当前位置:文档之家› 底盘设计

底盘设计

底盘设计
底盘设计

1前言

车架作为汽车底盘的基础件,其结构形式直接影响着底盘各零部件的布置安装。同时,作为底盘及整车的主要承载件,车架对整车的各项性能起着至关重要的作用,因此在车架设计过程中,除考虑自身的强度要求外,还需考虑其它总成安装的方便性,并兼顾生产工艺条件。

摘要:针对目前全液压电动反扒装载机缺乏设计理论支持、存在性能低和质量差的问题,提出了全液压电动反扒装载机总体设计和主要参数的选择方法,给出了其特有的结构形式及整机最佳挖掘性能的发挥区域。对新研制的全液压电动反扒装载机机从设计、配套件选择和制造3个方面降低成本、提高性能和质量,并对其技术性能进行了试验分析。试验结果表明:该机设计参数选择合理、性能优越,完全满足全液压电动反扒装载机的作业要求,与现有生产厂家生产的全液压电动反扒装载机相比成本降低60%~70%;提出的设计方法科学合理,对全液压电动反扒装载机的设计和生产具有指导意义。

关键词:机械工程;全液压电动反扒装载机;总体参数;主要挖掘区;性能试验

0引言

该机为近几年新开发的在狭小空间里可进行工作全液压电动反扒装载机。具有液压行走,挖掘采集,输送,装车,清底五种功能。可用于生产作业空间为(2.8米×2.8米)以上的各种矿料的开采,磷矿、铁矿等各种矿山块状料的装车作业。它是由机械手与输送机最完美的结合,采集和输送功能合二为一。采用电动全液压控制系统的生产装置,具有安全、环保、低能耗、高效率的特点。适用于隧洞挖掘、矿山工程、水利工程等工程的施工机械及小断面引水洞,矿山出渣(矿)机械, 该机主要用于一些空间狭窄、生产规模小磷矿、金属非金属矿等非爆炸危险性矿山的碎石土料采集及输送装车施工。

该机包含液压行走,挖掘采集,输送,装车,清底五种功能。其中液压行走功能是通过液压马达,减速机,传动轴,再到减速机输送驱动车轮,液压马达具有前行,后退,自动刹车三种功;挖掘采集功能由机械手完成,机械手具有挖掘、伸臂、装料、卸料功能,大臂可上升、下降、左右回转,挖掘采集的操纵由全液压控制,由六个手柄操作,每个手柄控制两个动作,共十二个动作,此技术综合采用大型挖掘机操作流程改进而成使用方便,易操作.输送,装车功能由输送机系统完成,其输送架由液压缸控制升降,输送架下降时可将前轮支起,同时输送架前接料口与矿石接触面更加紧密,工作时稳定性更强,同时可以接合散料,平整常地,传送带宽度为650-700mm,传送速度为800 -900mm/秒,传送带通过一个油冷式电动滚筒作为主动滚筒带动,此方式传动性能具有结构紧凑、传动效率高、噪声低、使用寿命长,运转平稳、工作可靠、密封性好、占据空间小、安装方便等诸多优点,并且适合在各种恶劣环境条件下工作。包括潮湿、泥泞、粉尘多的工作环境。

1 总体设计

总体设计尺寸为(长×宽×高)5500×1700×1700,最大矿料通过尺寸为810×450,料架最大举升高度为2100,料架最大装车高度1500,大臂最大回转角度730,扒渣装车效力60m3/h,

输送带最大坡度240。总机的构成有5各部分组成,分别为工作机构、运输机构、行驶机构、液压系统、电气控制系统。图1工作机构主要构成为1-铲斗; 2-铲斗油缸; 3-斗杆; 4-大臂;5-斗杆油缸;6-大臂油缸; 7-转座;运输机构主要构成为11-带支撑滚轮; 12-电动滚筒; 13-输送架油缸;行驶机构主要构成为柴油机30,电动机22,油泵22,油马达25,变速箱24,传动轴,

1

图1 全液压电动反扒装载机总图

1-铲斗;2-铲斗油缸;3-斗杆;4-大臂;5-斗杆油缸;6-大臂油缸;7-转座;8-转向器;9-司机座椅;10-驾驶棚;11-带支撑滚轮;12-电动滚筒;13-输送架油缸;14柴油机;15-驱动轮;16-电器柜;17-液压油散热器;18-转向轮;19-多路控制阀;20-从动支架;21-连轴节;22-电动机;23-油箱;24-齿轮减速器;25-液压泵;26-方向油缸;27-转向油缸;28-从动滚筒;29-集料口;30-柴油机;31-后桥;32-后传动轴;33-油泵;34-前传动轴

总体参数的选择

全液压电动反扒装载机总体参数有:尺寸参数、质量参数、功率参数和经济指标参数。其中最主要的参数有:斗容量、整机质量、功率、工作压力和流量[2]。总体设计时,根据使用要求和工作特性先确定主要参数,然后依次确定其他参数。

1设计要求

根据设计任务书及底盘总布置对各总成的布置情况,车架设计必须满足下列要求:(1)发动机后置;(2)前、后均采用钢板弹簧悬架;(3)机长5480mm;机宽1700mm;(4)前桥中心处车架上平面离地高350mm,后桥中心处车架上平面离地高310mm。

2 整机主要参数要求

项目单位参数

机长

mm 5480

机宽1700

机高1700

轴距1600

轮距1330

最大矿料通过尺寸

(长×宽×高)

810*600*450 行走离地最小距离145 整机质量kg 2080

料架最大伸举高度

mm 2100

料架最大装车高度1500

适合装料车厢长度1700-2000 料斗最大伸长度离铲口1300

料斗最大举伸高度1900 耗电量Km/h 10.5

大臂最大回转角度( .) 73 最大行车速度约Km/h3/6 最大挖掘力KN11.00

扒渣装车效力mm3/h60

驾驶员头顶距地面高度mm1800

输送带最大坡度24

汽车底盘

§11 汽车底盘概述

§12 离合器

§13 变速器与分动器

§14 万向传动装置

§15 驱动桥

§16 汽车行驶系

§17 汽车转向系

§18 汽车制动系

1行走底盘概述

2离合器3变速器4万向传动装置5 驱动桥6 行驶系7转向系8 制动系

悬架系统

车辆液压传动装置由泵、马达及必要的机械减速(变速)装置组成,为了讨论方便将其动力输出装置---马达或马达与变速器称为液压驱动装置,将液压驱动装置输出轴旋转一周需要的流量称为驱动装置的等效排量,这样马达的等效排量即为本身排量,马达与变速器组成的驱动装置的等效排量即为马达排量与减速器减速比的乘积(变速器则为与各档位减速比的乘积)。液压驱动装置的结构形式多种多样,性能差异很大,由此形成了液压驱动车辆装置种类繁多的特点。从大结构原理讲,液压驱动装置可分为四类,即:单马达减速驱动装置,单马达变速驱动装置,

多马达减速驱动装置,多马达变速驱动装置。

离合器

概述

离合器的主要功能是切断和实现对传动系的动力传递。主要作用:

(1)汽车起步时将发动机与传动系平顺地接合,确保汽车平稳起步;

(2)在换挡时将发动机与传动系分离,减少变速器中换挡齿轮之间的冲击;

(3)限制传动系所承受的最大转矩,防止传动系各零件因过载而损坏;

(4)有效地降低传动系中的振动和噪声。

摩擦离合器主要组成

摩擦离合器主要由主动部分(发动机飞轮、离合器盖和压盘等)、从动部分(从动盘)、压紧机

构(压紧弹簧)和操纵机构(分离叉、分离轴承、离合器踏板及传动部件等)四部分组成。

主、从动部分和压紧机构是保证离合器处于接合状态并能传递动力的基本结构。操

纵机构是使离合器主、从动部分分离的装置。

1.2 离合器的功用

离合器可使发动机与传动系逐渐接合,保证汽车平稳起步。如前所述,现代车

用活塞式发动机不能带负荷启动,它必须先在空负荷下启动,然后再逐渐加载。发

动机启动后,得以稳定运转的最低转速约为300~500r/min ,而汽车则只能由静止

开始起步,一个运转着的发动机,要带一个静止的传动系,是不能突然刚性接合的。因为如果是突然的刚性连接,就必然造成不是汽车猛烈攒动,就是发动机熄火。所

以离合器可使发动机与传动系逐渐地柔和地接合在一起,使发动机加给传动系的扭

矩逐渐变大,至足以克服行驶阻力时,汽车便由静止开始缓慢地平稳起步了。 虽然利用变速器的空档,也可以实现发动机与传动系的分离。但变速器在空档

发动离合变速万向联轴

位置时,变速器内的主动齿轮和发动机还是连接的,要转动发动机,就必须和变速器内的主动齿轮一起拖转,而变速器内的齿轮浸在黏度较大的齿轮油中,拖转它的阻力是很大的。尤其在寒冷季节,如没有离合器来分离发动机和传动系,发动机起动是很困难的。所以离合器的第二个功用,就是暂时分开发动机和传动系的联系,以便于发动机起动。

