当前位置:文档之家› 焦化工艺及副产品回收

焦化工艺及副产品回收

焦化工艺及副产品回收
焦化工艺及副产品回收

焦化工艺及副产品回收

一主要工艺流程简述

焦化厂一般由备煤车间、炼焦车间、煤气净化车间和废水处理车间组成。

1 备煤车间

来自煤码头的炼焦用煤经皮带输送机送至贮配煤槽配煤,然后送粉碎机室粉碎,粉碎后得到的合格煤料经煤塔布料装置送入煤塔中贮存,供焦炉使用。

2 炼焦车间

炼焦煤经计量后由装煤车装入炭化室内,煤料在炭化室内经过高温干馏成为焦炭,并同时产生荒煤气。焦炉加热用的焦炉煤气和高炉煤气由外部管道引入。焦炉加热产生的废气经烟囱排入大气。

当焦炭成熟后,由推焦机推出,再经拦焦机导入焦罐车,焦罐车将焦炭装入干熄炉。在干熄炉中焦炭与惰性气体直接进行热交换,冷却后送到筛贮焦系统。惰性气体经除尘及热交换后循环使用。干熄焦锅炉换热并产生蒸汽, 蒸汽送汽轮发电机组发电。

干熄焦系统检修时,采用备用的CSQ稳态湿法熄焦。热焦炭用推焦机推出,经拦焦机导入熄焦车内,熄焦车送熄焦塔进行湿法熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛贮焦系统。

干熄炉产生的焦尘送入干熄焦地面除尘站除尘后排放。

对于焦炉装煤产生的烟尘使用装煤车的导套密封系统和PROven 压力调节系统相配合,可有效控制装煤过程中烟尘外溢。焦炉出焦时

产生的烟尘送到除尘地面站经除尘后排入大气。

从熄焦装置或焦台运来的焦炭,送至筛贮焦楼,经过筛分后,经汽车外运。

炼焦同时产生的荒煤气则送至煤气净化车间处理。

3 熄焦

熄焦将赤热焦炭冷却到便于运输和贮存温度的焦炉操作过程。不同的熄焦方式直接影响着焦炭生产中的污染物的排放量。目前,使用较广的熄焦工艺有湿法熄焦和干法熄焦。

湿法熄焦是传统工艺,具有工艺结构简单,投资小,废水排放量小的特点。但不能回收焦炭显热,并对环境污染较大。

干熄焦技术,是国家重点推荐鼓励发展的循环经济技术,在钢铁联合企业中应用,不仅能从红焦炭中回收热能产生蒸汽用于发电,还可以提高焦炭质量、降低炼铁焦比。具备节能、环保和提高焦炭质量三大功能。

干法熄焦是一种利用炽热的焦炭和惰性气体直接接触换热,将红焦降温冷却的一种的新型的熄焦工艺。

其工艺流程如下:装满红焦炭的焦罐台车由电机车牵引至焦罐提升井架底部,由焦罐提升机将焦罐提升并送到干熄炉顶,通过炉顶装入装置将焦炭装入干熄炉。在干熄炉中焦炭与惰性气体进行热交换,焦炭冷却至200℃以下,经排焦装置卸至胶带机上,经炉前焦库送到筛焦系统。冷却焦炭的惰性气体由循环风机通过干熄炉底部的供气装置鼓入干熄炉,与红焦炭进行换热,出干熄炉的热惰性气体温度约为

900℃。热的惰性气体经一次除尘器除尘后进入余热锅炉换热,温度降至180~200℃。惰性气体由锅炉出来,再经二次除尘后由循环风机加压经给水预热器冷却至130~150℃进入干熄炉循环使用。

4 煤气净化车间

来自炼焦炉的荒煤气依次经气液分离器、初冷器冷凝后,进入电捕焦油器分离出焦油,然后送脱硫塔脱除H2S,再经鼓风机升压后依次进入喷淋饱和器、终冷塔、洗苯塔,净化后的煤气一部分自用于加热焦炉和管式炉,其余外供各用户。

煤气在冷凝工段分离出的冷凝液及焦油进入机械化氨水分离槽,分离出的焦油送至油库; 氨水一部分做为循环氨水送焦炉喷洒,其余为剩余氨水送蒸氨塔蒸氨,蒸出的氨汽经冷凝冷却器得到浓氨水送脱硫塔后的再生塔。蒸氨废水送污水处理站。

脱硫液从脱硫塔顶喷入,吸收了H2S的溶液从脱硫塔引出进入再生塔。脱硫液再生产生的硫泡沫进入熔硫釜用于生产硫磺产品,再生后贫液循环使用。

喷淋饱和器引出硫铵母液经离心干燥生产硫铵产品。

苯洗涤塔引出的含苯富油送粗苯蒸馏装置,经管式炉加热后进入脱苯塔生产出粗苯等,脱苯后的贫油送洗苯塔循环使用。

备煤、炼焦及煤气净化车间工艺流程示意图分别见图1和图2。

外运

图1 备煤、炼焦车间工艺流程示意图(虚线为备用)

二焦炉煤气利用

1 用导热油回收焦炉荒煤气带出热

从炭化室经上升管逸出的650~700 ℃荒煤气带出热占焦炉支出热的36%。为了冷却高温的荒煤气必须喷洒大量70~75 ℃的循环氨水,高温荒煤气带出热因循环氨水的大量蒸发而浪费。现在正在研发用导热油回收荒煤气带出热,将上升管做成夹套管,导热油通过夹套管与高温荒煤气间接换热,被加热的高温导热油可以去蒸氨,可以用于煤焦油的蒸馏,也可以用于入炉煤的干燥。焦炉荒煤气带出热的回收利用技术主要是开发上升管导热油夹套制造技术和焦炉煤气上升管余热回收装置防止积碳、积焦油技术。

2 用荒煤气带出热热裂解焦炉煤气和重整制氢

在焦炉高温荒煤气中,焦油约占30%(重量)。日本千叶君津实验室用装煤量为80 kg 的炼焦装置进行试验,采用非催化剂部分氧化和蒸汽重整法,用高温荒煤气中焦油制取氢气,充分利用高温荒煤气的热量,并回收转化过程中的煤气热量。试验是将炼焦装置产生的高温荒煤气直接引入焦油转化器中,并喷入O2和蒸汽。其结果是大部分焦油被部分氧化,有效地转化为H2 和CO;出口煤气中的H2 和CO 是入口原料煤气的2~3 倍;再用PSA 法生产纯度到99.9%以上的H2。此法生产的H2成本为0.08~0.09 美元/m3,大约为用PSA 技术从冷焦炉煤气分离H2成本的30%,其效率也比后者高。目前,我国积极支持焦炉煤气高温热裂解制氢和部分氧化重整制氢的课题研究。

3 用荒煤气带出热热裂解焦炉煤气生产合成气

为了充分利用荒煤气带出热,20 世纪90 年代,德国人提出了生产两种产品——焦炭和还原性气体的焦化厂,即高温荒煤气从炭化室逸出后不冷却,直接进入热裂解炉,将焦炉煤气中的煤焦油、粗苯、氨、萘等有机物热裂解成以CO 和H2为主要成分的合成气体。这种合成气体可以合成氨、甲醇,生产二甲醚,也可以直接还原制海绵铁。

日本日立公司于2001 年就开始对焦炉煤气进行无催化氧化重整技术的研究,已经完成小型实验。其出发点是:直接把焦炉炉头的上升管和集气管改造成焦炉煤气重整装置,利用焦炉煤气自身显热(600~700 ℃)和夹带的水分,直接鼓入纯氧,使其发生重整。这实际上就是一种无催化剂部分氧化转化过程,烷烃、焦油和水蒸汽直接发生高温裂解和转化反应。

在焦炉炉头对焦炉煤气进行重整的优点是:1)充分利用焦炉煤气自身显热(占焦炉热支出36%),节能;2)鼓入纯氧对焦炉煤气中烷烃、焦油等进行重整,可大幅度提高H2、CO 成分和调整H2与CO 的比例,有利于后续生产氨、甲醇和二甲醚(DME);3)不产生焦油等副产品,可大大降低生产用水量和污水的排放,减少对环境的污染。

其不足是:1)不回收焦炉煤气里的焦油、粗苯等副产品等于失去了许多宝贵的化学物质;2)焦炉每个炭化室至少有一个上升管,而且管内荒煤气气量波动,压力很低,把它们逐一或分组改造成在高温下工作的重整炉,无论从技术上还是从经济上实施起来都有一定的

