当前位置:文档之家› 传输速率

传输速率

传输速率
传输速率

1.2.1信息传输速率(Rb)

信息传输速率简称传信率,又称信息速率、比特率,它表示单位时间(每秒)内传输实际信息的比特数,单位为比特/秒,记为bit/s、b/s、bps。比特在信息论中作为信息量的度量单位。一般在数据通信中,如使用“1”和“0”的概率是相同的,则每个“1”和“0”就是一个比特的信息量。如果一个数据通信系统,每秒内传输9600bit,则它的传信率为Rb=9600bit/s。

1.2.2码元传输速率(RB)

码元传输速率简称传码率,又称符号速率、码元速率、波特率、调制速率。它表示单位时间内(每秒)信道上实际传输码元的个数,单位是波特(Baud),常用符号“B’来表示。

值得注意的是码元速率仅仅表征单位时间内传送的码元数目而没有限定这时的码元应是何种进制的码元。但对于传信率,则必须折合为相应的二进制码元来计算。例如,某系统每秒传送9600个码元,则该系统的传码率为9600B,如果系统是二进制的,它的传信率9600b/s;如果系统是四进制的,它的传信率是19.2kbit/s;如果系统是八进制的,它的传信率是28.8kbit/s。由此可见,传信率与传码率之间的关系为:

Rb = RBlog2N

式中,N为码元的进制数。

1.2.3频带利用率

在比较不同的通信系统的效率时,只看它们的传输速率是不够的,还要看传输这样的信息所占用的频带。通信系统占用的频带愈宽,传输信息的能力应该愈大。在通常情况下,可以认为二者成比例。所以真正用来衡量数据通信系统信息传输效率的指标应该是单位频带内的传输速率,记为η:

单位:比特/秒?赫(b/s?Hz)、波特/赫(B/Hz)。

例如某数据通信系统,其传信率为9600bit/s,占用频带为6kHz,则其频带利用率为η=1.6bit/(s?Hz)。

1.2.4差错率

由于数据信息都由离散的二进制数字序列来表示,因此在传输过程中,不论它经历了何种变换,产生了什么样的失真,只要在到达接收端时能正确地恢复出原始发送的二进制数字序列,就是达到了传输的目的。所以衡量数据通信系统

可靠性的主要指标是差错率。表示差错率的方法常用以下三种:误码率、误字率、误组率。我们通常用误码率。

误码率又称码元差错率,是指在传输的码元总数中错误接收的码元数所占的比例,用字母Pe来表示,即

误码率指某一段时间的平均误码率,对于同一条数据电路由于测量的时间长短不同,误码率就不一样。在日常维护中,ITU-T规定测试时间。数据传输误码率一般都低于10-10。

通信常识:波特率、数据传输速率与带宽的相互关系

通信常识:波特率、数据传输速率与带宽的 相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间内能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率范围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T 为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为: Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】 香农定理是在研究信号经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,它描述有限带宽、有随机热噪声信道的最

802.11N的传输速率计算方法

802.11n采用了MIMO多天线技术,当存在两根天线(即假如是2X2时),在每种带宽下它存在16 种速率(记为MCS0-MCS15 , MCS : Modulation and coding scheme)(当有 3 根或者 4 根天线都同时能够发射数据的时候, 理论上应该是1根天线时的3倍或4倍)。这16种速率 分别是: HT20 时:(MCS0-MCS7) 6.5M、13M、19.5M、26M、39M、52M、58.5M、65M (MCS8-MCS15) 13M、26M、39M、52M、78M、104M、117M、130M HT40 时:(MCS0-MCS7) 13.5M、27M、40.5M、54M、81M、108M、121.5M、135M (MCS8-MCS15) 27M、54M、81M、108M、162M、216M、243M、270M。 从上面可以看出,MCS8-MCS15分别是对应的MCS0-MCS7的两倍。这是因为在 MCS8-MCS15时,采用了MIMO技术,一个数据流会分成两部分,分别由两个stream发出 去,所以速度提高了一倍;而在MCS0-MCS7时,虽然两根天线也是同时发出信号,但这 两路信号是一样的,所以速度只有MCS8-MCS15的一半。 802.11 n采用多种调制技术,但是在上表中每一列速率对应的码率(即有效数据和发出的数据的比率)是不一样的,例如在MCS7和MCS15时,码率是5/6,而在MCS6和MCS14时,码率是3/4。 由于11n采用的是和11a/g 一样的OFDM方式,而OFDM是将一个宽的带宽正交地分割成几个小的子载波,这些子载波并行地传输数据。所以为了得到某个理论上的速率是如何计算出来的,可以从这方面着手。 下面示范HT20在MCS7时速率的计算方式。 首先,每次传输的时间是4us(这点对于11a/11g相同),由于MCS7采用的是64QAM的调制技术,即每个子载波每次可传输6bit数据,同时,在MCS7时,码率(coding rate)是5/6, 在HT20时,OFDM将20M带宽分割成56个子载波,其中有效传输数据的子载波数目为 52。所以在HT20的MCS7时,速率=(1/4us)*(52*6bit)*5/6 = 65Mbit/s ,而当有多根天线时只要乘以天线的个数就可以。其它速率的计算方式是一样的。 上述计算速率的方法同样适用于11a/11g。

