1cos x x x e e x -→+-- 19.求lim 111lim 11n n n n n e e n →∞--+→∞??-== ?+?? 解: (1) 拆项,111...1223(1) n n +++??+ 1111111...122311n n n ??????=-+-+-=- ? ? ???++????(2) 原式=lim 111lim 11n n n n n e e n →∞--+→∞??-== ?+??

考点数列的极限函数的极限与连续性

温馨提示: 此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,点击右上角的关闭按钮可返回目录。 考点42 数列的极限、函数的极限与连续性 一、选择题 1、(2011·重庆高考理科·T3)已知x 2ax 1lim 2x 13x →∞-??+= ?-? ?,则=a ( ) (A) -6 (B) 2 (C) 3 (D)6 【思路点拨】对小括号内的表达式进行通分化简利用极限的相关性质求出a 的值. 【精讲精析】选D. x x 2x 16x (ax 1)(x 1)lim lim x 13x 3x(x 1)→∞→∞??-+--??+= ???--???? 22x ax (5a)x 1a lim 2,3x 3x 3→∞??+-+===??-?? 所以.6=a 2、(2011·四川高考理科·T11)已知定义在[0,+∞ )上的函数()f x 满足()f x =3(2)f x +,当[ 0,2)x ∈时,()f x =2 2x x -+,设()f x 在[22,2)n n -上的最大值为*([0,)n a n N ∈且{}n a 的前n 项和为S n ,则lim n n S →∞ =( ). (A )3 (B )52 (C) 2 (D )32 【思路点拨】 首先需要确定数列{}n a .先由1n =求出1a ,当2n =时,由()3(2)f x f x =+可推得 1()(2)3 f x f x = -,先求出(2)f x -的最大值,在求()f x 的最大值,即求得2a , 3,4,...n =依次求 解. 【精讲精析】选D , [)[)[)22122,20,2,0,2()2(1)1n n n x f x x x x =-=∈=-+=--+时,时,, ()=(1)1f x f =最大值,1 1.a ∴= [)[)[)[)222,22,4,2,420,2n n n x x =-=∈-∈时,若,则, 2(2)22(2)f x x x -=--+-()

数学分析习作-数列极限及函数极限的异同

XX大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 、学号: 任课教师: 时间:2009-12-26摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的

重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知识;在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数:

a 、数列的定义:数列是指按自然数编了号的一串数:x 1,x 2,x 3,…,x n ,…. 通常记作{x n },也可将其看作定义在自然数集N 上的函数x n =N n n f ∈),(, 故也称之为整标函数。 b 、函数的定义:如果对某个围X 的每一个实数x ,可以按照确定的规律f ,得到Y 唯 一一个实数y 和这个x 对应,我们就称f 是X 上的函数,它在x 的数值(称为函数值)是y ,记为)(x f ,即)(x f y =。 称x 是自变量,y 是因变量,又称X 是函数的定义域,当x 遍取X 的所有实数 时,在f 的作用下有意义,并且相应的函数值)(x f 的全体所组成的围叫作函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一)数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 > n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβ

函数极限与数列极限的关系

使得其后的所有项都位于这个开区间内,而在该区间之外,最多只有{an}的有限项(N项). 对于正整数N 应该注意两点:其一,N是随着ε而存在的,一般来讲,N随着ε的减小而增大,但N不是唯一存在的;其二,定义中只强调了正整数N的存在性,而并非找到最小 ,我们只关注第N项以后的各项均能保持与常数a的距离小于给定的任意小正数ε即可. 的N 2(性质 收敛数列有如下性质: (1)极限唯一性; (2)若数列{an}收敛,则{an}为有界数列; (3)若数列{an}有极限A,则其任一子列{ank}也有极限A; (4)保号性,即若极限A>0,则存在正整数N1,n>N1时an>0; (5)保序性,即若,且AN1时an