难度。

2004 年,日本煤炭能源中心开始进行焦炉煤气重整技术的研发。即在焦炉旁安装一个焦炉煤气重整装置,在1 200~1 250 ℃高温下对焦炉煤气进行重整。此时焦炉煤气中的焦油等有机物可高效转化成合成气;而合成气可用于生产清洁燃料氢气、甲醇和二甲醚等。目前已完成实验室的研发工作,其特点是不使用催化剂,不用对现有焦炉进行改造。使用该技术可节能并减少CO2的排放。原计划2006 年在一座焦炉上进行现场试验,计划在3~4 a 内完成研发工作。

4 焦炉煤气制甲醇

焦炉煤气送入气柜后,经缓冲后送入后续甲醇工段。甲醇工段主要包括压缩、精脱硫、转化、合成和精馏五道工序。

煤气制取甲醇的经济效益预测,据近年化工市场调查,甲醇单价约1500~1800元/ t ,若将我厂(四川省新源煤矿)剩余煤气(1500 万m3/ a)全部用于生产原料制取甲醇。

则甲醇产量:1500 万m3/ t ÷2500Nm3/ t = 6000吨

甲醇年产值:6000t/ a ×1600 元/ t = 960 万元/ a

在建设投资方面,根据甲醇的生产工艺要求,除了煤气净化、甲烷转化装置外,其核心设备是高温加压合成塔。若焦化厂自行解决占地费用,水、电、气等联产联供,可大幅度减少建设资金。甲醇纯利润以20 %计算,工程建设周期一年,投产后6 年可收回资金,经济效益良好。

甲醇作为有机化工起始原料,随着其深加工的衍生物与下游合成产品的快速发展,国内外甲醇的需求量不断增加,其市场发展前景广阔,

为焦化厂煤气的综合利用创造了良好机遇。

5 利用焦炉煤气发电

四川省新源煤矿已建成投产的热电厂,装机发电能力 2 ×6 KKwh。锅炉用燃料全部由矿原煤提供,与焦化厂直线距离约2500m。是焦炉煤气输配较理想的范围,若将焦化厂剩余煤气全部供给热电厂替代部分煤炭发电,是节约生产成本的有效途径。

剩余焦炉煤气:1500 万m3/ a

折标煤系数:0. 628kg/ m

标煤价格以150 元/ t 计,那么,全年发电节约生产成本:115 ×108 ×0. 628 ×150/ 1000 = 140 万元

初步概算,两厂之间的煤气输配工程,包括管道辅设、排油、水封、贮气柜、加压风机、占地费用等建设资金需约100~120 万元。虽然煤气输配工程的质量要求高,但施工难度不大,在资金保证的前提下,建设周期较短,6~10 个月即可建成使用。投运后,一年可全部回收建设资金。利用焦炉煤气发电,不仅直接节省生产成本费用,还可创造巨大的间接经济效益和良好的社会效益。

(1) 煤气的使用,可节约上万吨煤炭长距离运输费用约12 万元。

(2) 焦炉煤气的燃烧热值高,便于温度调节,可提高锅炉的技术操作水平、降低劳动强度。

(3) 煤气易完全燃烧,废气量少,相比煤炭燃烧没有固体的废渣,大气污染程度小,可明显降低热电厂的环境污染,具有良好的社会效益。

6 焦炉煤气制合成氨

1 工艺路线

目前可供选择的工艺路线有以下两种:

(1)变压吸附提氢工艺

荒煤气经净化(化产回收)后全部进入变压吸附提氢,氢气经加压至16Kg 送往合成氨,解吸气(CH 4)返回焦炉作为炼焦热源。工艺流程如下:

(2)甲烷转化工艺

荒煤气经净化(化产回收)后,50%净煤气返回焦炉作为炼焦热源,其余净煤气经加压转化后作为合成氨原料气。工艺流程如下:

2 年产70万吨焦化厂投资效益汇总表

(1)变压吸附工艺

(2)转化工艺

三煤焦油利用

目前我国煤焦油主要用来加工生产轻油、酚油、萘油及改质沥青等,再经深加工后制取苯、酚、萘、蒽等多种化工原料,虽然产品数量较多、用途广泛,但是相对煤焦油中的500 多种化合物来讲,还是少得很。专家认为,煤焦油简单加工后的利用价值不大,国内外普遍看好的是其深加工精制产品的应用。据介绍,国内外煤焦油加工工艺大同小异,都是脱水、分馏,煤焦油加工的主要研究方向是增加产品品种、提高产品质量等级、节约能源和保护环境。

目前(2009年)国内现有大中型煤焦油加工企业46 家,其中单套年加工规模在10 万吨以上企业25 家,年加工能力为540 万吨,均属于简单加工,附加值不高。其中宝钢化工公司是国内最大的煤焦油加工企业,4 套加工装置能力为60 万吨/ 年,山西焦化两套装置

能力为35 万吨/ 年,鞍钢化工厂加工能力为30 万吨/ 年,民企山西宏特煤化工有限公司目前也已形成40 万吨/ 年的加工能力。一个年产百万吨的焦化企业,年产煤焦油只有四万吨左右,因此煤焦油加工企业必须要用两家以上的煤焦油才能满足生产,而不同厂家的煤焦油组成的不同会造成煤焦油加工的产品和工艺都有所不同,给煤焦油加工企业带来一定的影响。

四粗苯精制

苯是重要的化工原料,其主要来源之一是煤高温裂解后得到的焦化粗苯。在精制方面,目前加氢精制法和萃取精制法。

1.加氢精制工艺

在一定的温度、压力及催化剂条件下,通过与氢气进行发应,将粗苯中的不饱和化合物转化为饱和的化合物;进行脱硫、脱氮、脱氧反应,把原料有机物中的S、N、O,转化为H2S、NH3、H:O等;将非芳烃化合物裂解成低分子的气体。主要的工艺有高温加氢和低温加氢。

(1) 高温加氢工艺——莱托(Lito1)法

上海宝钢于20世纪80年代从日本引进了美国胡德利公司的第一套高温加氢工艺,也是目前国内唯一的粗苯加氢工艺,其工艺流程见图1。

图1 Litol法工艺流程示意图

粗苯经预分馏塔分离为重苯和轻苯,轻苯经高压泵进入蒸发器,与循环氢气混合后,芳烃蒸汽和氢气混合物从塔顶出来,进人预反应器,在约6.0MPa,250℃,Co-Mo催化剂作用下,除去高温时

易聚合的苯乙烯等不饱和组分。预反应产物经加热后,进入主反应器,在约6.0MPa,620℃,Cr203—Al2O3,催化剂作用下,进行脱硫、脱氮、脱氧和脱烷基反应,故只能获得一种产品纯苯,产率高达l14%。反应产物分离后,液相组分经稳定塔脱除H2S、低碳烃等组分,塔底产品加氢油经白土塔,脱出其中的微量不饱和组分后,进入苯塔,塔顶得到含有噻吩

为了循环利用氢气,粗苯加氢后的尾气必须经过一系列处理,包括脱硫(MEA法)、甲苯洗净、改质变换与变压吸附等工序,最终获得99.9%的氢气返回系统,供加氢之用。

(2)低温加氢工艺——K.K.法

该工艺是由德国BASF公司开发,Uhde公司改进,在低温(280~350℃)、低压(2.4 MPa)、催化剂(Co—Mo和Ni—Mo)作用下进行的催化加氢过程呢,工艺流程见图2.