数据传输速率的定义

数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为:S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是0.001ms,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中:1kbps=103bps 1Mbps=106kbps 1Gbps=109bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为:Rmax=2.f(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax与信道带宽B、信噪比S/N 的关系为:Rmax=B.log2(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。若S/N=30(dB),那么信噪比根据公式:S/N(dB)=10.lg(S/N) 可得,S/N=1000。若带宽B=3000Hz,则Rmax≈30kbps。香农定律给出了一个有限带宽、有热噪声信道的最大数据传输速率的极限值。它表示对于带宽只有3000Hz的通信信道,信噪比在30db时,无论数据采用二进制或更多的离散电平值表示,都不能用越过0kbps的速率传输数据。 因此通信信道最大传输速率与信道带宽之间存在着明确的关系,所以人们可以用“带宽”去取代“速率”。例如,人们常把网络的“高数据传输速率”用网络的“高带宽”去表述。因此“带宽”与“速率”在网络技术的讨论中几乎成了同义词。 频带就是指频率范围 带宽的两种概念 如果从电子电路角度出发,带宽(Bandwidth)本意指的是电子电路中存在一个固有通信频带,这个概念或许比较抽象,我们有必要作进一步解释。大家都知道,各类复杂的电子电路无一例外都存在电感、电容或相当功能的储能元件,即使没有采用现成的电感线圈或电容,导线自身就是一个电感,而导线与导线之间、导线与地之间便可以组成电容——这就是通常所说的杂散电容或分布电容;不管是哪种类型的电容、电感,都会对信号起着阻滞作用从而消耗信号能量,严重的话会影响信号品质。这种效应与交流电信号的频率成正比关系,当频率高到一定程度、令信号难以保持稳定时,整个电子电路自然就无法正常工作。为此,电子学上就提出了“带宽”的概念,它指的是电路可以保持稳定工作的频率范围。而属于该体系的有显示器带宽、通讯/网络中的带宽等等。 而第二种带宽的概念大家也许会更熟悉,它所指的其实是数据传输率,譬如内存带宽、总线带宽、网络带宽等等,都是以“字节/秒”为单位。我们不清楚从什么时候起这些数据传输率的概念被称为“带宽”,但因业界与公众都接受了这种说法,代表数据传输率的带宽概念非常流行,尽管它与电子电路中“带宽”的本意相差很远。 对于电子电路中的带宽,决定因素在于电路设计。它主要是由高频放大部分元件的特性决定,而高频电路的设计是比较困难的部分,成本也比普通电路要高很多。这部分内容涉及到电路设计的知识,对此我们就

项目管理基本概念题1

应掌握的基本概念:(以下内容将包含在选择、填空和问答题中) 1、项目的定义 一般认为:项目是一个组织为实现自己既定的目标,在一定的时间、人员和资源约束条件下,所开展的一种具有一定独特性的一次性工作。 2、项目管理的定义 1.项目管理是使用各种管理方法、技术和知识为实现项目目标而对项目各项活动所开展的管理工作。 2.项目管理涉及到对于项目或项目阶段的起始、计划、组织、控制和结束这样五个具体的管理过程(或内容)。 3、一个项目可以划分为四个主要工作阶段: 1.项目的定义与决策阶段 2.项目的计划和设计阶段 3.项目的实施与控制阶段 4.项目的完工与交付阶段 4、现代项目管理知识体系的构成 按照PMI的体系可以划分为如下九个主要的方面。 1.项目集成管理 确保各种项目工作和项目的成功要素能够很好的协调与配合,以及相应的管理理论、方法、工具。 2.项目范围管理 计划和界定一个项目或项目阶段需要完成的工作和必须要完成的工作的管理工作的理论、方法、工具。 3.项目时间管理 又叫项目工期进度管理,是有关如何按时完成项目工作的理论、方法、工具。 4.项目成本管理 又叫项目选价管理,是如何在不超出项目预算的情况下完成整个项目工作,所需的管理理论、方法、工具。 5.项目质量管理 如何确保项目质量,以及保证项目质量所需的管理理论、方法、工具。 6.项目人力资源管理 如何更有效地利用项目所涉及的人力资源,以及在项目人力资源管理方面所需的管理理论、方法、工具。 7.项目沟通管理 如何有效、及时地生成、收集、储存、处理和最有效的使用项目信息,以及在项目信息和沟通管理方面所需的管理理论、方法、工具。 8.项目风险管理 如何识别项目风险、分析项目风险和应对项目风险,以及项目风险管理所需的管理理论方法、工具。 9.项目采购管理 也叫做项目获得管理,是有关从项目组织外部寻求和获得各种商品与劳务的管理,以及这一管理所需的理论、方法、工具。 5、项目管理过程 一个项目的全过程或项目阶段都需要有一个相对应的项目管理过程。这种项目管理过程一般由五个不同的管理具体工作过程构成。 1.起始过程 它包含有:定义一个项目阶段的工作与活动、决策一个项目或项目阶段的起始与否,以及决定是否