等式的一切x,对应的函数值f(x)都满足不等式,则常数A为函数f(x)在x?x0时的极限,记作 上述定义的几何意义是:将极限定义中的四段话用几何语言表述为 1对:任意以两直线为边界的带形区域; 2总:总存在(以点x0位中心的)半径; 3当时:当点x位于以点x0位中心的δ空心邻域内时; 4有:相应的函数f(x)的图像位于这个带形区域之内. (2)自变量趋于无穷大时函数的极限:设函数f(x)在|x|大于某一正数时有定义,如果任给ε>0,总存在着正数Χ,使得对于适合不等式|x|>Χ的一切x,对应的函数值f(x)都满足不等式|f(x)-A|<ε,则称常数A为函数f(x)当x??时的极限,记作 并称y=A为函数y=f(x)的图形的水平渐近线. 2(性质 (1)极限唯一性; (2)局部有界性 若存在,则存在δ1>0,使得f(x)在去心邻域内是有界的,当x趋于无穷大时,亦成立; )局部保号性 (3 若,则存在δ1>0,使得时,f(x)>0,当x趋于无穷大时,亦成立; (4)局部保序性

g3.1030数列与函数的极限(1)

g3.1030数列与函数的极限(1) 一、知识回顾 1、 数列极限定义 (1)定义:设{a n }是一个无穷数列,a 是一个常数,如果对于预先给定的任意小的正数ε,总存在正整数N ,使得只要正整数n>N ,就有|a n -a|<ε,那么就称数列{a n }以a 为极限,记作lim ∞→n a n =a 。 对前任何有限项情况无关。 *(2)几何解释:设ε>0,我们把区间(a-ε,a+ε)叫做数轴上点a 的ε邻域;极限定义中的不等式|a n -a|<ε也可以写成a-ε0,则特别地 01 lim =∞→n n ③设q ∈(-1,1),则lim ∞ →n q n =0;;1lim ,1==∞ →n n q q ,1-=q 或n n q q ∞ →>lim ,1不存在。

若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为:q a s s n n -= =∞ →1lim 1 3、数列极限的运算法则 如果lim ∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim ∞→n (a n ±b n )=A ±B (2)lim ∞→n (a n ·b n )=A ·B (3)lim ∞ →n n n b a =B A (B ≠0) 极限不存在的情况是1、±∞=∞ →n n a lim ;2、极限值不唯一,跳跃,如1,-1,1,-1…. 注意:数列极限运算法则运用的前提: (1)参与运算的各个数列均有极限; (2)运用法则,只适用于有限个数列参与运算,当无限个数列参与运算时不能首先套用. 二.基本训练 1、n n n n 2312lim 22++∞→= ;22322 lim n n n n n →∞+++= 2、135(21) lim 2462n n n →∞+++???+-+++???+=_________________ 3.已知a 、b 、c 是实常数,且a cn c an b cn c bn c bn c an n n n ++=--=-+∞→∞→∞→2222lim ,3lim ,2lim 则的值是……… ( ) A . 121 B .61 C .2 3 D .6

