当前位置:文档之家› VC 坐标系统与坐标变换

VC 坐标系统与坐标变换

VC 坐标系统与坐标变换
VC 坐标系统与坐标变换

VC 坐标系统与坐标变换

(转)经常有朋友提问关于编程过程中遇到的坐标变换问题。我抽了点时间从msdn摘译了一些东西,并加了一些自己的理解,希望能有助于对程序中坐标变换的理解。鉴于我水平有限,可能某些概念的理解有些错误或者解释不够准确,欢迎指正。不足的地方,以后有时间会继续丰富此文。

win32程序使用坐标系统之间的变换完成图形的缩放、旋转、平移等输出操作。win32下面总共使用四个坐标空间:世界坐标系、页面坐标系、设备坐标系和物理坐标系(包括客户区、桌面或打印纸等)。每个坐标空间都是一个线性空间,用两个相互垂直的坐标轴定位两维的物体。

我们把改变一个物体的大小、方向和形状的算法称作“变换”。一个图形物体从一个坐标空间映射到另一个坐标空间的过程就是一个变换。最终,物体显示在一个物理设备上,通常是屏幕或者打印机。

1、四个坐标系的定义

坐标系描述

世界坐标系可选,用于图形转换的起始坐标空间。最大尺寸是 2^32单位高和 2^32 单位宽。

支持缩放、平移、旋转、变形、投射等转换操作。

页面坐标系作为世界坐标系之后的第二个坐标系使用,也可以作为变换的起始坐标系。

最大尺寸是 2^32单位高和 2^32 单位宽。可以设置映射模式。

设备坐标系用于页面坐标系之后。仅仅允许平移操作。保证设备坐标系的原点位于正确的

物理设备空间中合适的位置上。最大尺寸是2^27单位高和 2^27单位宽。

物理坐标系图形变换后的最终的输出空间。通常指程序窗口的客户区。也可以是整个桌面、

整个窗口区域或者打印机、绘图仪的某一页,取决于程序获得的DC的句柄。物

理设备的尺寸取决于显卡、打印机等的设置。

页面空间和设备空间一起工作,在这两个空间下,程序可以使用设备相关的单位,例如毫米和英寸。但是在世界坐标系和页面坐标系下,都认为是逻辑坐标系,单位是逻辑单位1。

任何程序的绘图代码中使用的坐标都是从世界坐标系开始,直到物理坐标系,最后得到(看到)输出结果。每两个坐标系之间,系统都采用一种变换方法,从前面的坐标空间复制(或者映射)一个矩形区域到下一个坐标空间。为了便于处理,如果程序调用了SetWorldTransform函数,则这个映射过程从世界坐标系开始,否则从页面坐标系开始。用图形表示如下:

+-----------+ +------------+ +------------+ + ------------------+

| 绘图代码 | | (窗口) | | (视口) | | (屏幕/打印机等) |

| 世界坐标系| ---〉 | 页面坐标系 | -----〉| 设备坐标系 | ----〉|物理坐标系 |

| | | | | | |

|

+-----------+ +------------+ +------------+ + ------------------+

举个例子说,如果我们在DC上面有个画线函数:

MoveTo(hDC, 0, 0);

LineTo(hDC, 10,10);

则如果我们没有使用SetWordTransform函数,可以认为我们的画线操作就是在页面坐标系下面,0,10都是页面坐标系下的坐标。如果我们使用了SetWorldTransform函数,则画线操作是在世界坐标系下面。页面坐标系中对应的这个线段是世界坐标系下面的线段(0,0) -> (10,10) 通过两个坐标空间之间的变换矩阵变换得到,结果可能还是(0,0)点到(10,10)点,也可能是(5,9)点到(-20,14)点,这取决于两个坐标系之间的变换矩阵。

同样道理,对于上述四个坐标系,当系统从一个坐标系中复制指定矩形区域内的某个点到下一个坐标系时,它使用这两个坐标系之间的变换算法,根据点的原坐标计算得到点的像坐标。因此,一个图形在不同坐标系下,其尺寸、方向和形状都可能不同。注意一点,虽然这个变换是两个坐标系之间的,是针对物体整体而言的变换,但在系统在操作的时候,是逐点、逐行操作的。