汽车行驶中变速器要经常变换档位,即变速器内的齿轮副要经常脱开啮合和进入啮合。如在脱档时,由于原来啮合的齿面压力的存在,可能使脱档困难,但如用离合器暂时分离传动系,即能便利脱档。同时在挂档时,依靠驾驶员掌握,使待啮合的齿轮副圆周速度达到同步是较为困难的,待啮合齿轮副圆周速度的差异将会造成挂档冲击甚至挂不上档,此时又需要离合器暂时分开传动系,以便使与离合器主动齿轮联结的质量减小,这样即可以减少挂挡冲击以便利换档。

离合器所能传递的最大扭矩是有一定限制的,在汽车紧急制动时,传动系受到很大的惯性负荷,此时由于离合器自动打滑,可避免传动系零件超载损坏,起保护作用。

1.3 离合器的工作原理

离合器由主动部分、从动部分、压紧机构、分离机构和操纵机构五部分组成。

离合器主动部分包括飞轮4(如图1.1 所示)、离合器盖6 和压盘5。飞轮用螺栓与曲轴1 固定在一起,离合器盖通过螺钉固定在飞轮后端面上,压盘与离合器盖通过传动片连接。这样,只要曲轴旋转,发动机发出的动力便经飞轮、离合器盖传至压盘,使它们一起旋转。

离合器从动部分由装在压盘和飞轮之间的两面带摩擦衬片17的从动盘3和从动轴2组成。从动盘通过内花键孔与从动轴滑动配合。从动轴前端用轴承18 支承在曲轴后端中心孔中,后端支承在变速器壳体上并伸入变速器。离合器的从动轴通常又是变速器的输入轴。

离合器压紧机构由若干沿圆周均匀布置的螺旋弹簧16 组成,它们装于压盘和离合器盖之间,用来对压盘产生轴向压紧力,将压盘压向飞轮,并将从动盘夹紧在

压盘和飞轮之间。

离合器分离机构由分离拨叉11、分离套筒和分离轴承9、分离杠杆7、回位弹簧10等组成。它们同离合器主从动部分及压紧装置一起装于离合器壳(飞轮壳)内。分离杠杆中部支承在装于离合器盖的支架上,外端与压盘铰接,内端处于自由状态。分离轴承压装在分离套筒上,分离套筒松套在从动轴的轴套上。分离拨叉是中部带支点的杠杆,内端与分离套筒接触,外端与拉杆铰接。

图1.1 离合器结构和工作原理示意图

1—曲轴 2—从动轴 3—从动盘 4—飞轮 5—压盘 6—离合器盖 7—分离杠杆 8—弹簧9—分离轴承 10、15—复位弹簧 11—分离拨叉 12—踏板 13—拉杆 14—调节叉 16—压紧弹簧 17—从动盘摩擦片 18—轴承

离合器操纵机构由离合器踏板12、拉杆13、拉杆调节叉14及复位弹簧15等组成。离合器踏板中部铰接在车架(或车身)上,一端与拉杆铰接。它们装在离合器壳外部。

(1)接合状态离合器处于接合状态时,踏板12(见图13.1)未被踩下,处于最高位置,分离套筒被回位弹簧10拉到后极限位置,分离杠杆7内端与分离轴承9之间存在间隙 (离合器自由间隙),压盘5 在压紧弹簧16 作用下将从动盘压紧在飞轮上,发动机的转矩即经飞轮及压盘通过两个摩擦面传给从动盘,再经从动轴2传给

(2) 分离过程需要分离离合器时,只要踏下离合器踏板,拉杆拉动分离叉,分离叉内端推动分离套筒、分离轴承首先消除离合器自由间隙 ;然后推动分离杠杆内端向前移动,分离杠杆外端便拉动压盘向后移动,解除对从动盘的压紧力,摩擦作用消失,中断动力传递。

(3) 接合过程当需要恢复动力传递时,缓慢抬起离合器踏板,分离轴承减小对分离杠杆内端的压力;压盘在压紧弹簧的作用下向前移动,并逐渐压紧从动盘,接触面间的压力逐渐增大,相应的摩擦力矩也逐渐增大。当飞轮、压盘和从动盘接合还不紧密时,主、从动部分可以不同步旋转,即离合器处于打滑状态。随着飞轮、压盘和从动盘压紧程度的逐步加大,离合器主、从动部分转速也渐趋相等,直至离合器完全接合而停止打滑,结合过程结束。

2 离合器的结构方案设计

车离合器大多是盘形摩擦离合器,按其从动盘的数目可分为单片、双片和多片三类;根据压紧弹簧布置形式不同,可以分为圆周布置、中央布置和斜向布置等形式;根据使用的压紧弹簧不同,可以分为圆柱螺旋弹簧、圆锥螺旋弹簧和膜片弹簧离合器;根据分离时所受作用力的方向不同,又可以分为推式和拉式两种形式。

2.1 摩擦片的选择

单片离合器因为结构简单,尺寸紧凑,散热良好,维修调整方便,从动部分转动惯量小,在使用时能保证分离彻底接合平顺,所以被广泛使用于轿车和中、小型货车,因此该设计选择单片离合器。

2.2 从动盘数的选择

对轿车和轻型、微型货车而言,发动机的最大转矩一般不大,在布置尺寸允许的条件下,离合器通常只设有一片从动盘。单片离合器机构简单、尺寸紧凑,散热良好、维修调整方便,从动部分转动惯量小,在使用时能够保证分离彻底、接合平

双片离合器与单片离合器相比较,由于摩擦面数增加一倍,因而传递转矩的能

力较大;在传递相同转矩的情况下,径向尺寸小,踏板力较小,另外接合比较平顺。但是中间压盘通风散热不良,两片起步负载不均匀,因而容易烧坏摩擦片,分离也不够彻底。这种结构一般用在传递转矩较大且径向尺寸受到限制的场合。

多片离合器多为湿式,它有分离不彻底、轴向尺寸和质量大等缺点,以往主要

用于行星齿轮变速器换挡机构中。但是它也有接合平顺柔和、摩擦表面湿度较低、磨损较小、使用寿命长等优点,主要应用于重型牵引车和自卸车上。

经过分析比较,该设计是2吨货车,属于轻型汽车,所以在设计中考虑用单片

离合器,即该离合器只设有一片从动盘。

2.3 压紧弹簧和布置形式的选择

周置弹簧离合器的压紧弹簧均采用圆柱螺旋弹簧,其特点是结构简单、制造容

易,因此应用较为广泛。此结构中弹簧压力直接作用于压盘上。为了保证摩擦片上压力均匀,压紧弹簧的数目不应该太少,要随摩擦片直径的增大而增多,而且应当是分离杠杆的倍数。压紧弹簧直接与压盘接触,易受热退火,且当发动机最高转速很高时,周置弹簧由于受离心力作用而向外弯曲,使弹簧压紧力下降,离合器传递转矩的能力随之降低。一般轻型货车和轿车都采用这种离合器

由于本次设计的是2吨轻型货车,我们决定采用周至圆柱螺旋弹簧

3 离合器基本参数及尺寸选择

摩擦离合器是靠摩擦表面间的摩擦力矩来传递发动机转矩的。离合器的静摩擦

力矩根据摩擦定律可以表示为

c c f F Z R T ( a )

式中,c T 为静摩擦力矩;f 为摩擦面间的静摩擦因数,计算时一般取0.25~0.30;

F 为压盘施加在摩擦面上的工作压力;c R 为摩擦片的平均摩擦半径;Z 为摩擦面数,

是从动盘数目的两倍。在该设计中,f 取0.3,Z 取2。

假设摩擦片上工作压力均匀,则有

F=4/)(2200d D p A p -=π ( b )

式中,0p 为摩擦面单位压力,A 为一个摩擦面的面积;D 为摩擦片外径;d 为

摩擦片内径。

摩擦片的平均摩擦半径c R 根据压力均匀的假设,可以表示为

c R = )(3/)(2233

d D d D -- ( c )

当d/D ≥0.6时,c R 可相当准确地由下式计算

c R =(D+

d )/4 ( d )

将式( b )、式( c )代入式 ( a )得

12/)1(330c D fZp T c -=π ( e )

式中,c 为摩擦片内外径之比,c=d/D ,一般在0.53~0.70之间

为了保证离合器在任何工况下都能可靠地传递发动机的最大转矩,设计时c T 应

该大于发动机最大转矩,即

c T =βT max e ( f )