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

数学实验-数列极限与函数极限

基础 数列极限与函数极限 一、实验目的 从刘徽的割圆术、裴波那奇数列研究数列的收敛性并抽象出极限的定义;理解数列收敛的准则;理解函数极限与数列极限的关系。 二、实验材料 1.1割圆术 中国古代数学家刘徽在《九章算术注》方田章圆田术中创造了割圆术计算圆周率π。刘徽先注意到圆内接正多边形的面积小于圆面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。 “割之弥细,所失弥少。割之又割以至不可割,则与圆合体而无所失矣。”这几句话明确地表明了刘徽的极限思想。 以n S 表示单位圆的圆内接正123-?n 多边形面积,则其极限为圆周率π。用下列 Mathematica 程序可以从量和形两个角度考察数列{n S }的收敛情况: m=2;n=15;k=10; For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆内接正123-?n 多边形边长) s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正123-?n 多边形面积) r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1]; Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]] ] t=Table[{i,s[i]},{i,m,n}] (数组) ListPlot[t] (散点图) 1.2裴波那奇数列和黄金分割 由2110;1;0--+===n n n F F F F F 有著名的裴波那奇数列}{n F 。 如果令n n n F F R 11--=,由n F 递推公式可得出 11111/11---+=+=+=n n n n n n n R F F F F F R ,]251251[511 1++???? ??--???? ??+=n n n F ; 2 15lim lim 1-==+∞→∞→n n n n n F F R 。 用下列Mathematica 程序可以从量和形两个角度考察数列{n R }的收敛情况: n=14,k=10; For[i=3,i<=n,i++, t1=(Sqrt[5]+1)/2; t2=(1-Sqrt[5])/2; f[i_]:=N[(t1^(i+1)-t2^(i+1))/Sqrt[5],k]; (定义裴波那奇数列通项) rn=(5^(1/2)-1)/2-f[i-1]/f[i];Rn=f[i-1]/f[i];dn=f[i-1]/f[i]-f[i-2]/f[i-1]; Print[i," ",rn," ",Rn," ",dn]; ] t=Table[{i,f[i-1]/f[i]},{i,3,n}] ListPlot[t] 1.3收敛与发散的数列 数列}{1∑=-n i p i 当1>p 时收敛,1≤p 时发散;数列}{sin n 发散。 1.4函数极限与数列极限的关系 用Mathematica 程序

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

第一讲:数列的极限函数的极限与洛必达法则的练习题答案

第一讲:数列的极限函数的极限与洛必达法则的练习题答案 一、单项选择题(每小题4分,共24分) 3. 若()0lim x x f x →=∞,()0 lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞??? ? B . ()()0lim x x f x g x →-=∞??? ? C . ()() 01lim 0x x f x g x →=+ D . ()()0 lim 0x x kf x k →=∞≠ 解: ()()000lim lim x x x x k kf x k f x k →→≠==?∞∞ ∴选D 6.当n →∞时, 1k n 与1k n 为等价无穷小,则k=( ) A .12 B .1 C .2 D .-2 解:2 211sin lim lim 1,21 1n n k k n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分) 8.2112lim 11x x x →??-= ?--? ? 解:原式()()()112lim 11x x x x →∞-∞+--+ 111lim 12 x x →==+ 10 .n =

解:原式n ≡有理化 32n ==无穷大分裂法 11.1201arcsin lim sin x x x e x x -→??+= ?? ? 解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x x →→== 故 原式=1 12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x →=-,则正整数n = 解: ()222200ln 1lim lim sin n n x x x x x x x x →→+?= 20420,lim 02 n x n x n x →<>2,4,n n ∴>< 故3n = 三、计算题(每小题8分,共64分) 14.求0 x → 解:原式有理化 0x →0tan (1cos )1lim (1cos )2 x x x x x →-=?- 0tan 111lim lim 222 x x x x x x →∞→=?==

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

关于数列极限和函数极限解法的解析

关于数列极限和函数极限解法的解析 王雅丽 摘要在数学分析中,极限的知识体系包括数列极限和函数极限。在求解数列极限的方法中,我们从极限的定义出发,根据极限的性质以及相关的定理法则,例如单调有界收敛来论证极限;另外,对于函数极限的求解,文中列出六种类型,根据函数数列的定义、性质得出相关的定理和法则,对于不同类型,采用不同的方法。上述方法对函数概念的理解和加强,以及对极限方法的掌握起很大的帮助作用。 ε-定义单调有界收敛无穷小量络必达法则 关键词数列极限N