虽然很少用到SetWorldTransform函数,但是应该掌握最基本的坐标系之间的线性变换矩阵,形式如下:

| eM11 eM12 0 |

| eM21 eM22 0 |即: x' = x * eM11 + y * eM21 + eDx,

| eDx eDy 1 | y' = x * eM12 + y * eM22 + eDy,

函数采用逻辑单位,缺省的变换矩阵是单位阵:

| 1 0 0 |

| 0 1 0 |变换关系就是 x' = x ; y' = y ; 相当于没有变换

| 0 0 1 |

四个eM参数给出旋转和缩放变换系数,eDx/eDy给出平移变换系数。

注意SetWorldTransform函数要求DC的图形模式是GM_ADVANCED,可以用SetGraphicsMode设置,仅Windows NT/ 2000下面支持。缺省图形模式是

GM_COMPATIBLE,兼容16位windows,这个模式下不能使用该函数。下面简单介绍这两个坐标系之间的变换矩阵。

2、世界坐标系到页面坐标系的变换

(1)平移。物体上每个点进行水平和垂直的移动,eDx 和eDy 参数分别给出移动的尺寸。具体算法是:

x' = x + Dx

y' = y + Dy

其中 x',y' 是新的坐标, x,y 是源坐标。 Dx是水平移动距离,Dy是垂直移动距离。

平移矩阵是:

|1 0 0|

|x' y' 1| = |x y 1| * |0 1 0|

|Dx Dy 1|

(2)缩放。组成物体的每个水平行或者垂直行进行拉伸或者压缩。算法公式是:

y' = y * Dy

x' = x * Dx

其中 Dy,Dx是缩放系数。用矩阵表示为:

|x' y' 1| = |x y 1| * |Dx 0 0|

|0 Dy 0|

|0 0 1|

(3)旋转。组成物体的每个点都相对于坐标原点旋转一个角度。算法公式是:

x' = (x * cos A) - (y * sin A)

y' = (x * sin A) + (y * cos A)

A表示绕原点逆时针旋转的角度,用矩阵表示如下:

|x' y' 1| = |x y 1| * | cos A sin A 0|

|-sin A cos A 0|

| 0 0 1|

(4)变形。分为水平变形和垂直变形两种,举个例子说,一个矩形通过变形成为一个平行四边形。算法公式分别是:

x' = x + (Sx * y)

y' = y + (Sy * x)

其中Sx, Sy分别是变形系数。用矩阵表示为:

|x' y' 1| = |x y 1| * | 1 Sx 0|

| Sy 1 0|

| 0 0 1|

(5)镜像映射。例如水平翻转的公式是:

x' = –x

用矩阵表示是:|-1 0|

|0 1|

线性变换可以是上面几种变换中任意若干种的组合。最终的变换矩阵是一个3x3的矩阵。可以调用CombineTransform进行两种变换的组合,也可以自己按照公式计算出变换矩阵。

强调一点,虽然可以通过SetWorldTransform函数调用设置世界坐标系到页面坐标系的变换矩阵,但通常情况下,在我们的程序中,图形图像的变换并不是通过系统来完成的。而是程序自己完成的,因为自己做,可以更加灵活,容易控制,效率更高。因此不推荐使用SetWorldTransfor函数,如果我们要做图形变换的显示,建议自己先用变换算法计算好,然后直接在页面坐标系下面作图。

3、页面坐标系到设备坐标系之间的变换

这个变换决定了与特定DC相联系的映射模式,影响该DC上的所有图形输出。映射模式本身就是一个缩放变换,决定了画图操作中一个单位的尺寸,映射模式也可以用于平移变换,某些情形下,映射模式会改变x,y轴的坐标原点。首先来了解几个映射模式:

(1)映射模式说明

-------------------------------------------------------------------------

映射模式描述

-------------------------------------------------------------------------

MM_ANISOTROPIC 每个页面空间的单位映射为程序定义的设备空间的单位。两个坐标

轴的缩放尺寸可以不一致(例如,一个世界坐标系下面的园在指定

设备上可能显示为椭圆)。坐标轴的方向也是程序定义的。

MM_HIENGLISH 每个页面空间的单位映射成设备空间中的0.001英寸。x轴向右,y轴向上。

MM_HIMETRIC 每个页面空间的单位映射成设备空间中的0.01毫米。x轴向右,y轴向上。

MM_ISOTROPIC 每个页面空间的单位映射为程序定义的设备空间的单位。两个坐标轴

的缩放尺寸一样。坐标轴的方向由程序定义。

MM_LOENGLISH 每个页面空间的单位映射成设备空间中的0.01英寸。x轴向右,y轴向上。

MM_LOMETRIC 每个页面空间的单位映射成设备空间中的0.1毫米。x轴向右,y轴向上。

MM_TEXT 每个页面空间的单位映射成一个像素。就是说无缩放。如果也没有平移变换,

则本映射模式下的页面空间和物理设备坐标空间等价。x轴向右,y轴向下。

MM_TWIPS 每个页面空间的单位映射成打印机点的1/20(1/1440英寸)。x轴向右,y轴向上。

------------------------------------------------------------------------------

要设置映射模式,调用SetMapMode,要获得当前的映射模式,调用GetMapMode.