式中,T max e 为发动机的最大转矩;β为离合器的后备系数,定义为离合器所

能传递的最大静摩擦力矩与发动机最大转矩之比,β必须大于1。

由此可得出,离合器的基本参数主要有性能参数β和0p ,尺寸参数D 和d 以

及摩擦片厚度b 。

表3.1 离合器摩擦片尺寸系列和参数(即GB1457—74) -

160 180 200 225 250 280 300 325 350 内径d /mm

110 125 140 150 155 165 175 190 195 厚度h / 3.2 3.5 3.5 3.5 3.5 3.5 3.5 3.5 4

C '=d/

D 0.687 0.694 0.700 0.667 0.589 0.583 0.585 0.557 0.540

1-3C ' 0.676 0.667 0.657 0.703 0.762 0.796 0.802 0.800 0.827

单位面积F/3cm 106

132 160 221 302 402 466 546 678

4 离合器基本参数的优化

在设计离合器的时候,首先就是要确定离合器的性能参数和尺寸参数,这些参

数的变化影响离合器的结构尺寸和工作性能;其次,在确定了基本参数以后,必然要对参数进行优化处理。---

1、设计变量

后备系数β可由式( a )和( f )确定,可以看出β取决于离合器工作压力

F 和离合器的主要尺寸参数D 和d 。

单位压力0p 可以由式( b )确定,0p 也取决于F 和D 以及d 。因此离合器基

本参数的优化设计变量选为

=X [1x 2x 3x ]T =[F D d]T

2、目标函数

离合器基本参数优化设计追求的目标是在保证离合器性能要求条件下,使其结

构尺寸尽可能小,即目标函数为

]4/)(m i n [)(22d D x f -=π

3、约束条件

1)摩擦片的外径D (mm )的选取应该使最大圆周速度D v 不超过65~70m/s ,

60/103max -?=D n v e D π≤65~70m/s ( i )

式中,D v 为摩擦片最大圆周速度(m/s );m a x e n 为发动机最高转速(r/min )

。 2)摩擦片的内外径比c 应该在0.53~0.70范围内,即

0.53≤c ≤0.70

3)为保证离合器可靠传递转矩,并防止传动系过载,不同车型的β值应在一

定范围内,最大范围β为1.2~4.0,即

1.2≤β≤4.0

4)为了保证扭转减振器的安装,摩擦片内径d 必须大于减振器弹簧位置直径

20R 约50mm ,即

d >20R +50

5)为反映离合器传递转矩并保护过载的能力,单位摩擦面积传递的转矩应小

于其许用值,即

][)(/40220c c c T d D Z T T ≤-=π ( j )

式中,0c T 为单位摩擦面积传递的转矩(N ·m/mm 2);][0c T 为其允许值

(N ·m/mm 2),按下表选取。 >

>>≤210

×0.01离合器规格 单位摩擦面积传递转矩的许用值

6)为降低离合器滑磨时的热负荷,防止摩擦片损伤,单位压力0p 对于不同车型,根据所用的摩擦材料在一定范围内选取,最大范围0p 为0.10~1.50MPa ,即

0.10 MPa ≤0p ≤1.50MPa

7)为了减少汽车起步过程中离合器的滑磨,防止摩擦片表面温度过高而发生烧

伤,每一次接合的单位摩擦面积滑磨功应小于其许用值,即

][)(/422ωπω≤-=d D Z W ( k )

式中,ω为单位摩擦面积滑磨功(J/mm 2);[ω]为其许用值(J/mm 2),对于轿

车:[ω]=0.40J/mm 2,对于轻型货车:[ω]=0.33 J/mm 2,对于重型货车:[ω]=0.25 J/mm 2;W 为汽车起步时离合器接合一次所产生的总滑磨功(J ),可以根据下式计算

2202221800/g r a e i i r m n W π= ( l )

式中,a m 为汽车总质量(kg );r r 为轮胎滚动半径(m );g i 为起步时所用变速

器挡位的传动比;0i 为主减速器传动比;e n 为发动机转速(r/min ),计算时货车取1500r/min 。

5 从动盘的结构选型和设计

5.1 从动盘结构介绍

在现代汽车上一般都采用带有扭转减振的从动盘,用以避免汽车传动系统的共

振,缓和冲击,减少噪声,提高传动系统零件的寿命,改善汽车行使的舒适性,并使汽车平稳起步。从动盘主要由从动片,从动盘毂,,摩擦片等组成,由下图4.1可以看出,摩擦片1,13分别用铆钉14,15铆在波形弹簧片上,而后者又和从动片铆在一起。从动片5用限位销7和减振12铆在一起。这样,摩擦片,从动片和减振盘三者就被连在一起了。在从动片5和减振盘12上圆周切线方向开有6个均布的长方形窗孔,在在从动片 和减振盘之间的从动盘毂8法兰上也开有同样数目的从动片窗孔,在这些窗孔中装有减振弹簧11,以便三者弹性的连接起来。在从动片和减振盘的窗孔上都制有翻边,这样可以防止弹簧滑脱出来。在从动片和从动盘毂之间还装有减振摩擦片6,9。当系统发生扭转振动时,从动片及减振盘相对从动盘毂发生来回转动,系统的扭转能量会很快被减振摩擦片的摩擦所吸收。

图5.1 带扭转减振器的从动盘

1,13—摩擦片;2,14,15—铆钉;3—波形弹簧片;4—平衡块;5—从动

片;6,9—减振摩擦;7—限位销;8—从动盘毂;10—调整垫片;11—减振

弹簧;12—减振盘

5.2 从动盘设计

从动盘总成主要由摩擦片、从动片、减振器和花键毂等组成。从动盘对离合器工作性能影响很大,应满足如下设计要求:

1)转动惯量应尽量小,以减小变速器换挡时轮齿间的冲击。

2)应具有轴向弹性,使离合器接合平顺,便于起步,而且使摩擦面压力均匀,减少磨损。

3)应装扭转减振器,以避免传动系共振,并缓和冲击。

为了使从动盘具有轴向弹性,常用的方法有:

1)在从动盘上开“T”形槽,外缘形成许多扇形,并将扇形部分冲压成依次向不同方向弯曲的波浪形。两侧的摩擦片则分别铆在每相隔一个的扇形上。“T”形槽还可以减小由于摩擦发热而引起的从动片翘曲变形。这种结构主要应用在货车上。

2)将扇形波形片的左、右凸起段分别与左、右侧摩擦片铆接。由于波形片比

从动片薄,故这种结构轴向弹性较好,转动惯量小,适宜于高速旋转,主要应用于轿车和轻型货车。

3)利用阶梯形铆钉杆的细段将成对波形片的左片铆在左侧摩擦片上,并交替地把右片铆在右侧摩擦片上。这种结构弹性行程大,弹性特性较理想,可使汽车起步极为平顺。它主要应用于中、高级轿车。

4)将靠近飞轮的左侧摩擦片直接铆合在从动片上,只在靠近压盘侧的从动片铆有波形片,右侧摩擦片用铆钉与波形片铆合。这种结构转动惯量大,但强度较高,传递转矩能力大,主要应用于货车上,尤其是重型货车。

离合器摩擦片在性能上应满足如下要求:

1)摩擦因数较高且较稳定,工作温度、单位压力、滑磨速度的变化对其影响要小。

2)有足够的机械强度和耐磨性。

3)密度要小,以减少从动盘转动惯量。

4)热稳定性好,在高温下分离出的粘合剂少,无味,不易烧焦。

5)磨合性能好,不致刮伤飞轮和压盘表面。

6)接合时应平顺而不生产“咬合”或“抖动”现象。

7)长期停放后,摩擦面间不发生“粘着”现象。

5.2.1 从动片的选择和设计

设计从动片时,为了减轻其重量,并使其质量的分布尽可能的靠近旋转中心,以获得最小的转动惯量。离合器从动盘转速的变化将引起惯性力,惯性使变速器换挡齿轮的轮齿间产生冲击或使变速器中的同步器

装置加速磨损。惯性力的大小与从动盘的转动惯量

成正比,因此为了减小转动惯量以减轻变速器换挡

时的冲击,从动片一般都做得很薄,通常用

1.3~

2.0mm厚的钢板冲制而成。为了进一步减小

从动片的转动惯量,有时将从动片外缘的盘形部分

磨薄至0.65~1.0mm,使其质量分布更加靠近旋转中心。

为了离合器接合平顺,保证汽车平稳起步,单片离合器的从动片一般都做成具有轴向弹性的结构。这样,在离合器的接合过程中,主动盘和从动盘之间的压力是逐渐增加的。图5.2中示出了从动盘轴向弹性结构和盖总成压簧在离合器接合过程5.2 加紧载荷变化曲线

中摩擦面上加紧载荷的变化曲线。

具有轴向弹性的从动片有以下3种结构形式:整体式弹性从动片、分开式弹性从动片和组合式弹性从动片。

图 5.3 整体式弹性从动片

1-从动片;2-摩擦片;3-铆钉

整体式弹性从动片如图5.3所示,能达到轴向弹性的要求,其优点是生产效率高,但其缺点是很难保证每一片扇形部分的刚度完全一致。

图 5.4 分开式弹性从动片

1-波形弹簧;2、6-摩擦片;3-摩擦片铆钉;4-从动片;5-波形弹簧铆钉分开式弹性从动片如图5.4所示,可以消除整体式弹性从动片的缺点,但是对制造、装配等要求较高,制造成本较高,一般用于小轿车上。

图 5.5 组合式弹性从动片

1-从动片;2-摩擦片铆钉3-波形弹簧铆钉;4-摩擦片;5-波形弹簧片载货汽车上则经常采用组合式弹性从动片如图5-4所示,在这种构造中,靠压

盘一侧的从动片1上铆有波形弹簧片5,摩擦片4用铆钉2铆在波形弹簧5上;靠近飞轮一侧无波形弹簧片,摩擦片直接铆在从动盘1上。为保证从动片的弹性作用,波形弹簧片的压缩行程可取0.8~1.1mm 之间,至少不应小于0.6mm 。