早在两千多年前,我们的祖先就已经能够算出正方形,圆形和柱形等几何图形的面积。公元前3世纪刘徽创立割圆术,就是用圆内接正多边形面积这一思想近似的计算圆周率,并指出“割之弥细,所失弥少,割之又割,以致不可割,则于圆和体而无所失矣”在数学分析中,极限是一个核心内容,同时它本身研究问题的工具。极限概念与求极限的运算贯穿了数学分析课程的始终,因此全面掌握极限的方法与技巧是学习数学分析的关键。 1 数列极限 古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”。 其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去。把每天截下部分的长度列出如下(单位为尺):第一天截下12 ,第二天截下 2 12 ……第n 天截下 12 n ,……这样 就得到一个数列{ 12 n } 。只有无穷数列才可能有极限,有限数列无极限.不难看出,数列{ 1 2 n } 的通项 12 n 随着n 的无限增大而无限地接近于0。“无限增大”和“无限地接近”是对极限做了定性的描述, 无限地接近于0说明了当n 无限的增大时数列的第n 项 12 n 与0的距离 102 n -要多小有多小。 下面把任意小量化: 对于 12 ,如果要求 11102 2 2 n n -= < ,只需要1n >即可; 对于 2 12 ,如果要求 2 1110222n n -= < , 只需要2n >即可; 对于 31 2,如果要求 311102 2 2 n n -=<, 只需要3n >即可;...由上可以看出能满足不等式的 n 不是唯一的,这就需要一个一般的任意小的正数来代替特殊的,如12 , 2 12 , 3 12 ... 为此就出现了任意小的正数ε。 对于ε 如果要求 1102 2 n n ε-= <, 只需要1 2log n ε >, 即可; 从数列1 2log N ε ??=???? 项以后的正整数都能满足不等式11022n n ε-=<,通过任意小的正整数

专题十数列极限与函数极限

专题十 数列极限与函数极限 一、选择题 1.(2008年高考·湖北卷)已知m ∈N * , a 、b ∈R ,若0n lim →b x a x)(1m =++,则a ·b=( ) A .-m B .m C .-1 D .1 2.∞→n lim )2n 8641864164141(+++++++++++ 的值为( ) A .1 B .411 C .1811 D .2411 3.若函数?????>+≤+-=1)(x 1 3x 15a 1)(x a 2x x f(x)23在点x=1处连续,则实数a=( ) A .4 B .-41 C .4或-41 D .4 1或-4 4.下列命题:①发果f(x)=x 1,那么∞→x lim f(x)=0;②如果f(x)=1x -,那么f(x)=0;③如果f(x)=2x 2x x 2++,那么2x lim -→f(x)不存在;④如果?????<+≥=0 x 1,x 0x ,x f(x),那么0lim →x f(x)=0,其中真命题是( ) A .①② B .①②③ C .③④ D .①②④ 5.设abc ≠0,∞→x lim 31b ax a cx =++,∞→x lim 43c bx bx ax 22=-+,则∞→x lim a cx bx c bx cx 233+--+的值等于( ) A .4 B .94 C .41 D .4 9 6.设正数a, b 满足2x lim →(x 2+ax-b)=4,则n 1n 1n 1n n 2b a ab a lim ++--+∞→等于( ) A .0 B .41 C .21 D .1 7.把1+(1+x)+(1+x)2+…+(1+x)n 展开成关于x 的多项式,其各项系数和为a n ,则1a 12a lim n n n +-∞→等于( ) A .4 1 B .21 C .1 D .2 二、填空题 8.已知数列的通项a n =-5n+2,其前n 项和为S n ,则2n n n S lim ∞→=________. 9.2x lim →)2 x 14x 4(2---=________.

数列函数极限和函数连续性(推荐文档)