页面空间到设备空间的变换涉及到窗口或者视口中的点,从这个意义上讲,窗口反映了页面空间中的逻辑坐标系统,而视口代表设备空间的设备坐标系统。窗口和视口都包含一个坐标原点和x/y轴。窗口中使用的参数是逻辑坐标,视口中使用的参数是设备坐标(像素)。系统根据坐标原点生成变换矩阵。这就意味着,窗口和视口分别负责给出从页面坐标空间到设备坐标空间映射变换矩阵的一半参数。

根据窗口和视口的坐标轴尺寸(最大坐标值),可以建立一个比例或者缩放系数,用于页面空间到设备空间的变换。对于上面六种预定一映射模式,当调用SetMapMode函数的时候,坐标轴的最大尺寸是由系统设置的,无法更改。其他两种映射模式MM_ISOTROPIC和 MM_ANISOTROPIC下,需要定义坐标轴的最大尺寸,因此调用SetMapMode之后,必须调用SetWindowExtEx和SetViewportExtEx进行设置。特别是在MM_ISOTROPIC映射模式下。必须注意先调用SetWindowExtEx然后调用SetViewportExtEx。

根据窗口和视口的坐标原点,可以建立页面空间到设备空间的线性变换的平移关系。通过函数SetWindowOrgEx和SetViewportOrgEx来设置原点。坐标原点和坐标轴的尺寸没有关系,因此任何映射模式下都可以设置坐标原点,改变映射模式也不会影响当前的坐标原点。由于这两个函数是相关的,所以通常

使用一个即可,不必两个都调用。记住一点,无论是否调用这两个函数,设备坐标(0,0)永远是左上角。也可以用函数OffsetWindowOrgEx或者OffsetViewportOrgEx改变坐标原点。下面的公式给出了页面坐标空间到设备坐标空间之间的点的映射关系:

Dx = ((Lx - WOx) * VEx / WEx) + VOx

Dx设备空间中的点(或者说单位)

Lx逻辑单位 x (或者说页面空间中的单位)

WOx窗口的 x 原点

VOx视口中 x 原点

WEx窗口的 x轴尺寸

VEx视口的 x轴尺寸

对于y方向的公式也是一样的。

函数LPtoDP 和 DPtoLP可以用来完成两个坐标空间点的变换的计算。

(2)关于预定义映射模式

6种预定义映射模式中,只有MM_TEXT是设备相关的,其余都是设备无关的。缺省的映射模式是MM_TEXT,即一个逻辑单位等于一个像素。逻辑到设备的映射仅仅是一个平移关系,和程序设置的窗口和视口的坐标原点有关。视口和窗口的坐标轴尺寸都设置成1,从而形成一一映射。如果程序要显示准确的几何图形,可以使用MM_LOENGLIST模式,保证图形的形状在任何显示器和打印机下面都是一样的。如果仍然使用MM_TEXT,则可能在VGA显示器上面显示的一个圆,到了EGA显示器下就变成椭圆了,如果用300dpi的激光打印机输出,则结果是很小的一个圆。

(3)自定义映射模式

MM_ISOTROPIC 和 MM_ANISOTROPIC两个映射模式用于自定义。

MM_ISOTROPIC可以保证逻辑单位在x和y方向是一致的。MM_ANISOTROPIC下允许设置成不同。例如一个 CAD 或者绘图程序可以用MM_ISOTROPIC模式,将逻辑单位设置成工程常用的1/64英寸,代码如下:

SetMapMode(hDC, MM_ISOTROPIC);

SetWindowExtEx(hDC, 64, 64, NULL);

SetViewportExtEx(hDC, GetDeviceCaps(hDC, LOGPIXELSX),

GetDeviceCaps(hDC, LOGPIXELSY), NULL);