图2 K.K.法工艺流程示意图

粗苯与循环氢混合后,进入连续蒸发器,绝大多数粗苯被蒸发,抑制了高沸物在换热器及重沸器表面的聚合结焦,苯蒸汽与循环氢混合物进入蒸发塔再次蒸发后,进人预反应器,在有活性Ni—Mo催化剂的作用下,把容易聚合的物质如双烯烃、苯乙烯加氢变为单烯烃。单烯烃进入主反应器中,在高选择性Co—Mo催化剂作用下,发生加氢反应,生成相应的饱和烃。硫化物主要是噻吩、氮化物及氧化物被加氢转化成烃类、硫化氢、水及氨,同时抑制芳烃的转化,芳烃损失率小于0.5%。反应产物经分离后,液相组分经稳定塔脱除H2S、NH3等气体,塔底得到含噻吩<0.5 mg/kg的加氢油。加氢油经预热器预热后进人稳定塔,把加氢过程中产生的H2S及其他气体从稳定塔顶排出。加氢油经END(N-甲酰吗啉)萃取蒸馏,把非芳烃分离出去。产物进入预蒸馏塔,经连续精馏,得到苯、甲苯(BT馏分)及混合二甲苯(XS)馏分。二甲苯中非芳烃的质量分数小于2.5%。再次进入二甲苯塔。塔顶出来少量的C8非芳烃和乙苯,侧线采出二甲苯,塔底出来C9馏分。由于粗苯对组成变化大的原料适应性不强,连续蒸发器易堵,采用END两相萃取精馏,不易操作,产品苯、甲苯、二甲苯的总精制

率为99.8%。

(3)国产化粗苯加氢精制法

基于酸洗法的诸多缺点,我国自20世纪70年代开始焦化粗苯加氢精制工艺的研究,开发出中温加氢法和低温加氢法。中温加氢法的优点在于不用萃取蒸馏就能得到高纯苯;20世纪80年代,国产化的低温加氢技术优化了德国Uhde公司的加氢工艺,操作温度(260℃) 和压力(2.8~3.5MPa)较低,设备和管道材质容易选择,可全部国产化,该工艺由加氢精制和萃取蒸馏两部分组成,其工艺过程为粗苯经预蒸馏塔分离成轻苯和重苯,然后对轻苯进行加氢,为防止催化剂中毒而除去重苯。轻苯与循环氢混合,经加热器加热后,以液液两相状态进入一级反应器,使苯乙烯和二烯烃加氢饱和,加氢过程中产生的H2S 及其他气体,从稳定塔顶排出。加氢油经SED(环丁砜)三苯萃取蒸馏工艺,把非芳烃分离出去。再经连续精馏,可以得到产品苯、甲苯及混合二甲苯。二甲苯中非芳烃的质量分数小于2.5%,产品分离纯度高达99.999%,可满足出口和下游高端产品苯乙烯生产的要求。此工艺对国内粗苯原料的适应性强,投资省,建设周期短,其流程见图3。

图3 国产粗苯低温加氢工艺流程图

2粗苯萃取精制法

2007年,陕西省化工设计院根据我国焦化粗苯中的噻吩的含量高达0.2%~2%,噻吩又是一种非常昂贵的化工原料,结合其它粗苯精制方法的优缺点,设计完成了8万t/a的粗苯萃取精制新工艺,2008年中旬,完成安装调试,运行正常。该工艺为我国具有自主知识产权的第3条粗苯精制工艺,不仅可以得到合格的三苯产品,而且可以得到昂贵的化工原料——纯度≥99%的噻吩。又克服了酸洗和加氢工艺的缺点,其工艺流程见图4。

图4 粗苯萃取精制工艺流程图

粗苯经预分馏塔将原料中的轻组分二硫化碳、环戊二烯及重组分古马隆、萘、茚等分离出去,其中的苯组分将进入苯精制与噻吩回收精制系统,通过萃取剂的作用将苯馏分中与苯沸点相近的噻吩萃取出来,最后精制得到纯苯和商品级噻吩,通过噻吩精制塔得到成品噻吩;甲苯、二甲苯组分将进入甲苯、二甲苯精制系统,主要精制、提取粗苯中的甲苯和二甲苯,废水处理系统将各分馏系统分出的水相进行处理,一方面可回收少量苯、甲苯、噻吩等有用组分,同时处理后的水可循环利用。

焦化厂生产工艺流程及说明教学内容

焦化生产工艺及部分焦化专用阀门 焦化厂主要生产车间:备煤车间、炼焦车间、煤气净化车间及其公辅设施等,各车间主要生产设施如下表所示: 3、炼焦的重要意义 由高温炼焦得到的焦炭可供高炉冶炼、铸造、气化和化工等工业部门作为燃料和原料;炼焦过程中得到的干馏煤气经回收、精制可得到各种芳香烃和杂环混合物,供合成纤维、医药、染料、涂料和国防等工业做原料;经净化后的焦炉煤气既是高热值燃料,也是合成氨、合成燃料和一系列有机合成工业的原料。因此,高温炼焦不仅是煤综合利用的重要途径,也是冶金工业的重要组成成分。 政策性风险煤炭是我国最重要的能源之一,在国民经济运行中处于举足轻重的地位,焦化行业属于国家重点扶持的行业。为建立大型钢铁循环结构,在钢铁的重要生产基地和炼焦煤生产基地建设并经营现代化大型焦化厂符合我国产业政策和经济结构调整方向,也是焦化工业发展的一个前景。 五、原料煤的准备 备煤车间的生产任务是给炼焦车间提供数量充足、质量合乎要求的配合煤。其工艺流程为:原料煤→受煤坑→煤场→斗槽→配煤盘→粉碎机→煤塔。 1、煤的接收与储存

原料煤一般以汽车火车的方式从各地运输过来,邯钢焦化厂的原料煤主要来自邢台的康庄、官庄,峰峰和山西等地。当汽车、火车到达后,与受煤坑定位后,用螺旋卸煤机把煤卸到料仓里,当送料小车开启料仓开口后,用皮带把煤料运到规定位置。注意:每个料仓一次只能盛放同一种类别的煤。 为了保证焦炉的连续生产和稳定焦炉煤的质量,应根据煤质的类别用堆取料机把运来的煤卸放在煤场的各规定位置。邯钢焦化厂的备煤车间用的气煤、肥煤、焦煤和瘦煤四种,按规定分别堆放在煤场的五个区。 2、煤原料的特性及配煤原则 ①气煤气煤的煤化程度比长焰煤高,煤的分子结构中侧链多且长,含氧量高。在热解过程中,不仅侧链从缩合芳环上断裂,而且侧链本身又在氧键处断裂,所以生成了较多的胶质体,但黏度小,流动性大,其热稳定性差,容易分解。在生成半焦时,分解出大量的挥发性气体,能够固化的部分较少。当半焦转化成焦炭时,收缩性大,产生了很多裂纹,大部分为纵裂纹,所以焦炭细长易碎。 在配煤中,气煤含量多,将使焦炭块度降低,强度低。但配以适当的气煤,可以增加焦炭的收缩性,便于推焦,又保护了炉体,同时可以得到较多的化学产品。由于中国气煤储存量大,为了合理的利用炼焦煤的资源,在炼焦时应尽量多配气煤。 ②肥煤肥煤的煤化程度比气煤高,属于中等变质程度的煤。从分子结构看,肥煤所含的侧链较多,但含氧量少,隔绝空气加热时能产生大量的相对分子质量较大的液态产物,因此,肥煤产生的胶质体数量最多,其最大胶质体厚度可达25mm以上,并具有良好的流动性,且热稳定性也好。肥煤胶质体生成温度为320℃,固化温度为460℃,处于胶质体状态的温度间隔为140℃。如果升温速度为3℃/min,胶质体的存在时间可达50min,因此决定了肥煤黏结性最强,是中国炼焦煤的基础煤种之一。由于挥发性高,半焦的热分解和热缩聚都比较剧烈,最终收缩量很大,所以生成焦炭的类问较多,又深又宽,且多以横裂纹出现,故易碎成小块,耐磨性差,高挥发性的肥煤炼出的焦炭的耐磨强度更差一些。肥煤单独炼焦时,由于胶质体数量多,又有一定的黏结性,膨胀性较大,导致推焦困难。 在配煤中,加入肥煤后,可起到提高黏结性的作用,所以肥煤是炼焦配煤中的重要组分,并为多配入黏结性较差的煤提供了条件。

焦化废水处理方案

第二章方案设计 2.1 概述 2.1.1 工程概况 ****焦化污水处理工程,焦化厂在生产过程中产生有毒害污水及部分生活污水,处理后达到《炼焦生产设计技术规范》的要求,并且全部用于熄焦,不外排达到零排放。 2.1.2 设计依据 (1)****焦化厂的提供的原始资料; (2)提供每天产生的废水水质、水量等基本资料; (3)《炼焦生产设计技术规范》要求; (4)《室外排水设计规范》GBJ14-87; (5)《建筑给排水设计规范》GBJ15-88; (6)《城市区域环境噪声标准》GB3096-93; (7)《工业自动化仪表工程施工及验收规范》(GBJ93-86); (8)《给水排水工段结构设计规范》(GBJ69-84); 2.1.3 设计范围 2.1. 3.1本改造工程设计范围包括废水处理站的工艺、设备制造、安装调试、电气与自控等专业的内容。 2.1. 3.2 电线、电缆以污水处理站设备电控柜为交接点。 2.1.4 设计原则