这里选用组合式弹性从动片,从动片外径225mm ,厚 1.5mm ,外缘磨薄至0.8mm ,选用0.7mm 厚波形弹簧片,波形弹簧片压缩行程 1.0mm ,摩擦片厚

3.5mm 。

驱动桥减速器设计

4. 1装载机驱动桥内减速器设计

减速器是在液压马达和轮胎主轴之间的独立传动部件,它可以改变输出的转速,以及增大主轴扭矩等,

4.1.1.减速器齿轮设计

由行走速度可得:,/63max h Km V -=

减速器末端输出转速为min /r 30n =

由行走阻力和转弯阻力可知:减速器末端需扭矩T=9000N/M ,由于装载扭矩大,减速器末端输出速度较低,故选择系统马达型号:BMTZ 系列摆线液压马达

, 具体型号为:

型号:

排量:L=2.5L/r

额定最高压力:P=20Mpa

额定最高转速:n=320r/min

最大输出扭矩:T=7903N/m

1)传动比

9

16180\320\1===n n i 2)选择材料由表18-4

小齿轮:40Cr ,调质,平均取齿面硬度为260HBS

大齿轮:45钢调质,平均取齿面硬度为230HBS

3)初选齿数,取小齿轮齿数1Z =36,则大齿轮齿数 64369

162=?=Z 4)选择齿宽系数d ψ和传动精度等级,参照表,取齿宽系数d ψ=0.5,初估小齿轮直径,估mm 1001=d 则齿宽mm 501005.0d b 1d =?=?=估ψd

齿轮圆周速度 m/s 67.110060n d 11=?=π估V

参照表(),选择精度等级8级

5)确定重合度系数εεY Z , 62.1112.388.121=???

? ??+-=Z Z ε重合度 793.03

4=-=εεZ 713.075.025.0Y =+=εε

6)确定载荷系数Kh ,Kf

由已知条件查表(),取使用系数Ka=1.6,取动载系数Kv=1.17,齿向载荷分布

系数38.1=βK 448021

1==bd T K b F K A t A 查表德齿间载荷分配系数

新能源汽车底盘设计趋势

新能源汽车底盘设计趋势 新能源汽车具有清洁、噪声污染小、制动能量可回收、无尾气及一氧化碳排放、节能、舒适性好等优点。经过近三十年的设计研究,我国新能源汽车底盘设计应用发展迅速,现阶段我国在新能源汽车稳定性、舒适性、安全性也有了较大的提升。未来随着新能源汽车制造技术进一步发展,电动车底盘系统将更加智能化、人性化、安全可靠性将更进一步增强。 标签:新能源;汽车底盘;设计趋势 1 关于新能源汽车的概述 新能源汽车,是在动力能源的使用上与普通汽车之间存在着差别,在其运行中不再使用汽油和柴油,取而代之的是可再生清洁能源,比如,压缩气罐、太阳能或者液化石油气等。中国的新能源汽车以动汽车,作为节能汽车产品而备受推崇。根据所使用的动力燃料不同,电动汽车可以分为三类,其一为纯电动汽车,属于是完全用电池驱动汽车行驶;其二为电机和电池共同运作下的混合动力车;其三为燃料电池车将,即氢燃料作为主要能源原料。 2 新能源汽车底盘设计要求 底盘设计考虑的关键在于满足整车性能的各项指标。汽车应当具备的基本性能可概括为动力性、经济性、制动性、操稳性、平顺性、安全性和耐久性。一般所说的底盘工程包括前后悬架、转向系、制动系和车轮的设计配置。与这些系统直接相关的整车性能有制动性、操稳性和平顺性。底盘的悬架部件本身要足够牢固,而其设计是否到位直接影响车架车身的受力大小。 3 新能源汽车底盘设计趋势方向 3.1 底盘总体设计 不论是概念车还是量产车,自主车型或者国际典型车型,新能源汽车底盘系统的设计方向发展主要包括两个方面。第一在传统车型平台进行客户需求性局部改造;第二是创新新车设计平臺,全部推翻原由设计思维,大胆尝试全新系列车型的设计。 新能源汽车底盘设计主要是满足整车性能各项指标。汽车的安全性、经济性、动力性、操稳性、制动性、平顺性、耐久性是新能源汽车的基本性能。底盘工程影响着制动性、平顺性、操稳性。底盘的悬架系统应具备良好的牢固性,悬架系统设计关系到车架车身受力状况,车载符合的大小,车的使用寿命等。 新能源底盘设计主要是对行驶、传动、转向、制动系统零部件的结构、功能、尺寸、工艺参数进行合理定义;按照定义内容开展结构设计,计算出各个参数,

汽车分类国家标准

道路上行驶的汽车造型和性能特征等千差万别,如何区别这些汽车?一般来讲,根据新的汽车分类国家标准(gb9417-89)就可方便地区分车型。中国汽车划分为8大类: 1.载货汽车:依公路运行时厂定最大总质量(ga)划分为:微型货车(ga≤1.8吨)轻型货车(1.8吨<ga≤6吨)中型货车(6.0吨<ga≤14吨)重型货车(ga>14吨)2.越野汽车:依越野运行时厂定最大总质量(ga)划分为:轻型越野汽车(ga≤5吨)中型越野汽车(5.0吨<ga≤13吨)重型越野汽车(13<ga≤24吨)超重型越野汽车(ga>24吨) 3.自卸汽车:依公路运行时厂定最大总质量(ga)划分为:轻型自卸汽车(ga≤6吨)中型自卸汽车(6.0吨<ga≤14吨)重型自卸汽车(ga>14吨)矿山自卸汽车; 4.牵引车:半挂牵引车、全挂牵引车; 5.专用汽车:厢式汽车、罐式汽车、起重举升汽车、仓棚式汽车、特种结构式汽车、专用自卸汽车; 6.客车:依车长(l)划分为:微型(l≤3.5米)轻型(3.5米<l≤7米)中型(7米<l≤10米)大型客车(l>10米)和特大型客车;中大型客车又可分为城市、长途、旅游及团体客车,特大型客车指铰接和双层客车; 7.轿车:依发动机排量(v)划分为:微型轿车(v≤1升)普通轿车(1升<v≤1.6升)中级轿车(1.6升<v≤2.5升)中高级轿车(2.5升<v≤4升)高级轿车(v>4升)8.半挂车:依公路运行时厂定最大总质量(ga)划分为:轻型半挂车(ga≤7.1吨)中型半挂车(7.1吨<ga≤19.5吨)重型半挂车(19.5<ga≤34吨)超重型半挂车(ga>34吨)本站点车型定义与分类本网站主要收集小型客车,如各种轿车,轻型越野汽车,微型货车,微型客车。在中国,根据公安部的车辆分类标准,小型客车的共分为四类,即:·小轿车、越野车、旅行车、轻型小客车·本站点即主要采用这种分类办法。·本站点还同时收录适宜家庭使用的小型货车(皮卡,pickup),归类为小货车每辆车属于哪一种车型,请参阅该车的行驶证(不是司机驾驶证)正页第5行均已标明。·小轿车举例:桑塔纳,宝马,奥迪等;夏利、奥拓属于小轿车。切诺基小客车在北京行驶按照小轿车进

汽车底盘总体设计规范

汽车底盘总体设计规范 某公司产品研究院 二○一九年六月

1 总布置设计注意事项 1、1从技术先进性、生产合理性和使用要求出发。正确选择性能指标,重量及主要尺寸,提出整车设想(总体设计方案),为各部件设计提供整车参数和设计要求。 1、2对各部件进行合理布置及运动校核。 1、3对汽车性能进行精确计算及控制,保证主要性能指标的实现。 1、4正确处理好整车与部件、部件与部件的设计、使用和制造之间的矛盾,使产品符合好用、好修、好造和好看的原则。 2 总布置设计的一般步骤 2、1收集资料和整车设想:在明确所开发车型的主要使用用途,主要技术经济要求、生产方式、生产纲领以及此类车型的使用环境,道路条件的前提下,广泛收集国内外同类车型的技术情况以及该类车型配套的各大总成生产厂家的产品、性能、价格等情况,另外需了解相关的标准、法规等情况。通过对以上资料进行分析整理,确定整车的初步方案。 2、2编制设计任务书:总体方案经过讨论后,可以确定车型的主要参数,初步确定各总成的位置,编制出设计任务书。 2、3设计任务书批准后,通过总布置计算、校核、准确地计算出各总成尺寸和主要性能参数,下发联系单。 2、4协调各总成间的关系,绘制总布置图,避免各总成间的干涉情况。 2、5试制、试验、修改和定型:设计完成后,总体设计人员应参加试制、试验、记录并解决试制和试验中暴露的问题,同时还应测定车辆的整体质量、满载质量以及轴荷分配,并进行修改设计。 3 总布置设计应进行的主要计算 3、1轴荷分配。 3、2稳定性。 3、3最小转弯半径。 3、4动力性计算。 3、5燃料经济性计算。 3、6成本预算。 4 总布置设计中的几种校核图 4、1转向轮跳动图。 4、2转向垂臂和转向节臂运动图。