传输速度的计算

传输速度的计算 ------分隔线---------------------------- 时间:2009-10-06 10:00来源:未知作者:admin 点击:341次 就传输线a点至b点,我们都必须计算讯号在电路板上的传导速度才行,但这又和许多系数息息相关,包括导体(通常为铜箔)的厚度与宽度,基板厚度与其材质的电介系数(Permittivity)。尤其以基板的电介系数的影响最大,一般而言,传导速度与基板电介系数的平方根 就传输线a点至b点,我们都必须计算讯号在电路板上的传导速度才行,但这又和许多系数息 息相关,包括导体(通常为铜箔)的厚度与宽度,基板厚度与其材质的电介系数(Permittivity)。 尤其以基板的电介系数的影响最大,一般而言,传导速度与基板电介系数的平方根成反比。 以常见的FR-4而言,其电介系数随着频率而改变,其 公式:ε =4.97-0.257 log 以Pentium II 的频率信号为例,其上升或下降缘速率典型值约在2V/ns,对2.5V的频率信号而 言,从10%到90%的信号水平约需1ns的时间,依 公式:BW=0.35/ 可知频宽为350MHZ。代入公式可知电介系数大约是4.57。 如果传导的是两片无穷大的导体所组成的完美传输线,那么传输的速度应为5.43 inch/ns。 但对电路板这种信号线(Trace)远比接地层要细长的情况,则可以用微条(Micro strip)或条线 (Strip line)的模型来估算。对于走在外层的信号线,以 微条的公式:inch/ns 可得知其传输速度约为6.98 inch/ns 对于走内层的信号线,以 条线的公式:inch/ns 可得知其传输速度约为5.50 inch/ns 除此之外,也不要忽视贯穿孔(Via)的影响。一个贯穿孔会造成24 ps左右的延迟,举例而言,频率产生器到芯片A的频率线长为12 inch,并打了4个贯穿孔;到B为7 inch,没有贯穿孔,则两者之间的频率歪斜为 (12-7)/6.98+(0.024X4)=0.81 ns。

数字通信中的数据传输速率等的计算

数字通信中的数据传输速率、波特率、符号率计算在数字通信中的数据传输速率与调制速率是两个容易混淆的概念。 数据传输速率(又称码率、比特率或数据带宽)描述通信中每秒传送数据代码的比特数,单位是bps。 当要将数据进行远距离传送时,往往是将数据通过调制解调技术进行传送的,即将数据信号先调制在载波上传送,如QPSK、各种QAM调制等,在接收端再通过解调得到数据信号。 数据信号在对载波调制过程中会使载波的各种参数产生变化(幅度变化、相位变化、频率变化、载波的有或无等,视调制方式而定),波特率是描述数据信号对模拟载波调制过程中,载波每秒中变化的数值,又称为调制速率,波特率又称符号率。 在数据调制中,数据是由符号组成的,随着采用的调制技术的不同,调制符号所映射的比特数也不同。 符号又称单位码元,它是一个单元传送周期内的数据信息。 如果一个单位码元对应二个比特数(一个二进制数有两种状态0和1,所以为二个比特)的数据信息,那么符号率等于比特率;如果一个单位码元对应多个比特数的数据信息(m个),则称单位码元为多进制码元。 此时比特率与符号率的关系是: 比特率=符号率*log2 m,比如QPSK调制是四相位码,它的一个单位码元对应四个比特数据信息,即m=4,则比特率=2*符号率,这里“log2 m”又称为频带利用率,单位是: bps/hz。 另外已调信号传输时,符号率(SR)和传输带宽(BW)的关系是: BW=SR(1+α),α是低通滤波器的滚降系数,当它的取值为0时,频带利用率最高,占用的带宽最小,但由于波形拖尾振荡起伏大(如图5-15b),容易造成