(1)采用成熟、可靠的废水处理工艺,确保处理出水的各项指标达到国家的有关 排放标准(氰化物不能处理达标)。 (2)废水处理设施力求占地面积小,工程投资省,运行能耗低,处理费用少。 (3)废水处理设施在运行上有较大的灵活性和可调节性,以适应水质水量的变化, 同时设置事故应急排放管道,供紧急、特殊情况下使用; (4)采用性能稳定,技术先进的控制系统,主要部分实现自动化管理,减轻工人 劳动强度,使废水处理工程出水稳定,易操作,易管理,易维护。 (5)设计时充分考虑废水处理系统配套设备的减振、降噪措施,废水处理过程中 产生的剩余污泥经好氧消化稳定后浓缩处理,再经板框压滤机压成泥饼含水率低利于装运,避免产生二次污染。 2.1.5 其他配套条件 2.1.5.1 蒸氨塔(由业主委托化工设计院进行设计) 焦化废水中含有剩余氨水,废水中NH3-N 很高,必须进行蒸氨预处理,并且要加碱脱除固定氨。其目的一是为了回收剩余的NH3-N,充分利用资源;目的二是将焦化废水中的NH3-N 浓度降低至200mg/L 以下,避免对后续生化处理产生不利影响。高浓度的进水NH3-N会导致:①硝化菌负荷过高,活性受到抑制;②耗氧量大而出现供氧量不足,导致硝化过程不彻底,出水NH3-N 超标; ③为保证供氧充足而导致能耗高;④碳酸钠消耗量太大,从而导致运行成本很高。蒸氨废水中NH3-N 浓度决定于蒸氨塔的处理效率,蒸氨塔效率越高,废水中NH3-N 浓度越低,处理难度和能耗也就越低。

焦化厂生产工序及工艺标准经过流程图

焦化厂生产工序及工艺流程 焦化厂的生产车间由备煤筛焦车间、炼焦车间、煤气净化车间及相配套的公用工程组成。产品焦炭和副产品煤焦油、硫膏、硫铵、粗苯等外售。焦炉煤气经净化后,部分返回焦炉和化产系统作为燃料气,剩余煤气全部外供发电用燃料气。 焦化厂主要生产工序包括:备煤,炼焦、熄焦,筛贮焦,冷鼓、电捕、脱硫及硫回收、蒸氨、硫铵、洗脱苯等工序。 洗精煤—备配煤—炼焦—熄焦—筛贮焦—煤气净化及化产回收—煤气外送。生产工序如下图所示: 洗精煤 去管式炉

净化煤气 外供燃料气 1. 备配煤工序 备配煤是焦化工程的第一道工序,主要是负责洗精煤的贮运、配煤、粉碎、输送,为焦炉提供合格原料。 备配煤工序主要由储煤场及地下配煤槽、粉碎机楼和胶带机通廊及转运站等组成。 2. 炼焦、熄焦工序 炼焦、熄焦是焦化工程的第二步工序,也是最核心的工艺,主要负责将合格的配合精煤采用高温干馏工艺炼成焦炭,并采用湿法熄焦工艺将焦炭熄火降温。炼焦过程副产荒煤气。 焦化厂炼焦、熄焦工序包括1#、2#焦炉、煤塔、间台、端台、炉门修理站、推焦杆及煤槽底板更换站、装煤出焦除尘地面站、熄焦系统、熄焦塔、晾焦台、粉焦沉淀池、熄焦泵房、烟囱及相应配套焦炉机械。 3. 筛贮焦工序 筛贮焦是焦化工程的第三步工序,筛贮焦工序主要负责将炼焦工序熄火的焦炭进行筛分、输送、储存。焦炭筛分为>35mm、35-15mm、

<15mm三个级别外售。 4. 冷凝鼓风工序 冷凝鼓风工序的主要任务是对来自焦炉的荒煤气进行冷凝冷却、加压,脱除煤气中的萘及焦油雾,焦油与氨水的分离贮存及焦油、循环氨水、剩余氨水的输送等。 5. 脱硫及硫回收工序 脱硫及硫回收工序的任务是将来自冷凝鼓风工序焦炉煤气中所含各种硫化物和氰化物脱除,使煤气中的硫化氢含量脱至200mg/Nm3以下送出。浮选出的硫泡沫经熔硫釜连续熔硫,副产硫磺外售。 6. 蒸氨工序 蒸氨工序的任务是将冷鼓来的剩余氨水在蒸氨塔中用蒸汽蒸出,蒸出的氨汽经氨分缩器冷却,冷凝下来的液体入蒸氨塔顶作回流,未冷凝的氨汽用循环水冷凝成浓氨水送脱硫工序作为脱硫补充液。 7. 硫铵工序 硫铵工序的任务是将来自冷鼓工序的煤气进入硫铵饱和器与硫酸接触吸收煤气中的氨,并生成硫铵,可将煤气中的氨含量降至不大于0.05g/Nm3,同时生成含量大于98%,粒度约为0.5mm的硫铵产品。 8. 终冷、洗脱苯工序 本工序包括终冷、洗苯、脱苯三部分。终冷为焦炉煤气的最终冷却,主要是将硫铵工序来的煤气冷却到25~27℃后去洗苯塔,温度

硫磺回收工艺介绍

目录 第一章总论 (3) 1.1项目背景 (3) 1.2硫磺性质及用途 (4) 第二章工艺技术选择 (4) 2.1克劳斯工艺 (4) 2.1.1MCRC工艺 (4) 2.1.2CPS硫横回收工艺 (5) 2.1.3超级克劳斯工艺 (6) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (9) 2.2.1碱洗尾气处理工艺 (9) 2.2.2加氢还原吸收工艺 (13) 2.3尾气焚烧部分 (13) 2.4液硫脱气 (14) 第三章超级克劳斯硫磺回收工艺 (15) 3.1工艺方案 (15) 3.2工艺技术特点 (15) 3.3工艺流程叙述 (15) 3.3.1制硫部分 (15) 3.3.2催化反应段 (15) 3.3.3部分氧化反应段 (16) 3.3.4碱洗尾气处理工艺 (17) 3.3.5工艺流程图 (17) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (18) 3.4.3尾气处理系统中 (18) 3.5物料平衡 (19)

3.6克劳斯催化剂 (19) 3.6.1催化剂的发展 (19) 3.6.2催化剂的选择 (21) 3.7主要设备 (21) 3.7.1反应器 (21) 3.7.2硫冷凝器 (21) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (22) 3.7.5废热锅炉 (22) 3.7.6酸性气分液罐 (22) 3.8影响Claus硫磺回收装置操作的主要因素 (23) 3.9影响克劳斯反应的因素 (24) 第四章工艺过程中出现的故障及措施 (26) 4.1酸性气含烃超标 (26) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (28)

(现场管理)炼焦车间工艺流程

1.炼焦车间 1.1概述 本工程炼焦车间采用4×55孔JNDK55-05型5.5m单热式捣固焦炉。单U形集气管(设在焦侧),双吸气管。两个2×55孔炉组布置在一条中心线上。在每个炉组机侧设一个双曲线斗槽的煤塔。装煤除尘采用双U形导烟管的装煤导烟车(CGT车),将装煤烟尘导到n+2和n-1炭化室。出焦除尘设地面站,采用皮带小车式除尘拦焦机。每2×55孔焦炉配一套新型湿法熄焦系统和预留一套干熄焦装置位置。 1.2炼焦基本工艺参数 炭化室孔数4×55 孔 每孔炭化室装煤量(干) 40.6 t 焦炉周转时间25.5 h 焦炉年工作日数365 d 焦炉紧张操作系数 1.07 装炉煤水分10% 煤气产率330 m3/t干煤 全焦率75% 焦炉加热用煤气低发热值: 焦炉煤气17900kJ/m3 装炉煤水份为7%时炼焦干煤相当耗热量 焦炉煤气加热时2250kJ/kg

由备煤车间送来的能满足炼焦要求的配合煤装入煤塔。通过摇动给料器将煤装入装煤推焦机的煤箱内(下煤不畅时,采用风力震煤措施),并将煤捣固成煤饼,装煤推焦机按作业计划从机侧炉门送入炭化室内。煤饼在炭化室内经过一个结焦周期的高温干馏炼制成焦炭和荒煤气。 炭化室内的焦炭成熟后,用装煤推焦机推出,经拦焦机导入熄焦车内,由电机车牵引熄焦车至熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛贮焦工段进行筛分。 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管,桥管进入集气管,约800℃左右的荒煤气在桥管内被氨水喷洒冷却至85℃左右。荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油同氨水一起经吸煤气管道送入煤气净化车间。 焦炉加热用的焦炉煤气,由外部管道架空引入。分别进入每座焦炉的焦炉煤气经预热器预热至45℃左右送入地下室,通过下喷管把煤气送入燃烧室立火道与从废气开闭器进入的空气汇合燃烧。燃烧后的废气通过立火道顶部跨越孔进入下降气流的立火道,再经过蓄热室,由格子砖把废气的部分显热回收后经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱,排入大气。 上升气流的煤气和空气与下降气流的废气由交换传动装置定时进行换向。