10kv及以下客户供用工程典型设计方案_new

10KV及以下客户 供用电工程典型设计方案 省电力公司 第一分册配电房工程 总设计说明 1 概述 配电房工程典型设计适用于10/0.4kV配电房新建工程(建筑物新建或箱式变电站),变压器为油浸式变压器,室内变压器容量为100~1600kV A,箱式变压器容量为100~800kV A。 配电房工程分册共分五章。根据配电变压器(以下简称变压器)容量的大小或10kV接线方式的不同分为四章:第一章适用于变压器容量范围100~250kV A,根据变压器安装地点的不同分为变压器室外安装、箱式变电站、变压器室内安装三节;第二章适用于变压器容量范围315~400kV A,根据变压器安装地点的不同分为变压器室外安装、箱式变电站、变压器室内安装三节;第三章适用于变压器容量范围500~1600kV A,10kV侧单电源,根据变压器安装地点及数量的不同

分为箱式变电站(单台变压器)、箱式变电站(两台变压器)、变压器室内安装(单台变压器)、变压器室内安装(两台及以上变压器)四节;第四章适用于变压器容量范围500~1600kV A,10kV侧双电源,根据10kV侧结线方式的不同分为10kV侧单母线接线、10kV侧单母线分段接线两节。第五章为前四章的公共部分,共分三节,分别归纳了设备选择、断面图及二次接线图。 10kV侧标注所有设备的型号及技术参数,0.4kV侧对总路断路器及无功补偿的容量、型号及技术参数进行标注(根据不同的变压器容量,对受变压器容量影响较大的设备技术参数在第五章设备选择中单独列表标注);对出线仅标注设备型号、示意出线回路数,出线设备技术参数应根据工程实际情况选择,出线回路数也可根据工程实际情况酌情增减,图纸标注的设备型号仅作参考。 2 设计范围 从10kV侧电缆进线的电缆头、架空进线的变压器安装引下线起,至0.4kV出线配电屏电缆头止这一范围内的电气安装设计(不含电缆头)。 3 设计目的和原则 3.1 采用标准化、规范化的典型设计,规范市场、提高安装质量,从而保证供电可靠性。 3.2 箱式变电站工厂化。

中顺轻型客车底盘总布置设计

摘要 本文对中顺轻型客车进行了底盘总体布置的设计,并对其进行了转向系的运动校核。 文中对中顺轻型客车底盘各主要部件进行总体的布置设计以及对相应的参数进行了选取和计算,在此基础上完成了总体布置设计,对汽车底盘布置形式进行了选择,这样就确定了轴数、驱动形式和发动机的安装位置。根据所确定的汽车底盘布置形式,考虑到乘车的舒性以及对商务车的基本性能的要求来进行了汽车主要尺寸参数和性能参数的选取和计算,在此基础上选取并确定了底盘各部件的动力总成、减振器及转向器等。最后参考了同类车型的底盘总布置方案来对中顺轻型客车进行底盘总布置,并绘制了底盘的总布置图。 本文在底盘的设计过程中,为了保证汽车驾驶的舒适性和安全性,对转向系的运动干涉问题进行了校核。在分析过程中采用了图解法,对转向系在向左、向右转向时的不同情况进行校核,并测试其合理性,最后的分析结果表明,所设计的转向机构匹配合理,切合实际。 关键词:轻型客车;底盘;总布置;运动校核;

Abstract This dissertation is the chassis overall layout design of the ZhongShun light bus , and then check the locomotion of the steering system of this bus. This discourse select and count the layout design and the relevant parameter of the chassis`s main parts of ZhongShun light bus , On the basic of this , we finally finished this layout design , selecting the form of the layout design , and then we need to ensure the number of shafts、the type of drive and the mounted position of engine . And then , with the ensure the form of the chassis overall layout , take into account the comfort of the bus and the basic capability need of the commercial vehicle , to select and count the parameter of the main size and the capability . With the basic select and ensure every the chassis`s parts , such as power assembly, Shock Absorber, steering and so on. At last consult the chassis layout project of homogeneous model of the car ,to make the layout of the ZhongShun light bus`s chassis , and protract the chart of the chassis overall layout. On the course of the design of the chassis , in order to make sure the comfort and the safety of the automobilism , we check the interference movement to the steering system . On the course that we use the graphical method, check the different case when the steering system turn left or right . The analysis reault indicate that all the design of the steering systerm are matching with reason and practicableness. Key words:light bus; chassis;layout;check the locomotion

汽车底盘设计复习题

汽车底盘设计复习题 《汽车底盘设计》复习题 一.填空题 (1) 膜片弹簧离合器的膜片弹簧本身兼起分离杠杆和压紧弹簧的作用。 (2) 转向桥前轴、转向节、主销和轮毂等主要部分组成。 (3) 前轮定位参数有主销后倾、主销内倾、前轮外倾和前轮前束。 (4) 循环球式转向器中一般有两极传动副,第一级是螺杆螺母传动副,第二级是齿条齿扇传动副。 (5) 车轮制动器一般分盘式和鼓式。 (6) 汽车动力性参数包括最高车速、加速时间、最大爬坡度、比功率和比转矩等。 (7) 主减速器的齿轮有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。 (8) 摩擦离合器常用的压紧弹簧形式:中央、周布、膜片。 (9) 变速器换挡机构有直齿滑动齿轮、啮合套、同步换挡器三种形式。 (10) 摩擦离合器是靠存在于主、从动部分摩擦表面间的摩擦力来传递发动机转矩的。 (11) 动力装置、底盘、车身、电器设备等四部分组成的汽车,是用来载送人员和货物的运输工具。 (12) 悬架导向装置,弹性元件,减震器,缓冲块和横向稳定器等组成。 (13) 悬架是汽车的车架与车桥或车轮之

间的一切传力连接装置的总称。 (14) 原则上对发动机排量大的乘用车、载质量或载客量多的货车或客车,轴距取得大些;对机动性要求高的汽车,轴距取得短些。 (15) 变速器齿轮的损坏形式主要有:轮齿折断、齿面点蚀、移动换挡齿轮端部破坏以及齿面胶合。 (16) 转动驱动轴的半轴根据其车轮端的支承方式不同,可分为半浮式3/4浮式和全浮式三种形式。 (17) 在变速器中心距相同的条件下,选取较小的模数,就可以增加齿轮的齿数,同时增加齿宽可使齿轮齿合的重合度增加,并减少齿轮噪声。 (18) 普通的十字轴式万向节主要主动叉、从动叉、十字轴、滚针轴承及其轴向定位件和橡胶封件等组成。 (19) 万向传动轴因布置位置不同,计算载荷也不同,计算方法有:按发动机最大 转矩和一档传动比来确定、按驱动轮打滑、按平常平均使用转矩来确定。 (20) 要求制动器的效能稳定性好,即是要求其效能对摩擦因数f的变化敏感度要 小。 (21) 货车可以按照驾驶室与发动机相对位置的不同,分为长头、短头、平头、和偏置四种。 (22) 乘用车的布置形式主要有FF、FR、RR三种。 (23) 双十字轴万向节等速传动的条件:两个万向节两

大客车底盘系统设计概念及方案技术要求 上

城市客车底盘 系统设计概念及方案技术要求 (上半部分)

目录一.概述 二.系统设计概念及技术要求 1.车架 2.前后桥 3.前后桥悬架系统 4.轮胎 5.转向系统 6.制动系统 7.底盘自动集中润滑系统

一.概述 本稿所涉及的车型是传统城市客车。车辆主要实施动力系统及其附件系统更改、增加动力电池系统和动力系统电控系统等;所牵涉的其它相关系统,以最大限度的保持对基本型的继承性为原则,进行设计更改或重新设计。整车造型根据实际情况作适应性改进。 以下内容只涉及除动力系统(包括动力装置、电池、电控)以外的以底盘为主的系统设计概念及主要技术要求。 所有相关的设计人员应通过了解设计概念最终达成一致意见,并且将特殊要求的信息给予及时反馈。系统概念给出的是依据法规、国标要求以及相应整车技术规范而形成的框架类描述和基本要求。这些要求必须在后续开发工作中得到响应,并且可能应个别特殊要求做必要的调整和补充。

二.系统设计概念及技术要求 1. 车架 车架采用传统成熟的三段式整体结构,适应不同的系统安装要求,做相应的结构变动和设计调整,同时力求结构可靠和轻量化相结合,以满足底盘配置和可靠性要求。 结构型式参加下图: 主要尺寸参数—— 总长度(m):TBD 最大宽度(m):TBD 前悬(m):TBD 轴距(m):TBD 后悬(m):TBD