码间干扰;当它的取值为1时,带外特性呈平坦特性,占用的带宽最大是为0时的两倍;由此可见,提高频带利用率与"拖尾"收敛相互矛盾,为此它的取值一般不小于 0.1 5。 例如,在数字电视系统,当α= 0.16时,一个模拟频道的带宽为8M,那么其符号率=8/(1+ 0.16)= 6.896Ms/s。 如果采用64QAM调制方式,那么其比特率= 6.896*log2 64= 6.896*6= 41.376Mbps。

项目投资的基本概念

项目投资的基本概念 黄大方 一、项目投资的相关概念 1、投资主体 投资人或从债权人也可以作为项目的投资主体(间接投资主体)。这三种人都要从各自的立场分析评价投资项目。 企业项目投资的直接投资主体就是企业本身。 2、项目计算期 项目计算期是指投资项目从投资建设(建设起点)开始到最终清理(终结点)结束整个 过程的全部时间,包括建设期和生产经营期。 n =s+p 从上述数轴中应该明白六点:建设期起点(项目计算期起点);建设期终点(经营期起点);经营期终点(项目计算期终点)。 NCF1 :第1年现金净流量( 假定其全部发生于第1年末现金净流量) NCF2:第2年现金净流量(假定其全部发生于第2年末现金净流量) 注意NCF 与N 、S 、P 之间的换算关系如某项目建设期为3年,生产经营期7年,则: NCF9=NCF (3+6)表示项目计算期第9年,也是生产经营期第6年的净现金流量。 如某项目建设期为3年,生产经营期7年,则:项目计算期第7年即为生产经营期第4年(7-3);生产经营期第2年即为项目计算期第5年(3+2)。 3、投资项目的有关价值指标 1)原始总投资等于企业为使项目完全达到设计生产能力、开展正常经营而垫支的全部现实资金,包括建设投资(固定资产投资、无形资产投资、开办费投资)与流动资金投资。原始总投资可以一次投入,也可以分次投入。 2)投资总额等于原始总投资与建设期资本化利息之和,其中固定资产投资与其资本化利息之和称为固定资产原值。

投资决策中的现金流量,通常由以下几个方面构成: 1、初始现金流量 初始现金流量是指项目开始投资量发生的现金流量。包括: (1)固定资产投资。 (2)其他长期资产投资。 (3)流动资金投资。 (4)原有固定资产的变价收入。 2、营业现金流量 营业现金流量是指项目完成后,就整个寿命周期内由于下沉生产营业所带来的现金流量。此类现金流量可按年计算。其值等于营业现金收入减去营业现金支出和 税金支出后的差额。 应该注意的是,定期损益计算的净收益和营业上实际发生的现金流量是有所不同的。因为根据权责发生制进行定期的损益计算,费用中包括了非现金支出的部分(主要是折旧费、摊销费和利息费)。因此,以定期操作益计算的净收益为基础,可按下式调整计算现金流量: 营业现金流量=定期操作益计算的净收益+非现金支出的成本费用 3、终结点现金流量 终结点现金流量是指项目经济寿命终结时发生的现金流量。主要包括 a)固定资产的变价收入或残值收入 b)原垫支的流量资金回收额。

数据通讯基本概念

数据通讯基本概念 一、数据及计算机通信术语 ●数据(Data):传递(携带)信息的实体。 ●信息(Information):是数据的内容或解释。 ●信号(Signal):数据的物理量编码(通常为电编码),数据以信号的形式传播。 ●模拟信号与数字信号 ●基带(Base band)与宽带(Broad band) ●信道(Channel):传送信息的线路(或通路) ●比特(bit):信息量的单位。比特率为每秒传输的二进制位个数。 ●码元(Code Cell):时间轴上的一个信号编码单元 ●同步脉冲:用于码元的同步定时,识别码元的开始。同步脉冲也可位于码元的中部,一个码元也可有多个同步脉冲相对应。(如图1所示) ●波特(Baud):码元传输的速率单位。波特率为每秒传送的码元数(即信号传送速率)。 1 Baud = log2M (bit/s) 其中M是信号的编码级数。也可以写成:Rbit = Rbaud log2M 上式中:Rbit-比特率,Rbaud-波特率。 一个信号往往可以携带多个二进制位,所以在固定的信息传输速率下,比特率往往大于波特率。换句话说,一个码元中可以传送多个比特。 例如,M=16,波特率为9600时,数据传输率为38.4kbit/s ●误码率:信道传输可靠性指标,是概率值 信息编码:将信息用二进制数表示的方法。 数据编码:将数据用物理量表示的方法。 例如:字符‘A’的ASCII编码(是信息编码的一种)为01000001 ●带宽:带宽是通信信道的宽度,是信道频率上界与下界之间之差,是介质传输能力的度量,在传统的通信工程中通常以赫兹(Hz)为单位计量。 在计算机网络中,一般使用每秒位数(b/s 或bps) 作为带宽的计量单位。主要单位:Kb/s,Mb/s,Gb/s,一个以太局域网理论上每秒可以传输1千万比特,它的带宽相应为10Mb/s。 ●时延