硫磺回收工艺介绍

硫磺回收工艺介绍

————————————————————————————————作者:————————————————————————————————日期:

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 (2) 1.2硫磺性质及用途2? 第二章工艺技术选择2? 2.1克劳斯工艺 (2) 2.1.1MCRC工艺2? 2.1.2CPS硫横回收工艺2? 2.1.3超级克劳斯工艺2? 2.1.4三级克劳斯工艺....................................................... 2 2.2尾气处理工艺 (2) 2.2.1碱洗尾气处理工艺 (2) 2.2.2加氢还原吸收工艺 (2) 2.3尾气焚烧部分2? 2.4液硫脱气........................................................................................ 2第三章超级克劳斯硫磺回收工艺. (2) 3.1工艺方案 (2) 3.2工艺技术特点?2 3.3工艺流程叙述 (2) 3.3.1制硫部分 (2) 3.3.2催化反应段............................................ 错误!未定义书签。 3.3.3部分氧化反应段....................................... 错误!未定义书签。 3.3.4碱洗尾气处理工艺 (2) 3.3.5工艺流程图2? 3.4反应原理 (2) 3.4.2制硫部分一、二级转化器内发生的反应: (2)

焦化厂主要生产车间工艺

焦化厂主要生产车间:备煤车间、炼焦车间、煤气净化车间及其公辅设施等,各车间主要生产设施如下表所示:序号系统名称主要生产设施 1 备煤车间煤仓、配煤室、粉碎机室、皮带机运输系统、煤制样室 2 炼焦车间煤塔、焦炉、装煤设施、推焦设施、拦焦设施、熄焦塔、筛运焦工段(包括焦台、筛焦楼) 3 煤气净化车间冷鼓工段(包括风机房、初冷器、电捕焦油器等设施);脱氨工段(包括洗氨塔、蒸氨塔、氨分解炉等设施);粗苯工段(包括终冷器、洗苯塔、脱苯塔等设施) 4 公辅设施废水处理站、供配电系统、给排水系统、综合水泵房、备煤除尘系统、筛运焦除尘系统、化验室等设施、制冷站等 3、炼焦的重要意义由高温炼焦得到的焦炭可供高炉冶炼、铸造、气化和化工等工业部门作为燃料和原料;炼焦过程中得到的干馏煤气经回收、精制可得到各种芳香烃和杂环混合物,供合成纤维、医药、染料、涂料和国防等工业做原料;经净化后的焦炉煤气既是高热值燃料,也是合成氨、合成燃料和一系列有机合成工业的原料。因此,高温炼焦不仅是煤综合利用的重要途径,也是冶金工业的重要组成成分。政策性风险煤炭是我国最重要的能源之一,在国民经济运行中处于举足轻重的地位,焦化行业属于国家重点扶持的行业。为建立大型钢铁循环结构,在钢铁的重要生产基地和炼焦煤生产基地建设并经营现代化大型焦化厂符合我国产业政策和经济结构调整方向,也是焦化工业发展的一个前景。五、原料煤的准备备煤车间的生产任务是给炼焦车间提供数量充足、质量合乎要求

的配合煤。其工艺流程为:原料煤→受煤坑→煤场→斗槽→配煤盘→粉碎机→煤塔。 1、煤的接收与储存原料煤一般以汽车火车的方式从各地运输过来,邯钢焦化厂的原料煤主要来自邢台的康庄、官庄,峰峰和山西等地。当汽车、火车到达后,与受煤坑定位后,用螺旋卸煤机把煤卸到料仓里,当送料小车开启料仓开口后,用皮带把煤料运到规定位置。注意:每个料仓一次只能盛放同一种类别的煤。为了保证焦炉的连续生产和稳定焦炉煤的质量,应根据煤质的类别用堆取料机把运来的煤卸放在煤场的各规定位置。邯钢焦化厂的备煤车间用的气煤、肥煤、焦煤和瘦煤四种,按规定分别堆放在煤场的五个区。 2、煤原料的特性及配煤原则①气煤气煤的煤化程度比长焰煤高,煤的分子结构中侧链多且长,含氧量高。在热解过程中,不仅侧链从缩合芳环上断裂,而且侧链本身又在氧键处断裂,所以生成了较多的胶质体,但黏度小,流动性大,其热稳定性差,容易分解。在生成半焦时,分解出大量的挥发性气体,能够固化的部分较少。当半焦转化成焦炭时,收缩性大,产生了很多裂纹,大部分为纵裂纹,所以焦炭细长易碎。在配煤中,气煤含量多,将使焦炭块度降低,强度低。但配以适当的气煤,可以增加焦炭的收缩性,便于推焦,又保护了炉体,同时可以得到较多的化学产品。由于中国气煤储存量大,为了合理的利用炼焦煤的资源,在炼焦时应尽量多配气煤。②肥煤肥煤的煤化程度比气煤高,属于中等变质程度的煤。从分子结构看,肥煤所含的侧链较多,但含氧量少,隔绝空气加

硫磺回收装置操作手册

文件编号 MZYC-AS-ZY.013-2007(A/0) 受控状态受控 发放编号——————————————— 硫磺回收装置 操作手册 中国神华煤制油有限公司煤制油厂 二〇〇七年

操作手册编审表 编制: 车间审核: 车间主任: 汇审 消防气防队: 技术监督部: 机动部: 安全生产部: 审批:

目录 第1章装置正常开工方案 (1) 1.1开工准备及注意事项 (2) 1.2装置吹扫、贯通、气密 (2) 1.3系统的烘干 (10) 1.4催化剂及其填料填装 (13) 1.5装置投料步骤及关键操作 (15) 1.6装置正常开车步骤及其说明 (19) 1.7装置正常开工盲板表 (20) 第2章装置停工方案 (20) 2.1正常停工方案 (21) 2.2非正常停工方案(紧急停工方案) (28) 第3章事故处理预案 (29) 3.1事故处理的原则 (30) 3.2原料、燃料中断事故处理 (30) 3.3停水事故处理 (32) 3.4停电及晃电 (34) 3.5净化风中断 (36) 3.6其它 (37) 3.7DCS故障处理 (39) 3.8关键设备停运(风机) (40) 第4章装置冬季防冻凝方案 (40) 4.1伴热线流程及现场编号 (41) 4.2防冻凝方案 (41) 4.3相关物料及带水物料管线冬季防冻凝措施 (41) 4.4间断输送物料的管线防冻凝措施 (42) 第5章岗位操作法 (42) 5.1正常及异常操作法 (43) 5.2单体设备操作法 (54) 5.3高温掺合阀操作法 (63) 5.4制硫燃烧燃烧器的操作 (64) 附表一硫磺装置盲板一览表 (68) 附图―硫磺回收装置伴热流程图 (70)

焦化厂生产工序及实用工艺流程图.doc

标准文档 焦化厂生产工序及工艺流程 焦化厂的生产车间由备煤筛焦车间、炼焦车间、煤气净化车间及相配套的公用工程组成。产品焦炭和副产品煤焦油、硫膏、硫铵、粗苯等外售。焦炉煤气经净化后,部分返回焦炉和化产系统作为燃料气,剩余煤气全部外供发电用燃料气。 焦化厂主要生产工序包括:备煤,炼焦、熄焦,筛贮焦,冷鼓、电捕、脱硫及硫回收、蒸氨、硫铵、洗脱苯等工序。 洗精煤—备配煤—炼焦—熄焦—筛贮焦—煤气净化及化产回收—煤气外送。生产工序如下图所示: 洗精煤 筛储焦熄焦焦炉 回炉煤气 焦炭外运荒煤气 锅炉 冷鼓工序 焦油外售 脱硫工序 硫膏外售 制冷站 硫铵工序 硫铵外售 去管式炉 粗苯外售洗脱苯工序 净化煤气 净化后煤气 外供燃料气