2. 前后桥 2.1 前桥 前桥总成采用两级落差前桥总成,其基本参数如下: (1) 额定负荷:7500Kg; (2) 轮距:2101mm,空气弹簧支座中心距:1180mm; (3)主销孔基准与空气弹簧支座安装平面参考距离:75mm;空气 弹簧支座安装平面与前轴中部工字梁上平面参考距离:130mm; (4)前轴定位系数:前轮外倾角0°、主销内倾角8°、主销后倾 角3.5°、前轮前束0~1.5mm; (5)最大转角:内轮为55°,外轮为相应值; (6)转向节臂回转半径:R263.3mm; (7)适用轮辋:8.25×22.5 (8)适用轮胎:11R22.5-16PR、295/80R22.5 (9)制动器规格:盘式制动器22.5″ 结构型式参见下图 2.2 后桥 后桥总成采用13吨级后桥总成,其基本参数如下: (1) 额定负荷:13000kg

关于总布置设计硬点

关于总布置设计硬点 由于零部件设计要在整车总布置基本完成后才开始,在总布置设计阶段中往往没有零部件的详细资料,还不能解决零部件和总成内部的细节问题。所以在布置设计图上出现的是各总成的主要控制点、主要中心线,也包括重要的外廓线和由这些轮廓线构成的控制面以及运动极限位置等。这些控制点称为硬点(Hard point),包括整车及关键零部件的各种控制点、线、面以及控制特征等。 汽车整车设计硬点分类: 概括了描述整车、总成及关键零部件的尺寸、结构型式、空间位置等的关键参数,它主要包括以下内容: 整车外廓形状及尺寸:整车长度、整车宽度、整车高度、轴距、轮距等; 驾驶区控制尺寸:踏板点、踵点,仪表板、转向柱及方向盘控制位置等; 整车乘员空间内部尺寸:H点位置、头部空间、伸腿空间等; 主要总成的设计硬点:总成的最大包络空间、定位点、配合点等;

设计硬点构成了汽车总布置设计的骨架。汽车总布置设计的过程就是设计硬点不断明确、逐步确定的动态过程。 所谓硬点,是通过英文的"hardpoint"直译过来的,它是个布置的概念,在整车开发中(由于整车由成千上万个零部件组成,那么怎么样来协调这些部件间的安装配合呢?硬 点由此而生)为保证零部件之间的协调和装配关系,及造型风格要求所确定的控制点(或坐标),控制线,控制面及控制结构 的总称。所以会有底盘的硬点(这也是大家所熟知的),车身的硬点,内外饰的硬点,成员的硬点(例如H点)等等。 一般一个整车项目开发过程中,最先确定的就是这些硬点,这也是决定所开发的车型平台能否成功的关键因素之一,这些硬点必须要在满足PACKAGE要求的同时,也要满足性 能的要求(例如底盘的硬点要满足整车的操纵稳定性和平顺性的要求),硬点将是汽车零部件设计和选型, 内外饰附件 设计及车身钣金设计的最重要的设计原则,也是各项目组公共认可的尺度和设计原则.同时也是使项目组分而不乱,并行 设计的重要方法. 一般确定后设计硬点不轻易调整, 如需调 整设计硬点,需要和所有的设计人员协商,得到所有子项目组认可。 那么对于底盘而言,什么是硬点呢?底盘是整车的重 要的组成部分,实现车辆作为交通工具的三个基本功能:直

课程设计---汽车底盘设计

课程设计说明书 任务书 本次课程设计的任务如下: 第一组: 建立汽车的前悬架模型,然后测试,细化,优化该模型,建立目标函数,最后与MATLAB实现联合仿真。 1.测量车轮接地点侧向滑移量 2.测量车轮侧偏角 3.测量车轮前束值 4.测量车轮跳动量 5.测量主销后倾角 第二组: 建立整车模型,实现该车在A,B,C三级道路路面上的仿真。

第一部分创建前悬架模型 (1)创建新模型 双击桌面上得ADAMS/View得快捷图标,创建一个名称为:FRONT_SUSP的新模型。(2)设置工作环境 在ADAMS/View选择菜单中得单位命令将长度单位,质量单位,力的单位,时间单位,角度单位和频率单位分别设置为毫米,千克,牛顿,秒,度和赫兹。在工作网格命令中将网格的X方向和Y方向分别设置为750和800,将网格距设置为50。同时将图标大小设置为50。( 3 ) 创建设计点 在ADAMS/View中的零件库中选择点命令,创建八个设计点,其名称和位置如下图: (4)创建主销,上横臂,下横臂,拉臂,转向拉杆,转向节 在ADAMS/View中的零件库中选择圆柱体命令,定义不同的参数值,在对应点之间创建主销,上横臂,下横臂,拉臂,转向拉杆,转向节。 在ADAMS/View中的零件库中选择球体命令,分别在上横臂,下横臂,转向横拉杆上相应点作为参考点创建铰接球。图形如下:

(5)创建车轮,测试平台及弹簧 在ADAMS/View中的零件库中选择圆柱体命令,选择转向节两端点作为设计点。并在ADAMS/View中的零件库中选择倒角命令,定义倒圆半径为50,完成车轮倒角的设计。 应用ADAMS/View中的零件库中选择圆柱体和长方体命令,在创建的(-350,-320,-200)设计点上创建测试平台。 在上横臂上选择创建一点(174.6,347.89,24.85),在大地上创建点(174.6,647.89,24.85),点击ADAMS/View力库的弹簧,设置其刚度和阻尼,选择创建的两点绘制弹簧。 如图:

客车底盘相关汇总

客车底盘相关汇总 1、沃尔沃B12M中置卧式发动机底盘 前一段时间写了一篇《各有千秋六种不同客车发动机布置方式浅析》,文中列举了六种不同的客车发动机布置方式,个人认为以中置卧式发动机最为优秀。同时也曾有幸去过西安西沃客车厂,所以对那款基于沃尔沃TX平台,代号为B12M的中置发动机客车底盘有些了解,现在发表一下个人愚见,希望能与有识之士共同交流。 基于这款底盘的客车有VOLVO 9800,以前好像叫作B12M,属于12米大型高三级客车,在国内由西安西沃客车公司CKD生产,其中底盘的所有部件(大到车架、小到螺栓螺母)全部为瑞典VOLVO全球采购,而车身骨架则由西飞代工,这款车的售价为200万+,VIP车型超过300万。具体的事情我并不了解,这里只说说这款底盘。 B12M中置卧式发动机底盘

B12M 大型高三级旅游客车 中置卧式发动机首先当然是需要一台卧式发动机,B12M的这款卧式发动机代号为DH12,由VOLVO生产,为卧式直列六缸的架构、排量为12.1升、有340匹、380匹和420匹三种不同最大功率的机型,为了实现极低矮的高度,这款发动机采用了干式油底壳,润滑系统全部为压力润滑,冷却系统的散热风扇为液压驱动。 DH12 直列6缸卧式柴油机

采埃孚 EGSVR 8速自动变速器带福伊特液力缓速器 与发动机匹配的有两款不同的变速器和两款不同的液力缓速器可供选择:一款是ZF六前速全同步手动变速器,与之搭配的是福伊特VR120-3液力缓速器;一款是ZF八前速电控自动换档变速器,该变速器有一个四前速的主变速器和一个带有低速和高速两种档位的行星齿轮副变速器组成,与之匹配的是福伊特VR3250紧凑型液力缓速器。 根据中段车架,这款底盘有5500mm和6200mm两种不同的轴距,以适应不同用途的客车。其后悬架为四连杆式非独立空气悬架,有四个空气弹簧四个减振器,并带有横向稳定杆,空气弹簧并不像VOLVO的其他车型一样布置在车架纵梁的下侧,而是外移到了车架侧梁的外侧,这显然可以提高整车的侧倾刚度。其前悬架有双横臂独立悬架和四连杆(其中两个上推力杆为V型一体式)非独立悬架两种不同结构可选,均为两个空气弹簧、并带有横向稳定杆和转向减振器,不过后者布置有四个减振器。

卡车三维参数化总布置设计系统

基于Pro/ENGINEER的卡车三维参数化总布置设计系统 摘要:介绍了在建立零部件图形库、底盘参数数据库、底盘设计标准库的基础上,通过Pro/ENGINEER软件进行二次开发建立的集成于Pro/ENGINEER环境下的卡车底盘参数化三维总布置设计系统。该系统的研制在一定程度上实现了卡车底盘的虚拟设计与虚拟开发。详细阐述了系统开发的基本原理和主要方法。 关键词:卡车总布置计算机辅助设计参数化 1 引言 产品设计通常可以分为创新设计和变型设计两类,在机械、汽车行业中,创新设计较少,大量的是变型设计,也就是在原有产品的基础上,按市场需求进行局部换型和调整、重组。变型设计的实现过程可以最大限度地利用企业已有的成熟产品资源,具有很强的灵活性和适应性,这也就要求企业实施平台化战略。 卡车是一种多品种、多系列的产品,新技术、新产品日益广泛的应用使得卡车的底盘的更新和换型周期不断缩短。卡车性能主要取决于底盘,卡车底盘设计制造水平的不断提高是卡车行业赖以发展的基础。同时,底盘作为平台战略的主要对象,它的快速设计与开发对企业产品平台化战略的实施也必将产生积极的作用。 车辆的总布置是整车开发的基础,其水平对整车产品质量和性能起决定性作用。现惯用的是二维平面方法,它要求总布置人员素质要高,必须对产品零部件相当熟悉且总布置工作必须做细,总布置过程当中要基本完成全部部件的布置,