带宽与信道容量与数据传输速率的关系

带宽与信道容量与数据传输速率的关系 2008-04-22 10:16:58| 分类:默认分类|举报|字号订阅 数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为: S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=10^3 bps 1Mbps=10^6 bps 1Gbps=10^9 bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则

与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为: Rmax=(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax 与信道带宽B、信噪比S/N的关系为: Rmax=(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。

计算机网络 数据通信基本概念

计算机网络数据通信基本概念 数据通信的目的是传递信息。对于一个完整的数据通信系统,我们不仅需要对产生和发送信息的信源和接收信息的信宿(通信过程中接收和处理信息的设备或计算机。)有一定的了解,还需要了解数据通信系统中信息、数据、信号、信道等一些基本概念。 1.信息 信息是人对客观物质的反映,既可以是对物质的形态、大小、结构、性能等部分或全部特性的描述,也可以是客观物质与外部事物的联系。信息有多种存在形式,如文字、声音、图像等。 2.数据 数据是对客观物质未经加工处理的原始素材,如图形符号、字母、数字等。数据是装载信息的实体,而信息是经过加工处理的数据。数据包括模拟数据和数字数据两种表现形式,其中模拟数据采用连续值,如声音的强度、光的强度都是连续变化;而数字数据采用离散值等。 3.信号 信号是指数据的电磁编码或电编码。它分为模拟信号和数字信号两种。模拟信号是连续变化的电磁波,数字信号则是一串电压脉冲序列。如图3-1所示。 数字信号波形模拟信号波形 图3-1 数字信号和模拟信号 4.信道 信道是信号传输的通道,由传输介质及相应的附属设备组成。信号只有通过信道传输,才能够从信源到达信宿。同一条传输介质上可以同时存在多条信号通道,即一条传输线路上可以有多个信道,实现数据传输。例如,一条光缆可以包含上千个电话信道,供几千人同时通话。 信道的性能决定了信号的传输质量和传输速率,而在数据通信系统中,影响信道性能的因素主要有以下几个: 信道带宽 信道带宽是指信道可传输的信号最高频率与最低频率之差,以Hz为单位。在通信系统中,不同的传输介质具有不同的带宽,并且只能够安全传输其带宽范围之内的信号。如图3-2所示,为不同传输介质的带宽对应关系。

带宽、数据通信速率等关系.

数据传输速率、带宽、信道容量、信号传输速率关系 一、数据传输速率Rb 数据传输速率是描述数据传输系统的重要技术指标之一。 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T为传输1比特数据所花的时间。 数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为:S=1/T(bps)其中,T为发送每一比特所需要的时间。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=103bps 1Mbps=106kbps 1Gbps=109bps 二、信号传输速率 也称码元率、调制速率或波特率,表示单位时间内通过信道传输的码元个数,单位记做BAND。 三、带宽W: 1、在模拟信号系统领域: 信道可以不失真地传输信号的频率范围,每秒传输的信号周期数。带宽用来标识传输信号所占有的频率宽度,这个宽度由传输信号的最高频率和最低频率决定,两者之差就是带宽值,因此又被称为信号带宽或者载频带宽,单位为Hz。在信号传输系统中,系统输出信号从最大值衰减3dB的信号频率为截止频率,上下截止频率之间的频带称为通频带,用BW表示。 2、在数字系统领域: 四、信道容量: 信道在单位时间内可以传输的最大信号量,表示信道的传输能力。信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的

数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。 五、数据传输率: 信道在单位时间内可以传输的最大比特数。信道容量和信道带宽具有正比的关系:带宽越大,容量越大。 六、波特率RB 电子通信领域,波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。调制速率,指的是信号被调制以后在单位时间内的变化,即单位时间内载波参数变化的次数。它是对符号传输速率的一种度量,1波特即指每秒传输1个符号。波特率(Baud rate)一般小于等于调制速率。 若数字传输系统,波特率又称码元速率。指每秒信号的变化次数。若数字传输系统所传输的数字序列恰为二进制序列,则等于每秒钟传送码元的数目,而在多电平中则不等同。单位为"波特",常用符号"Baud"表示,简写为"B"。 七、码元速率和数据传输速率的关系 码元速率和数据传输速率的关系式为: Rb=RB*。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 八、奈奎斯特定律 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。