1.备配煤工序 备配煤是焦化工程的第一道工序,主要是负责洗精煤的贮运、配煤、粉碎、输送,为焦炉提供合格原料。 备配煤工序主要由储煤场及地下配煤槽、粉碎机楼和胶带机通廊 及转运站等组成。 2.炼焦、熄焦工序 炼焦、熄焦是焦化工程的第二步工序,也是最核心的工艺,主要 负责将合格的配合精煤采用高温干馏工艺炼成焦炭,并采用湿法熄焦工艺将焦炭熄火降温。炼焦过程副产荒煤气。 焦化厂炼焦、熄焦工序包括1#、2#焦炉、煤塔、间台、端台、炉 门修理站、推焦杆及煤槽底板更换站、装煤出焦除尘地面站、熄焦系 统、熄焦塔、晾焦台、粉焦沉淀池、熄焦泵房、烟囱及相应配套焦炉 机械。 3.筛贮焦工序 筛贮焦是焦化工程的第三步工序,筛贮焦工序主要负责将炼焦工 序熄火的焦炭进行筛分、输送、储存。焦炭筛分为>35mm、 35-15mm、<15mm三个级别外售。 4.冷凝鼓风工序 冷凝鼓风工序的主要任务是对来自焦炉的荒煤气进行冷凝冷却、 加压,脱除煤气中的萘及焦油雾,焦油与氨水的分离贮存及焦油、循

焦化生产工艺流程

焦化生产工艺流程 焦化生产 炼焦生产是以一定特性的洗精煤为原料,在焦炉中密闭高温干馏,使之分解炭化生产出焦炭和焦炉煤气,再通过各种化工单元,对焦炉煤气进行净化,并回收其中的焦油、硫铵、粗苯、硫磺等化工产品。 一、备煤车间 1、概述 备煤主要由煤场、受煤坑及转运站、粉碎机室及高架栈桥等设施组成。用以完成煤场内煤的配合、堆放、上料、粉碎等任务,最终得到按一定比例配合好的炼焦煤,运送到焦炉煤塔中备用。本工程备煤系统采用两级粉碎的工艺方案。备煤系统能力是按年产90万吨的捣固焦炉生产能力而配套设计的。备料、粉碎及配煤能力为360t/h。 2、工艺流程 进厂的洗精煤按不同煤种卸在各自的堆场、分类堆存。贮煤塔需要供煤时,精煤堆场的各种煤分别由装载机将煤送入各自受煤坑内的受煤漏斗,受煤坑下部设有可调容积式给料机将煤送入破碎机,可调容积式给料机控制各种煤量大小,通过控制给煤速度达到精确配煤目的。此工艺既提高了配煤效果,又降低了投资。粘结性差的本地煤和晋城无烟煤通过受煤坑、可调容积式给料机进入PFCK可逆反击锤式破碎机粉碎至小于1mm粒度达到75%以上。粉碎后的弱粘结煤再与未经破碎的焦煤共同进入PFJ反击式破碎机再次破碎并混合,将其中的焦煤粉碎至 3mm以下。完成粉碎、混合、粉碎三个过程的配合煤最后由带式输送机将煤运至贮煤塔,供焦炉炼焦使用。 备煤工艺的关键在于将粘结差的本地煤和无烟煤由PFCK可逆反击锤式破碎机进行高细度破碎后再与未经粉碎的焦煤共同进入粗粒度的PFJ反击式破碎机进行粉碎。如此设计的目的是使弱粘结煤的粒度小于主焦煤的粒度,粉碎并混合后,不同粒度的煤料能够形成更合理的颗粒级配,提高煤料的堆密度,并使主焦煤与弱粘结煤或不粘结煤能够项目包裹,从而达到更好的捣固和结焦效果。该技术是实现大量采用当地廉价的非炼焦煤生产优质冶金焦炭的关键之一。 —1—. 二、焦化车间 1、概述 炼焦车间主要由2×45孔550-D型,炭化室高5.5m蓄热室式捣固焦炉,双4t。100×10联火道、废气循环、下喷、单热式焦炉及配套设施组成。年产焦炭采用湿法熄焦。炼焦车间主要用以完成启闭炉门、捣固煤饼、装煤、炼焦、推焦、拦

第十四章 硫磺回收装置

第十四章硫磺回收装置 第一节装置概况及特点 一、装置概况 硫磺回收装置是环保装置,它是洛阳分公司500万吨/年炼油工程主体生产装置之一。该装置主要处理液态烃、干气脱硫酸性气及含硫污水汽提酸性气等,其产品是国标优等品工业硫磺。 二、装置组成及规模 硫磺回收(Ⅰ)设计生产能力为3000t/a,1987年8月开工,2001年4月扩能改造至1.0×104t/a;硫磺回收(Ⅱ)设计生产能力为5650t/a,1997年9月开工,2000年3月扩能至1.0×104t/a。 三、工艺流程特点 两套硫磺回收装置均采用常规克劳斯工艺,采用部分燃烧法,即将全部酸性气引入酸性气燃烧炉,按烃类完全燃烧和1/3硫化氢完全燃烧生成二氧化硫进行配风。过程气采用高温外掺合、二级转化、三级冷凝、三级捕集,最终硫回收率达到93%以上。尾气中硫化物及硫经尾气焚烧炉焚烧,70m烟囱排放。 第二节工艺原理及流程说明 一、工艺原理 常用制硫方法中根据酸性气浓度不同,分别采用直接氧化法、分流法和部分燃烧法。本装置采用的是部分燃烧法,即将全部酸性气引入燃烧炉,按烃类完全燃烧和1/3硫化氢完全燃烧生成二氧化硫进行配风。对于硫化氢来说,反应结果炉内约有65%的硫化氢转化为硫,余下35%的硫化氢中有1/3燃烧生成二氧化硫,2/3保持不变。炉内反应剩余的硫化氢、二氧化硫在转化器内催化剂作用下发生反应,进一步生成硫,其主要反应如下: 主要反应: 燃烧炉内:H2S+3/2O2=H2O+SO2+Q 2H2S+ SO2= 2H2O+3/2S2+Q H2S+CO2=COS+ H2O+Q 2H2S+CO2=CS2+2 H2O+Q 反应器内:2H2S+SO2=H2O+3/nSOn+Q COS+ H2O = H2S+CO2-Q CS2+ 2H2O=2H2S+CO2-Q 为获得最大转化率,必须严格控制转化后过程气中硫化氢与二氧化硫的摩尔比为2:1。 二、工艺流程说明

硫磺回收装置操作规程

山东天宏新能源化工有限公司10000T/a硫磺回收装置操作规程

目录 第一章概述-------------------------------------------------(1)第二章工艺原理及流程----------------------------------(2)第一节工艺原理-------------------------------------------(2)第二节工艺流程叙述--------------------------------------(3)第三节主要控制方案--------------------------------------(4)第四节工艺指标--------------------------------------------(5)第五节主要生产控制分析---------------------------------(10)第六节岗位管辖范围与岗位任务综述------------------(10)第三章设备与仪表明细表-----------------------------------(11)第四章装置的开工--------------------------------------------(17)第五章装置的停工--------------------------------------------(23)第六章岗位操作法--------------------------------------------(26)第七章事故预案-----------------------------------------------(34)附:工艺流程图

焦化厂工艺介绍

焦化一期工艺流程简介

焦化厂一期年产200万吨焦化项目介绍 一、2012年焦化厂产品生产计划及产率 单位产品名称产量计划产率(%) 焦化厂 焦炭200(万吨) 焦油99998吨5% 硫磺2873吨0.15% 硫铵14363吨0.75% 粗苯27194吨 1.42 供甲醇煤气量55000(万m3/h) 二、焦化厂产品质量指标 单位产品指标项目质量指标合格率 焦化厂二级冶 金焦 合 格 率 灰分≤13.5% 100% 挥发份≤1.8% 硫分≤0.80% 反应后强度≥55% 100% 冷强度合格率 M40≥80% 100% M25≥88% 100% M10≤7.5% 100% 80焦 合 格 率 灰分≤18.1% 100% 挥发份≤1.8% 硫分≤1.0% 固定碳合格率≥80% 100% 冷强度合格率 M40≥78% 100% M25≥88% 100% M10≤7.5% 100% 焦炭质 量区间 控制 班次灰分控制区间合 格率 12.9%~13.5% ≥95.0% 17.5%~18.1% ≥90.0% 焦炭水分≤8% 超水扣吨煤焦油合格率100% 硫酸铵合格率100% 粗苯合格率100% 焦炭各 粒级产 率 二级焦 40以上占比≥73.5% 10mm以下占比≤5.0% 80焦 25以上占比≥93.5% 10mm以下占比≤5.0% 焦炉煤 气 硫化氢含量≤150mg/NM3 ≥96% 氨含量≤40mg/NM3 苯含量≤4000mg/NM3 焦油/粉尘含量≤50mg/NM3 氧含量≤0.7%(体积)