数列、函数极限和函数连续性 数列极限 定义1(N ε-语言):设{}n a 是个数列,a 是一个常数,若0ε?>,?正整数N ,使得当n N >时,都有n a a ε-<,则称a 是数列{}n a 当n 无限增大时的极限,或称{}n a 收敛于a ,记作lim n n a a →+∞ =,或()n a a n →→+∞.这时,也称{}n a 的极限 存在. 定义2(A N -语言):若0A >,?正整数N ,使得当n N >时,都有n a A >,则称 +∞是数列{}n a 当n 无限增大时的非正常极限,或称{}n a 发散于+∞,记作 lim n n a →+∞ =+∞或()n a n →+∞→+∞,这时,称{}n a 有非正常极限,对于,-∞∞的定 义类似,就不作介绍了.为了后面数列极限的解法做铺垫,我们先介绍一些常用定理. 1.2 数列极限求法的常用定理 定理1.2.1(数列极限的四则运算法则) 若{}n a 和{}n b 为收敛数列,则 {}{}{},,n n n n n n a b a b a b +-?也都是收敛数列,且有 ()()lim lim lim , lim lim lim . n n n n n n n n n n n n n n a b a b a b a b →∞→∞ →∞ →∞ →∞ →∞ ±=±?=? 若再假设0n b ≠及lim 0n n b →∞ ≠,则n n a b ?? ???? 也是收敛数列,且有 lim lim /lim n n n n n n n a a b b →∞→∞ →∞ ?? = ???. 定理1.2.2(单调有界定理) 在实数系中,有界的单调数列必有极限.

浅谈数列极限与函数极限在解题中的区别和联系

浅谈数列极限与函数极限在解题中的区别和联系摘要在数学分析中,极限的知识体系包括数列极限和函数极限。在求解数列极限的方法中,我们从极限的定义出发,根据极限的性质以及相关的定理法则,例如单调有界收敛来论证极限;在求解函数极限时,其方法与数列极限有着相同之处,同时又有所区别。本文重点在于分析数列极限与函数极限在解题中的相似之处与不同之处,同时研究数列极限与函数极限的关系。 关键词:数列极限;函数极限;区别;联系

目录 1 数列极限与函数极限在解题中的相似之处 (3) 1.1 定义法在极限解题中的应用 (3) 1.1.1 定义法概述 (3) 1.1.2 定义法解题实例分析 (3) 1.2 迫敛性在极限解题中的应用 (4) 1.2.1 迫敛性概述 (4) 1.2.2 迫敛性解题实例分析 (4) 1.3 积分中值定理在极限解题中的应用 (5) 1.3.1 积分中值定理概述 (5) 1.3.2 积分中值定理实例分析 (6) 1.4 本章小结 (6) 2 数列极限与函数极限在解题中的不同之处 (7) 2.1 存在条件不同 (7) 2.1.1 数列极限存在条件 (7) 2.1.2 函数极限存在条件 (9) 2.2 特殊形式的极限 (10) 2.2.1 数列极限的特殊解法研究 (10) 2.2.3 两个重要形式的函数极限解法研究 (12) 3数列极限与函数极限的关系 (13) 3.1海涅定理 (13) 3.2海涅定理的应用 (14) 4 结论 (16)

1 数列极限与函数极限在解题中的相似之处 数列极限与函数极限在解题过程中,存在着很多的相似之处。主要表现在数列极限与函数极限的解题过程中,其方法的运用方面存在着很多的共同点。下面将重点分析进行数列极限与函数极限的解题过程中,定义法以及利用数列迫敛性在数列极限与函数极限中的运用。 1.1 定义法在极限解题中的应用 1.1.1 定义法概述 数列极限的N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a 。记作: lim n n a a →∞ =。否则称{}n a 为发散数列。 函数极限定义:设n X {}是一个数列,a 是实数,如果对任意给定的ε>0,总存在一个正整数N ,当n N >时,都有n X a -<ε,我们就称a 是数列n X {}的极限。记为lim n n X a →∞ =。 1.1.2 定义法解题实例分析 例. 求证数列极限1 lim 1,n n a →∞ =其中0a >。 证:当1a =时,结论显然成立。 当1a >时,记1 1n a α=-,则0α>,由()1111(1)n n a n n ααα=+≥+=+- 得11 1n a a n --≤,任给0ε>,则当1a n N ε->=时,就有1 1n a ε-<,即11n a ε-<即1lim 1,n n a →∞ = 当 11 1 1 101,1,lim 1,lim 1 lim n n n n n n a b b b a a b →∞→∞→∞ <<=>=∴= =时,令则由上易知 综上,1lim 1,n n a →∞ =0a >

相关主题
文本预览
相关文档 最新文档