信道、信道容量、数据传输速率

简介:信道、信道容量、数据传输速率(比特率)、电脑装置带宽列表 一、信道的概念 信道,是信号在通信系统中传输的通道,是信号从发射端传输到接收端所经过的传输媒质,这是狭义信道的定义。广义信道的定义除了包括传输媒质,还包括信号传输的相关设备。 信道容量是在通信信道上可靠地传输信息时能够达到的最大速率。根据有噪信道编码定理,给定信道的信道容量是其以任意小的差错概率传输信息的极限速率。信道容量的单位为比特每秒、奈特每秒等等。香农在第二次世界大战期间发展出信息论,并给出了信道容量的定义和计算信道容量的数学模型。他指出,信道容量是信道的输入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。 二、信道的分类 (一)狭义信道的分类 狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。 1. 有线信道 有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附近,因此传输效率高,但是部署不够灵活。这一类信道使用的传输媒质包括用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。 2. 无线信道 无线信道主要有以辐射无线电波为传输方式的无线电信道和在水下传播声波的水声信道等。 无线电信号由发射机的天线辐射到整个自由空间上进行传播。不同频段的无线电波有不同的传播方式,主要有: 地波传输:地球和电离层构成波导,中长波、长波和甚长波可以在这天然波导内沿着地面传播并绕过地面的障碍物。长波可以应用于海事通信,中波调幅广播也利用了地波传输。 天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。短波电台就利用了天波传输方式。天波传输的距离最大可以达到400千米左右。电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。 视距传输:对于超短波、微波等更高频率的电磁波,通常采用直接点对点的直线传输。由于波长很短,无法绕过障碍物,视距传输要求发射机与接收机之间没有物体阻碍。由于地球曲率的影响,视距传输的距离有限,最远传输距离 d 与发射天线距地面的高度 h 满足。如果要进行远距离传

传输带宽计算方法

在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线 路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以 介绍 比特率是指每秒传送的比特(bit)。单位为bps(BitPerSecond) ,比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要 么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码 率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码 流越大,压缩比就越小,画面质量就越咼。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算:比特率大小X摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是 512kbps=64kb/s,其下行带宽是2Mbps=256kb/s 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1

建设工程项目基本概念

建设工程项目基本概念 一、建设工程项目(construction project) 为完成依法立项的新建、改建、扩建的各类工程(土木工程、建筑工程及安装工程等)而进行的、有起止日期的、达到规定要求的一组相互关联的受控活动组成的特定过程,包括策划、勘察、设计、采购、施工、试运行、竣工验收和移交等。 二、建设工程项目的分类 (一)按建设性质划分 分为新建、扩建、改建、迁建、恢复。 新建项目:有两种情况 (1)从无到有。 (2)如果在扩建的过程中,新增的固定资产价值超过原有固定资产价值的三倍以上。 (二)按建设规模划分 可分为大型、中型和小型三类;更新改造项目按照投资额分为限额以上和限额以下项目两类。 1.按总投资划分的项目,能源、交通、原材料工业项目5000万元以上,其他项目3000万元以上的作为大中型(或限额上)项目。 2.否则为小型(或限额以下)项目。 注:更新改造的项目应该按照限额以上和限额以下来划分。

三、建设工程项目的组成 建设工程项目可分为单项工程、单位(子单位)工程、分部(子分部)工程和分项工程。 特点:投资额巨大、建设周期长、整体性强和固定性等特征。 1、单项工程: 单项工程是指具有独立的设计文件,竣工后可以独立发挥生产能力或效益的工程。也有称作为工程项目。如工厂中的生产车间、办公楼、住宅;学校中的教学楼、食堂、宿舍等,它是基建项目的组成部分。 2、单位工程是指具有单独设计和独立施工条件,不能独立发挥生产能力或效益的工程,它是单项工程的组成部分。如生产车间这个单项工程是由厂房建筑工程和机械设备安装工程等单位工程所组成。建筑工程还可以细分为一般土建工程、水暖卫工程、电器照明工程和工业管道工程等单位工程。 单项工程和单位工程两者的区别主要是看它竣工后能否独立地发挥整体效益或生产能力。 3、分部工程(parts of construction)是单位工程的组成部分,分部工程一般是按单位工程的结构形式、工程部位、构件性质、使用材料、设备种类等的不同而划分的工程项目。例如一般土建工程可以划分为地基与基础工程、主体结构工程、建筑装饰装修工程、屋面工程、建筑