三、焦化厂主要工艺流程介绍: 焦化厂由6个车间组成,包括4个生产车间:备煤车间、炼焦车间、化产车间(煤气净化车间)、污水处理车间,两个辅助车间:储运车间、机修车间。 1、备煤工艺 备煤工艺为先配煤后粉碎工艺;该工艺是将原料煤按一定比例配合后再进行粉碎的工艺。外购的炼焦精煤由汽车运来后自卸于受煤坑,经受煤坑下叶轮给煤机将精煤给入煤1带式输送机, 再经煤2带式输送机将煤送入堆取料机,把煤堆入精煤储场。自洗煤厂的炼焦精煤由皮带通廊送来,由煤3带式输送机将煤送入堆取料机,把煤堆入精煤储场。两种来煤方式均可不落煤场直接经煤4带式输送机把煤送往配煤仓。煤场采用不同每种轮流上煤。上煤时,由堆取料机取煤,经堆取料机主皮带、煤4带式输送机,转运至可逆带式输送机。由可逆带式输送机将煤送入可逆配仓带式输送机,卸入配煤仓。煤仓后设计为双系列。配煤仓下设电子自动配料秤,将各种煤按相应的配合比例配送到仓下的备1带式输送机,除铁后,送入可逆反击锤式破碎机,煤被破碎至<3mm占82%以上后,经备2、备3、备4、备5带式输送机,送入1#煤塔内;另一系列配送至仓下的备6带式输送机,除铁后,送入可逆反击锤式破碎机,煤被破碎至<3mm占82%以上后,经备7、备8、备9、备10、带式输送机,送入2#煤塔内,供焦炉使用。

焦炉煤气脱硫及硫回收工艺分析

焦炉煤气脱硫及硫回收工艺分析 (冶金工业规划研究院; Email:dengdpan@https://www.doczj.com/doc/9914725673.html,) 潘登 摘要:简述了几种具有代表性的脱硫、脱氰工艺,分析了不同工艺特点。介绍 了常用的几种硫回收工艺,并总结了脱硫工艺组合硫回收工艺的原则和方法,为企业选择焦炉煤气净化工艺提供参考依据。 关键词:焦炉煤气,脱硫,硫回收,工艺分析 一.前言 炼焦煤在干馏过程中,煤中全硫的20~45%会转到荒煤气中,荒煤气中的硫 以有机硫和无机硫两种形态存在,有机硫主要有二硫化碳、噻吩、硫醇等,煤气 中95%以上的硫以H2S无机硫形态存在,由于荒煤气中的有机硫含量很少而且在煤气净化洗涤过程中大部分会被除去,因此焦炉煤气的脱硫主要是脱除煤气中的H2S,同时除去同为酸性的HCN。据生产统计焦炉炼焦生产的荒煤气中H2S 含量为2~15g/m3,HCN含量为1~2.5 g/m3。荒煤气中H2S在煤气处理和输送过程中,会腐蚀设备和管道危害生产安全,未经脱硫的煤气作为燃料燃烧时,会生成大量SO2,造成严重的大气污染,同时H2S含量较高的焦炉煤气用在冶炼,将严重影响钢材产品质量,制约高附加值优质钢材品种的开发。出于生产安全,环保要求及煤气有效利用方面考虑,那种五、六十年代老焦化厂采用荒煤气→冷凝鼓风工段→硫铵工段→粗苯工段的无脱硫工段老三段模式与绿色环保的现代生产理念相悖,这样焦炉煤气脱硫已经成为煤气净化不可或缺的重要组成部分。焦炉煤气脱硫,不但环保,而且还可以回收硫磺及硫酸等化学品,产生一定的经济效益。在淘汰落后产能以及清洁生产政策下,对煤气脱硫的要求是越来越高,《焦化行业准入条件》已明确要求焦炉煤气必须脱硫,脱硫后煤气作为工业或其它用时H2S含量应不超过250 mg/Nm3,若用作城市煤气,H2S含量应不超过20mg/Nm3。本文将对焦炉煤气常用脱硫工艺进行介绍,分析不同工艺的特点,同时对硫回收工艺作简要说明。 二.工艺概述 近年来,焦炉煤气脱硫技术经不断发展与完善已日益成熟和广泛应用,脱硫 产品以生产硫磺和硫酸工艺为主。煤气脱硫主要有干法脱硫和湿法脱硫两大类,

克劳斯硫磺回收技术的基本原理

克劳斯硫磺回收技术的基本原理

前言 在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’ H2S + 3/2 O2 = S02 + H2O (1) 2H2S + S02 = 3/X Sx +2H2O (2) 其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应: CS2 + H2O = COS + H2S (3) COS + H20 = H2S + C02(4) 本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述. 1、工艺的发展历程 1.1原始的克劳斯工艺 1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式: 2NaCl + H2S04 = Na2SO4 + 2HCl (5) Na2SO4 + 2C = Na2S + 2CO2 (6) Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8) 反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导,H2S + 1/2 O2 = 1/X Sx + H2O (9) 如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放

最全的焦化厂生产工艺流程【最新版】

最全的焦化厂生产工艺流程 焦化厂总工艺流程图从5个方面带你进入焦化厂工艺流程现场一原料二备煤工艺三炼焦工艺四化工生产工艺五化工产品一原料--煤煤炭是炼焦的主要原料,根据成煤条件不同,自然界的煤可分为三大类,即腐植煤、残植煤和腐泥煤。腐植煤在自然界中分布最广,储量最大,在煤炭利用和化学加工方面占有主要的位置。煤炭分类及参数示例如下表: 二备煤工艺 1备煤流程--备煤作业区操作完成备煤:对进厂的洗精煤进行处理,以达到炼焦要求,通常把原料煤在炼焦前进行的工艺处理过程称为备煤工艺过程。达到炼焦要求之后,通过皮带被输送到煤塔供炼焦作业区使用。 流程:洗精煤(2设备图解 螺旋卸车机 煤场和堆取料机卸料--汽车来煤自卸车直接入卸煤槽,非自卸车采用桥式螺旋卸车机卸车,卸约800吨/小时精煤堆场--煤场贮煤面积~34000m2,7.4万吨精煤储存量,约为炼焦17天的用煤量;堆场设

两台DQ3025型堆取料机,单台堆料能力为600t/h,取料能力300t/h,煤场设推土机库,辅助堆取料机作业。在精煤煤场设有喷洒水和喷洒覆盖剂装置, 可防止煤尘飞扬造成对周围环境的污染。 配煤仓 煤塔配煤--按比例配合不同煤种, 使配合煤达到符合炼焦用煤的要求, 配煤仓为直径8米的双曲线斗嘴仓7个。每个仓的储量约为500t。煤仓双曲线钢漏斗内衬超高分子塑料板,防止棚料。仓下配煤设备采用配料稳定, 配比准确, 自动化程度高的电子自动配料秤,系统控制为PLC控制。粉碎--选用可逆反击锤式粉碎机PFCK两台, 其单台破粹能力为250t/h,一开一备。该粉碎机是在吸收德、日同类设备先进技术开发而成, 具有破碎比大、能力大、转速低、粉尘少、对煤的水分适应性强等优点;采用液力偶合器,能有效防护过载且能软启动;机体外壳开闭与反击板调节均采用液压装置,检修及更换锤头方便;采用组合式锤头, 使用寿命长,维护、检修费用低, 节约生产成本。3配煤工艺、配合煤指标配煤炼焦--是把几种牌号不同的单种煤按-定的比例配合起来炼焦。为什么要配煤?主要原因如下:a、节约优质炼焦煤,扩大炼焦煤源;b、充分利用各种煤的结焦特性取长补短,改善冶金焦炭质量;c、也能合理利用煤炭资源,在保证焦炭质量的前提下,增加炼焦化学产品的产率和炼焦煤气的发生量;d、充分利用本地资源,因地制宜发展焦化企业。配煤工艺--包括两种:即先粉后配

硫磺装置流程

一、装置规模 装置建成后为连续生产,年开工按8000小时计。硫磺回收单元设计规模为年回收硫磺4t/a,操作弹性:60~110%;胺液再生单元设计规模为140t/h,操作弹性:60~2×10 110%。 1、硫磺回收装置原料为再生酸性气和含氨酸性气,其中再生酸性气来自本装置胺液再生单 元;含氨酸性气来自酸性气汽提装置,其中再生酸性气组成见表2-1;酸性水汽提含氨酸性气组成见表2-2。 表2-1 再生酸性气组成 表2-2 含氨酸性气组成 表2-4 排放尾气组成