部件设计人员不独立进行部件的布置。这种做法的优点是总布置人员站在整车的高度全局统筹考虑,一般不易发生由于部件之间缺乏沟通造成的干涉等矛盾;缺点是要求总布置人员具有相当丰富的专业知识和经验并且对各种繁杂的产品具有较深入的了解,对零部件掌握程度高,否则由于部件人员介入晚,一旦总布置出现问题极易影响开发进度和质量。 针对汽车总布置的性质和特点,结合企业实际,以大型CAD/CAE/CAM三维软件Pro/ENGINEER为基础进行二次开发,研制了卡车底盘总布置设计系统,同时采用部件设计人员参与部件布置、总布置与部件布置相结合同步进行的开发思路,使该系统操作简单,设计过程直观、高效,适用于轻卡底盘变型设计与开发。 2 Pro/ENGINEER软件 Pro/ENGINEER是美国PTC公司(Parametric Technology Corporation,参数技术公司)开发的三维造型设计系统,它以单一数据、参数化、基于特征、全相关性以及工程数据再利用等改变了传统机械设计的观念,为工业产品设计提供完整的解决方案,成为当今世界机械CAD领域的新标准,广泛应用于造型设计、机械设计、模具设计、加工制造、机构分析、有限元分析及关系数据库管理等各个领域。Pro/ENGINEER复合式建模工具较之纯参数化的系统更灵活和自由,可以有效利用已有的产品模型数据并充分发挥其在新产品设计中的价值,特别是其自顶向下的设计思路,运用Layout和骨架来传递和交流设计意图,大大提高了设计效率。Pro/ENGINEER软件还提供了强大的装配功能,包括定义不同零部件之间的位置约束关系,生成爆炸视图,进行零部件之间的干涉检查,并计算装配体的距离、总重、重心等各种物理属性等。

汽车总布置设计步骤

汽车总布置设计的内容与步骤 1、汽车总布置设计的内容 主要内容包括总成选型和匹配、整车性能计算、运动学校核、人机工程设计和校核、三维装配、确定设计硬点和设计控制规则。 具体内容包括空间布置和性能相关项目布置。具体如下表 布置的内容布置的项目 空间布置(人机分析、法规校核)发动机、传动系的布置;悬架、轮胎的布置;座椅布置;踏板、变速杆等驾驶操作系统的布置;载货空间的布置;燃料箱、备胎的布置;车身及内、外 饰件的布置 性能相关项目布置 油耗燃料箱容量 制动性能质心位置、轮胎尺寸 操纵稳定性轴距、转向器的位置、方向盘行程 NVH性能传动轴夹角、发动机悬置、空滤器、消声器容量、 排气吊挂、后视镜、仪表板横梁 空气动力性能发动机罩前端高度、前风窗倾斜角、后风窗倾斜角、 扰流板、空气进出风口 机动性轮距、轴距、前后悬、转向齿条行程 发动机冷却前格栅型式、散热器尺寸、前端开口面积 2、汽车总布置设计的步骤 (1)定义整车结构及外形尺寸。进行整车总布置时,首先应初步定义汽车的型式(包括轴数、驱动型式、布置型式、车身型式等),然后选择动力及轮胎型号尺寸,接着对整车的外形尺寸进行定义(包括总长、总宽、总高、轮距、轴距、前悬、后悬、最小离地间隙等),另外还需确定汽车的质量参数 (2)确定假人百分位,定义H点位置。整车布置加人一般用95百分位美国男人和5百分位日本女人,躯干角一般前排为25°,后排为23°。 (3)确定眼椭圆、头部包络线。眼椭圆定义按SAE J 941进行,头部包络线做法按SAE J 1052的规定。头部包络线完成后,顶盖的最低高度可确定。 (4)进行前视野校核。按GB11562的规定,对效果图进行前视野校核。 (5)进行车身零件和总成布置。根据GB14167,结合效果图初选S值,确定安全带安装点初步范围;根据GB17354,确定前后保险杠的位置范围;根据选定的假人,布置合理的手臂到方向盘尺寸和脚到踏板的尺寸,从而确定方向盘中心位置及踏板位置,参考GB/T 17876;根据车轮跳动的包络线,确定合身轮罩等尺寸;进行车内外零部件的布置。 (6)确认发动机盖位置,进行动力总成布置。根据前视野校核结果,即可确定发动机盖上平面上限(应低于前视野下限线),结合此因素,可进行动力总成的初步布置。动力总成上平面到发动机盖下平面的距离一般应为40~50mm,如考虑到行人碰撞安全性,应加大到60mm 或将发动机盖材料改为塑料。动力系统布置时,应考虑轴荷分配、面积利用率、传动轴夹角、最小离地间隙等因素。 (7)进行底盘系统布置。应注意相对运动的零部件进行运动校核,确定它们的运动轨迹和运动空间,并防止各部件之间产生运动干涉,如车轮的跳动、传动轴的跳动等。 (8)应性及车内外人体、人机工程学校核。针对国家对汽车产品的相关强制性标准,对整车、零部件布置的符合性进行校核,另外,对国家尚未要求但国际上通用的标准应考虑符合性。按设计经验及相关参考资料,对车内外零部件尺寸、布置位置的合理性进行人体、人机工程学校核。

家庭分布式光伏典型设计方案

家庭分布式光伏典型设计方案 家庭屋顶一般采用瓦片结构和水泥结构,安装方在推销光伏或者接到用户申请时,要去现场考察,因为并不是每家屋顶都适合安装光伏。 1、选择合适的安装场地 首先要确定屋顶的承载量能不能达到要求,太阳能电站设备对屋顶的承载要求大于30kg/平米,一般近5年建的水泥结构的房屋都可以满足要求,而有10年以上的砖瓦结构的房屋就要仔细考察了;其次要看周边有没有阴影遮挡,即使是很少的阴影也会影响发电量,如热水器,电线杆,高大树木等,公路旁边以及房屋周边工厂有排放灰尘的,组件会脏污,影响发电量;最后要看屋顶朝向和倾斜角度,组件朝南并在最佳倾斜角度时发电量最高,如果朝北则会损失很多发电量。遇到不适合装光伏的要果断拒绝,遇到影响发电量的需要和业主实事求是讲清楚,以免后续有纠份。 2、选择合适的光伏组件 光伏组件有多晶硅,单晶硅,薄膜三种技术路线,各种技术都有优点和缺点,在同等条件下,光伏系统的效率只和组件的标称功率有关,和组件的效率没有直接关系,组件技术成熟,国内一线和二线品牌的组件生产厂家质量都比较可靠,客户需要选择从可靠的渠道去购买。光伏组件有60片电池和72片电池两种,分布式光伏一般规模小,安装难度大,所以推荐用60片电池的组件,尺寸小重量轻安装方便。

按照市场规律,每一年都会有一种功率的组件出货量特别大,业内称为主流组件,组件的效率每一年都在增加,2017年是多晶265W,单晶275W,这种型号性价比最高,也比较容易买到,到2018年预计是多晶270W,单晶280W性价比最高。 3、选择合适的支架 根据屋顶的情况,可以选择铝支架,C型钢,不锈钢等支架,另考虑到光伏支架强度、系统成本、屋顶面积利用率等因素。在保证系统发电量降低不明显的情况下(降低不超过1%)尽可能降低光伏方阵倾斜角度,以减少受风面,做到增加支架强度,减少支架成本、提高有限场地面积的利用率。 漏雨是安装光伏电站过程中需要注意的问题,防水工作做好了,光伏电站才安全。光伏支架安装在屋顶支撑着组件,连接着屋顶。它的设计多采用顶上顶的方式,不会对屋面原有防水进行穿孔、破坏;压块采用预制构件,不用现场浇注,可以避免了太阳能支架安装对屋面防水层的硬性破坏。 4、光伏方阵串并联设计 分布式光伏发电系统中,太阳能电池组件电路相互串联组成串联支路。串联接线用于提升直流电压至逆变器电压输入范围,应保证太阳能电池组件在各种太阳辐射照度和各种环境温度工况下都不超出逆变器电压输入范围。 工作电压在逆变器的额定工作电压左右,效率最高,单相220V逆变器,逆变器输入额定电压为360V,三相380V逆变器,逆变器输入额定电压为650V。如3kW逆变器,配260W组件,工作电压30.5V,配12块工作电压366V,功率为3.12kW 为最佳。10KW逆变器配260W组件,接40块组件,每一路20串,电压为610V,总功率为10.4kW为最佳。