WIFI基本数据传输机制理解要点.doc

802.11基本数据传输机制理解 1. 80 2.11网络基本概念 1.1 80 2.11网络元素 Station (STA): 具有802.11无线网卡的设备,包括手机、笔记本电脑等。 Access Point (AP): 实现无线网络与固定网络连接功能的设备,通常也称作“热点”,它主要完成STA与STA之间数据的转发、STA与骨干网之间数据的转发以及必要的管理工作。 本文中将AP和STA通称为Node(节点)。 Wireless Medium (WM): STA之间以及STA与AP之间传递数据的通道,即无线链路。 无线链路一词相对直观和容易理解,本文中的用无线链路只带WM。 Distribution System (DS): 8023.11中的一个逻辑概念,通常包括两部分:骨干网以及AP的帧分发机制。这里的骨干网指的是连接各AP的固网,通常可以理解为以太网;AP的帧分发机制则完成骨干网与STA、以及STA与STA之间的数据帧转发工作。 1.2 80 2.11组网方式 Independent Basic Service Set (IBSS) —IBSS中只有STA和WM,没有AP和DS —IBSS内的通信只能发生在STA直接通信距离内 —IBSS内STA间的通信都是点到点直接通信,没有转发 图1 IBSS网络结构 Infrastructure Basic Service Set (BSS) —BSS内有STA、AP和WM,但没有DS

—BSS的范围由AP的覆盖范围决定 —BSS内的各STA的通信均由AP中转,不能直接通信 —BSS内STA在通信前必须先与AP进行关联(associate),建立STA-AP的对应绑定关系—STA总是关联的发起方,AP是响应方并决定是否允许STA的加入 —一个STA同一时刻最多只能与一个AP进行关联 —AP的存在使得各STA可以以省电(power-saving: PS) 模式工作 图2 BSS网络结构 Extended Service Set (ESS) —多个BSS串在一起组成一个ESS,同一ESS内的所有AP使用同一个SSID (Service Set Identifier) —一个ESS内的各BSS由DS连接起来 图3 ESS网络结构 2. 802.11数据传输的基本问题及解决方案 2.1 数据传输的可靠性 将数据准确无误地送达目的地是任何通信技术的基本要求。802.11中引入多种机制来保证数据传输的可靠性。

高性能海量数据传输技术白皮书_V2.0

Aspera 速铂高性能海量数据传输解决方案 概述 Aspera速铂的核心技术fasp TM是一种全新的软件技术。它彻底克服了传统数据传输软件例如FTP, HTTP以及Windows CIFS中的固有瓶颈,实现了在各种共享和私有网络环境中传输速度的最大化。这种技术可以获得完美的传输效率,不为网络延迟和丢包所限制。并且,用户享有对传输速度以及不同传输流之间带宽共享的无以伦比的控制。不管网络距离和动态性能如何,即便是在最困难的网络条件下(例如卫星,无线和洲际远程链接),文件传输时间仍然可以得到保障。FASP具有内置的,完整的安全性,包括连接节点安全验证,传输中数据加密以及数据完整性验证。 高速文件传输的挑战 和传统的基于磁带的邮件递送相比,通过数字化网络传输来实现海量数据的递送具有经济高效的特点。在理想情况下,数据文件可以通过现有应用程序例如FTP文件传输,HTTP网上递送以及Windows CIFS拷贝实现在全世界范围内IP网络间快速,经济的传输。但是,在实际网络中,传统的手段无一不陷入传输速度的瓶颈中,以至于甚至无法利用已有网络带宽的一小部分。这是由于这些应用都基于同一种传输协议--TCP。 传输控制协议(TCP)有一个根本的速度瓶颈;这个瓶颈随着传输延迟和网络丢包率的增加而变得愈发明显。速度瓶颈的形成和TCP控制数据流量速率的机制密切相关。TCP发送端需要得到数据接收端收到每个数据包的确认消息才向网络中注入新的数据。但是由此产生的传输速率的增加却随传输延迟的增加而减小。当遇到丢包时,TCP简单的认为所有丢包都是因为网络拥塞造成的,而无法区分拥塞造成的丢包和信道本身差错造成的丢包。在这种情况下,TCP就会迅速的减低自身的传输速率。简而言之,TCP的传输速率在丢包时下降过多,而在正常情况时增加又太过缓慢,以至在高速广域网上无法充分利用已有带宽。对于所有基于TCP 之上的传输图1:图示为在OC-3(155Mbps)链接上用TCP传输单个大文件的性能。显而易见,TCP传输吞吐量随传输延时和网络丢包率的增加而迅速减小。 应用而言,它们无一不受以下几个方面的限制: ?速率缓慢以及带宽利用率低下 基于TCP的文件传输带宽利用率极低。在局域和校园网这些延迟和丢包率都较小的环境中(10微秒/0.1%),TCP在千兆网上的最大吞吐率仅为50Mbps。当在广域网上传输时,这个问题变得更加突出。在典型的洲际网络或卫星链接上,传输吞吐率可能仅为已有带宽的百分之0.1到1。 有时网络工程师试图通过调整TCP协议栈参数,部署TCP加速装置或采用并行TCP 的方法以求获得更高带宽利用率。但是这些方法仅仅在网路本身条件较好的情况下有效。当网络信道本身的丢包率较大时,由于TCP无法有效区分拥塞引起的和信道本身差错引起的丢包,其吞吐量仍然将会很低。例如在卫星和无线网中,传输速率往往极低以至于文件根本无法传完。 ?传输速率不稳定 如前所述,TCP采用一种基于丢包的速率控制机制。其依赖于丢包来实现减速而在其他时候线性加速。当信道本身没有丢包是,TCP只有短暂超出网络已有带宽以至产生丢包的情况下才能减速。这样的设计