尾气处理部分物料平衡表 MDEA(甲基二乙醇胺)

一、流程简述 1、制硫部分 自胺液再生装置来酸性气经酸性气缓冲罐(D-2411)脱液,自酸性水汽提装置来的含氨酸性气经含氨酸性气分液罐(D-2410)脱液后,混合进入制硫燃烧炉(F-2411)进行高温转化反应,根据制硫反应需要氧量,严格控制进炉空气量,在炉内酸性气中的烃类等有机物全部分解,约65%(V)的H2S进行高温克劳斯反应转化为硫,余下的H2S中有 1/3转化为SO2,燃烧时所需空气由制硫炉鼓风机(K-2411/1、2)供给。自F-2411排出的高温过程气一小部分通过高温掺合阀(TV-4110)调节一级转化器(R-2411)的入口温度,其余部分进入制硫余热锅炉(ER-2411)冷却至约350℃,制硫余热锅炉壳程发生1.1MPa饱和蒸汽回收余热。从制硫余热锅炉出来的过程气进入一级冷凝冷却器(E-2411),过程气被冷却至160℃,一、二、三级冷凝冷却器壳程发生0.4MPa低压蒸汽,在E-2411管程出口,冷凝下来的液体硫磺与过程气分离,自底部进入硫封罐(D-2413),顶部出来的过程气经过高温掺合阀调节至277℃进入一级转化器(R-2411),在催化剂的作用下进行反应,过程气中的H2S和SO2进一步转化为元素硫。反应后的气体先进过程气换热器(E-2414)管程回收部分余热,温度降至270℃,再进入二级冷凝冷却器(E-2412)被冷却至160℃,E-2412冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫封罐(D-2413),顶部出来的过程气再经过程气换热器(E-2414)壳程加热至230℃进入二级转化器(R-2412),在催化剂的作用下继续进行反应,使过程气中剩余的H2S和SO2进一步发生催化转化,反应后的气体进入三级冷凝冷却器(E-2413),过程气温度自253℃被冷却至160℃,在E-2413管程出口,被冷凝下来的液体硫磺与过程气分离自底部流出进入硫封罐(D-2413),顶部出来的制硫尾气进入制硫尾气分液罐(D-2412)分出携带的液硫后至尾气处理部分。汇入硫封罐的液硫自流进入液硫池(T-2411),在NH3气的作用下,液硫中的有毒气体被分出,送至尾气焚烧炉焚烧。脱气后的液硫用液硫提升泵(P-2412/1、2)送至液硫成型部分,进行造粒成型包装,或进入液硫储罐(D-2419)液硫装车出厂。 2尾气处理部分 尾气至D-2412顶部出来,进入尾气加热器(E-2421),与蒸汽过热器(E-2423)出口的高温烟气换热,温度升到300℃,混氢后进入加氢反应器(R-2421),在加氢催化剂的作用下进行加氢、水解反应,使尾气中的SO2、S2、COS、CS2还原、水解为H2S。反应后的高温气体进入蒸汽发生器(E-2422)后在进入尾气急冷塔(C-2421)下部,与急冷水逆流接触、水洗冷却至40℃。尾气急冷塔使用的急冷水,用急冷水循环泵(P-2421/1,2)自C-2421底部抽出,经急冷水冷却器(E-2424)冷却至40℃后返C-2421循环使用,为了防止设备腐蚀,需在急冷水中注入NH3,以调节其PH值保持在7~8。急冷降温后的尾气自急冷塔顶出来进入尾气吸收塔(C-2422)。自胺液再生系统来的MDEA贫胺液(30%的MDEA液)进入尾气吸收塔(C-2422)上部,与尾气急冷塔来的尾气逆流接触,尾气中的H2S被吸收。吸收H2S后的MDEA富液,经富液泵(P-2422/1,2)送返胺液再生系统进行再生。自吸收塔顶出来的净化尾气(总硫≤300ppm)进入尾气焚烧炉(F-2421),在600℃左右高温下,将净化尾气中残留的硫化物焚烧生成SO2,焚烧后的高温烟气进入蒸汽过热器(E-2423)中回收余热,使来自制硫余热锅炉(ER-2411)的1.1MPa蒸汽过热至250℃,出口烟气温度降至约520℃,再进入尾气加热器(E-2421)加热制硫尾气,出口烟气温度降至378℃,掺入冷空气使温度降至360℃以下,由烟囱(S-2421)排入大气。

焦化厂工艺流程

. 煤气净化车间及其公辅设施等,备煤车间、炼焦车间、焦化厂主要生产车间: 1 主要生产设施号系统名称各车间主要生产设施如下表所示:序炼焦车 煤仓、配煤室、粉碎机室、皮带机运输系统、煤制样室 2 备煤车间 括包煤塔、焦炉、装煤设施、推焦设施、拦焦设施、熄焦塔、筛运焦工段(间 包括风机房、初冷器、电捕焦油(间冷鼓工段焦台、筛焦楼) 3 煤气净化车 包();粗苯工段洗氨塔、蒸氨塔、氨分解炉等设施);脱氨工段(包括器等设施 供配电系统、废水处理站、公辅设施洗苯塔、脱苯塔等设施) 4 括终冷器、 筛运焦除尘系统、化验室等设施、给排水系统、综合水泵房、备煤除尘系统、制 冷站等由高温炼焦得到的焦炭可供高炉冶炼、铸造、气化和、炼焦的重要意义 3 精制可得化工等工业部门作为燃料和原料;炼焦过程中得到的干馏煤气经回收、 到各种芳香烃和杂环混合物,供合成纤维、医药、染料、涂料和国防等工业做原 合成燃料和一系列有机经净化后的焦炉煤气既是高热值燃料,也是合成氨、料; 也是冶金工业高温炼焦不仅是煤综合利用的重要途径,合成工业的原料。因此, 的重要组成成分。在国民经济运行中处于举足轻重,政策性风险煤炭是我国最重 要的能源之一焦化行业属于国家重点扶持的行业。为建立大型钢铁循环结构,在 钢铁,的地位的重要生产基地和炼焦煤生产基地建设并经营现代化大型焦化厂符 合我国产业也是焦化工业发展的一个前景。政策和经济结构调整方向, 五、 原料煤的准备备煤车间的生产任务是给炼焦车间提供数量充足、质量合乎要求的 配合煤。其工艺流程为:原料煤→受煤坑→煤场→斗槽→配煤盘→粉碎机 →煤塔。原料煤一般以汽车火车的方式从各地运输过来,邯钢、煤的接收与储存 1焦化厂的原料煤主要来自邢台的康庄、官庄,峰峰和山西等地。当汽车、火车 到当送料小车开启料仓开用螺旋卸煤机把煤卸到料仓里,达后,与受煤坑定位后, 每个料仓一次只能盛放同一种类别的用皮带把煤料运到规定位置。口后,注意: 应根据煤质的类别用堆取为了保证焦炉的连续生产和稳定焦炉煤的质量,煤。 肥邯钢焦化厂的备煤车间用的气煤、料机把运来的煤卸放在煤场的各规定位置。煤、焦煤和瘦煤四种,按规定分别堆放在煤场的五个区。 2、煤原料的特性及 配煤原则. . ①气煤在热含氧量高。气煤的煤化程度比长焰煤高,煤的分子结构中侧链多 且长,所以生而且侧链本身又在氧键处断裂,解过程中,不仅侧链从缩合芳环上 断裂,成了较多的胶质体,但黏度小,流动性大,其热稳定性差,容易分解。在 生成半焦时,分解出大量的挥发性气体,能够固化的部分较少。当半焦转化成焦 炭时,收缩性大,产生了很多裂纹,大部分为纵裂纹,所以焦炭细长易碎。 在配煤中,气煤含量多,将使焦炭块度降低,强度低。但配以适当的气煤,同时 可以得到较多的化学产便于推焦,又保护了炉体,可以增加焦炭的收缩性,在炼 焦时应尽量多由于中国气煤储存量大,为了合理的利用炼焦煤的资源,品。配 气煤。②肥煤肥煤所属于中等变质程度的煤。从分子结构看,肥煤的煤化程 度比气煤高,隔绝空气加热时能产生大量的相对分子质量较大的但含氧量少,含

相关主题
文本预览
相关文档 最新文档