(吉利)整车部设计手册-底盘布置篇

总布置篇 第×章底盘布置 底盘布置是下车身布置的重要环节,也是平台选择的首要任务。在项目策划初期就要进行底盘的布置,为底盘设计提供输入。 悬架结构型式和特点 汽车悬架按导向机构形式可分为独立悬架和非独立悬架两大类。独立悬架的车轮通过各自的悬架和车架(或车身)相连,非独立悬架的左、右车辆装在一根整体轴上,再通过其悬架与车架(或车身)相连。 图非独立悬架与独立悬架示意图 1.1.1 独立悬架 主要用于轿车上,在部分轻型客、货车和越野车,以及一些高档大客车上也有采用。独立悬架与非独立悬架相比有以下优点:由于采用断开式车轴,可以降低发动机及整车底板高度;独立悬架孕育车轮有较大跳动空间,而且弹簧可以设计得比较软,平顺性好;独立悬架能提供保证汽车行驶性能的多种设计方案;簧载质量小,轮胎接地性好。但结构复杂、成本高。独立悬架有以下几种型式: 1.1.1 纵臂扭力梁式 是左、右车轮通过单纵臂与车架(车身)铰接,并用一根扭转梁连接起来的悬架型式(如图所示)。

图扭力梁式独立悬架 根据扭转梁配置位置又可分为(如图所示)三种型式。 图扭力梁式独立悬架的三种布置形式 汽车侧倾时,除扭转梁外,有的纵臂也会产生扭转变形,起到横向稳定杆作用。若还需更大的悬架侧倾叫刚度,仍可布置横向稳定杆。这种悬架主要优点是:车轮运动特性比较好,左、右车轮在等幅正向或反向跳动时,车轮外倾角、前束及轮距无变化,汽车具有良好的操纵稳定性。但这种悬架在侧向力作用时,呈过多转向趋势。另外,扭转梁因强度关系,允许承受的载荷受到限制,扭转梁式结构简单、成本低,在一些前置前驱汽车的后悬架上应用得比较多。 1.1.1 双横臂式 是用上、下横臂分别将左、右车轮与车架(或车身)连接起来的悬架型式(图)。上、下横臂一般作成字型或类似字型结构。这种悬架实质上是一种在横向平面内运动,上、下臂不等长的四连杆机构。这种悬架主要优点是设定前轮定位参数的变化及侧倾中心位置的自由度大,若很好的设定汽车顺从转向特性,可以得到最佳的操纵性和平顺性;发动机罩高度低、干摩擦小。但其结构复杂、造价高。 双横臂式悬架的弹性元件一般都是螺旋弹簧,但是在一些驾驶员座椅布置在上横臂上方的轻型客、货汽车上,为了降低悬架空间尺寸,采用了横置钢板弹簧或扭杆弹簧结构(图) 图双横臂式独立悬架 1.1.1 多连杆式

长途大客车总布置设计

二○一二届毕业设计长途大客车总布置设计 学院:汽车学院 专业:车辆工程 姓名:白新龙 学号:2201080329 指导教师:张平 完成时间:2010年6月15日 二〇一二年六月

摘要 长途大客车日益在人们生活中凸显其重要性,而总布置是其他设计的前提条件,宏观操控全局。 本设计参考市场同类客车及国家相关标准,对汽车的造型内饰等进行了设计,确定了基本尺寸工艺,构建了长途客车的基本结构及外形,并对驾驶员视野进行了校核,根据客车行驶条件及生产要求,选择了发动机,变速器和驱动桥等部件,按相关要求对质心、轴荷分配及动力性进行了计算,根据长途大中型客车相关法规和人体工程学,对大客车驾驶区进行布置和乘客区座椅进布置设计,在车身布置中利用人体样板和眼椭圆对驾驶区中的操纵件和座椅的位置进行了优化设计。大致估算了风窗玻璃,最后对车身附件进行了设计,大致完成了此总布置。通过这次设计了解了一辆汽车设计的严肃性及艰巨性,这将对我以后的工作起指导作用。 关键字:长途客车,人体样板,车身布置,计算,设计

ABSTRACT Touring bus in people's life increasingly highlights its importance, and it's the premise of other macroother design layout ,controled the global. This design reference market similar buses and relevant national standards for cars, the modelling of the interior design, make sure the process, to construct the basic size coach the basic structure and appearance, and checks the vision to the driver, according to passenger cars driving conditions and production requirements, choose the engine, transmission and clutch and other components, according to related requirements on centroid, shaft jose allocation and calculated according to the dynamic performance, long distance large and medium-sized buses with human body engineering related laws and regulations, the bus driver and passenger area decorate area layout design, in seat into the body is decorated in using the human body model and the eye of driving the elliptical seat area and the location of the manipulation of pieces for the optimization design. Roughly calculated the window, wind to body accessories model the final design, substantially completed the general arrangement. This design understand a car design and arduous, the seriousness of the will to my later work period instruction function. KEY WORDS :touring bus,body model,layout ,calculate,design

汽车底盘(悬架)毕业设计

课程设计说明书 学院:机械电子工程学院 班级:交通运输 学生:略 指导老师:略

任务书 本次课程设计的任务如下: 第一组: 建立汽车的前悬架模型,然后测试,细化,优化该模型,建立目标函数,最后与MATLAB实现联合仿真。 1.测量车轮接地点侧向滑移量 2.测量车轮侧偏角 3.测量车轮前束值 4.测量车轮跳动量 5.测量主销后倾角 第二组: 建立整车模型,实现该车在A,B,C三级道路路面上的仿真。

第一部分创建前悬架模型 (1)创建新模型 双击桌面上得ADAMS/View得快捷图标,创建一个名称为:FRONT_SUSP的新模型。(2)设置工作环境 在ADAMS/View选择菜单中得单位命令将长度单位,质量单位,力的单位,时间单位,角度单位和频率单位分别设置为毫米,千克,牛顿,秒,度和赫兹。在工作网格命令中将网格的X方向和Y方向分别设置为750和800,将网格距设置为50。同时将图标大小设置为50。( 3 ) 创建设计点 在ADAMS/View中的零件库中选择点命令,创建八个设计点,其名称和位置如下图: (4)创建主销,上横臂,下横臂,拉臂,转向拉杆,转向节 在ADAMS/View中的零件库中选择圆柱体命令,定义不同的参数值,在对应点之间创建主销,上横臂,下横臂,拉臂,转向拉杆,转向节。 在ADAMS/View中的零件库中选择球体命令,分别在上横臂,下横臂,转向横拉杆上相应点作为参考点创建铰接球。图形如下:

(5)创建车轮,测试平台及弹簧 在ADAMS/View中的零件库中选择圆柱体命令,选择转向节两端点作为设计点。并在ADAMS/View中的零件库中选择倒角命令,定义倒圆半径为50,完成车轮倒角的设计。 应用ADAMS/View中的零件库中选择圆柱体和长方体命令,在创建的(-350,-320,-200)设计点上创建测试平台。 在上横臂上选择创建一点(174.6,347.89,24.85),在大地上创建点(174.6,647.89,24.85),点击ADAMS/View力库的弹簧,设置其刚度和阻尼,选择创建的两点绘制弹簧。 如图:

10kV配电典型设计

山东电力集团公司农村中低压配电工程 改造升级典型设计 (中压配电工程) 《山东电力集团公司农村中低压配电工程改造升级典型设计》编委会主编:××× 副主编:赵宝光刘国生郑西乾 成员:李强商峰常建张立新吕尊堂孙振海王占超范宣彪××××× 山东电力集团公司配电室部分典型设计工作组 牵头单位:潍坊供电公司 成员单位:山东青州格鲁科电力咨询设计有限公司 成员:张吉春李伟李东王海滨 山东电力集团公司变压器台架部分典型设计工作组 牵头单位:泰安供电公司 成员单位:东平县供电公司新泰市供电公司 成员:张勇陈莉崔庆波 山东电力集团公司箱变部分典型设计工作组 牵头单位:青岛供电公司 成员单位:胶州市供电公司胶南市供电公司 成员:王宏德赵鹏王焕军郭章迅

序 1998年开始,全国范围内对农村电网进行了第一、二期农网改造。在实施农网建设改造过程中,严把设计关,统筹规划,精心设计,经过实践,形成了适合本地特点的设计模式,但是建设标准不统一。12年过去了,国内外形势发生了很大变化,现代农业迅速发展,家用电器全面进入农村,农村用电量快速增加。农网改造还有死角,并且部分已改造的电网又出现了不适应问题。 为加快农网改造升级工程的启动和实施,集团公司农电工作部组织有关技术人员,在全面调研的基础上,结合山东农网实际,研究制订了《山东电力集团公司农村中低压配电设施改造升级技术原则(试行)》,明确了我省本次农村中低压配电设施改造升级的总体要求和设计思路,从高压配电线路、高压配电设施、低压配电线路、低压户表、无功优化补偿等方面提出了具体的技术要求和标准,为农村中低压配电网改造升级工程的实施提供了强有力的技术支撑。 按照国网公司在新一轮农网改造升级工作中积极采用“三通一标”的要求,为了及时总结各地的先进设计成果,进一步做好我省农网改造升级工作,统一建设标准,规范工程管理,确保工程质量,以规范指导我省农网改造升级中低压项目的建设工作,我部组织编写了这套《山东电力集团公司农村中低压配电设施改造升级典型设计》,并且在改造工作中推广使用。 为了使典型设计的内容具有经济性、可靠性、先进性和规范性,我部集中各地设计模式的优点,参照《国网公司典型设计》,组织有关人员编写了适合山东电网中低压项目的典型设计,并且组织多次设计审查会,反复修

相关主题
文本预览
相关文档 最新文档