802.11ac 传输速率计算方式

Guard Interval The Guard Interval is the ratio of the Cyclic Prefix "CP" time to the inverse FFT time "T(IFFT)." The guard interval is used to eliminate inter-symbol and inter-carrier interference. A copy of the last guard interval T(GI) of the useful symbol period "T(IFFT)", termed Cyclic Prefix "CP", is used to collect multipath, while maintaining the orthogonality of the subcarriers. Each symbol is transmitted for a slightly longer time, extended symbol time T(s), than the active (or useful) symbol time T(IFFT). The extra time is the guard interval. 1/8: Sets the Guard Interval to 1/8 (see Guard Interval Time Calculation below) 1/4: Sets the Guard Interval to 1/4 (see Guard Interval Time Calculation below) Other: Enables you to enter Guard Interval values between 0 to 1. The Guard Interval time period T(GI) is specified as a fraction (percentage) of the inverse FFT time period T(IFFT). For 802.11a, the only selection is a Guard Interval of 1/4 (1/8 is greyed). For HIPERLAN/2, both 1/4 and 1/8 are selections. The Other selection allows the input of a non-standard Guard Interval value between 0 and 1. where: T(FFT)= FFT time period for the OFDM signal T(GI) = Guard Interval time period = Guard Interval ′ T(FFT)

串行通讯的基本概念

串行通讯的基本概念:与外界的信息交换称为通讯。基本的通讯方式有并行通讯和串行通讯两种。 一条信息的各位数据被同时传送的通讯方式称为并行通讯。并行通讯的特点是:各数据位同时传送,传送速度快、效率高,但有多少数据位就需多少根数据线,因此传送成本高,且只适用于近距离(相距数米)的通讯。 一条信息的各位数据被逐位按顺序传送的通讯方式称为串行通讯。串行通讯的特点是:数据位传送,传按位顺序进行,最少只需一根传输线即可完成,成本低但送速度慢。串行通讯的距离可以从几米到几千米。 根据信息的传送方向,串行通讯可以进一步分为单工、半双工和全双工三种。信息只能单向传送为单工;信息能双向传送但不能同时双向传送称为半双工;信息能够同时双向传送则称为全双工。 串行通讯又分为异步通讯和同步通讯两种方式。在单片机中,主要使用异步通讯方式。 MCS_51单片机有一个全双工串行口。全双工的串行通讯只需要一根输出线和一根输入线。数据的输出又称发送数据(TXD),数据的输入又称接收数据(RXD)。串行通讯中主要有两个技术问题,一个是数据传送、另一个是数据转换。数据传送主要解决传送中的标准、格式及工作方式等问题。数据转换是指数据的串并行转换。具体说,在发送端,要把并行数据转换为串行数据;而在接收端,却要把接收到的串行数据转换为并行数据。 单工、半双工和全双工的定义 如果在通信过程的任意时刻,信息只能由一方A传到另一方B,则称为单工。 如果在任意时刻,信息既可由A传到B,又能由B传A,但只能由一个方向上的传输存在,称为半双工传输。 如果在任意时刻,线路上存在A到B和B到A的双向信号传输,则称为全双工。 电话线就是二线全双工信道。由于采用了回波抵消技术,双向的传输信号不致混淆不清。双工信道有时也将收、发信道分开,采用分离的线路或频带传输相反方向的信号,如回线传输。 --------> <--------> --------> A---------B A----------B A---------B <-------- 单工半双工全双工 串口通讯—全双工和半双工方式 在串行通信中,数据通常是在两个站(如终端和微机)之间进行传送,按照数据流的方向可分成三种基本的传送方式:全双工、半双工、和单工。但单工目前已很少采用,下面仅介绍前两种方式。 1、全双工方式(full duplex)

相关主题
文本预览
相关文档 最新文档