4、设备坐标空间到物理设备的变换

设备空间到物理设备的变换在很多情况下是唯一的,是由系统控制的,主要的目的是保证设备坐标系的原点准确映射到物理设备的合适位置。比如屏幕上面显示的某个程序,窗口显示的位置要和窗口矩形在显存中的位置对应起来,移动窗口就是改变这个控制窗口输出的矩形在显存中的起点,反映在显示器屏幕上面就是程序窗口的移动。如果是在打印机dc上面画图,则物理设备就是纸张了。这个变换通常是由系统负责控制的。因此没有函数用于设置这个变换,也没有函数获取相关的变换数据。

5、缺省的变换

如果程序创建了一个DC,并立刻开始调用GDI绘图函数,使用的变换过程就是:

缺省的页面空间 -〉设备空间 -〉客户区(物理设备空间)的变换。

除非程序调用SetGraphicsMode 和SetWorldTransform函数,否则世界坐标空间-〉页面坐标空间是单位变换,可以认为没有变换。

页面空间-〉设备空间在MM_TEXT模式下是一一映射,即给定页面空间中的一点,对应设备空间中的相同点。前面已经指出,这个变换不是通过一个矩阵,而是通过用视口的宽度/窗口的宽度,视口的高度/窗口的高度两个公式来计算的。缺省情况下,视口的尺寸是1X1像素。窗口的尺寸是1X1页。

设备空间-〉物理设备(客户区,桌面或者打印机)的变换通常也是一一映射,即设备空间中的一点对应客户区或者打印机输出中的一个单位,目的是保证无论程序窗口如何在屏幕上面移动,最终的输出始终准确地反映设备空间中的图形。

注意MM_TEXT模式比较特殊,它的Y坐标轴是向下的,其它映射模式的Y

坐标轴都是向上的。

6、下面用一个例子考察每个坐标变换函数的意义。用classwizard生成一个sdi工程,视类选择从CScrollView派生,然后添加如下代码:

void CSdiscroView::OnDraw(CDC* pDC)

{

//用绿色填充一个圆形区域(中心[200,200],半径150)

CRect rect;

rect.SetRect(50,50,350,350);

CBrush bru;

bru.CreateSolidBrush(RGB(0,127,0));

CBrush *pBrushOld = pDC->SelectObject(&bru); pDC->Ellipse(&rect);

pDC->SelectObject(pBrushOld);

bru.DeleteObject();

//输出坐标原点

pDC->TextOut(0,0,"(0,0)");

//画出坐标轴

pDC->MoveTo(0,0);

pDC->LineTo(500,0); //x轴

pDC->LineTo(490,5); //箭头

pDC->MoveTo(500,0);

pDC->LineTo(490,-5);

pDC->MoveTo(0,0);

pDC->LineTo(0,500); //y轴

pDC->LineTo(5,490);

pDC->MoveTo(0,500);

pDC->LineTo(-5,490);

}

void CSdiscroView::OnInitialUpdate()

{

CScrollView::OnInitialUpdate();

CSize sizeTotal;

//设置整个窗口尺寸为1000x1000

sizeTotal.cx = sizeTotal.cy = 1000;

SetScrollSizes(MM_TEXT, sizeTotal);

}

实际上我们所有的画图操作都是在世界坐标系下面,由于没有使用SetWorldTransform,所以世界坐标系和页面坐标系等价,可以认为我们的画图操作就是在页面坐标系中。下面分别添加相应的函数调用,考察每个函数对输出的影响。

1、SetWindowOrg / SetViewportOrg (CDC类成员函数,对应api函数SetWindowOrgEx / SetViewportOrgEx

void CSdiscroView::OnDraw(CDC* pDC)

{

pDC->SetWindowOrg(-100,-50);//或者 pDC->SetViewportOrg(100,50);

//

... //原来的代码

}

窗口没有滚动之前,视口坐标系的原点和窗口坐标系的原点重合,如果滚动窗口,相当于改变视口原点的位置,因此显示在屏幕上面的部分(视口里面的东西)就发生变化。现在我们不滚动窗口,而是调用SetWindowOrg改变窗口原点的坐标,看看发生的变化。

SetWindowOrg(-100,-50)函数调用的意思是把窗口(页面坐标系)中的(-100,-50)点设置成窗口的原点,由于窗口和视口的原点永远是重合的,所以视口的(0,0)点现在就和窗口的(-100,-50)重合,而视口的(0,0)点就是程序客户区的左上角,因此设置的后果就是:绘图的输出向x/y轴的正方向移动了。编译运行以后可以看到,字符串"(0,0)"向右下平移了,好像向上、向左滚动了窗口一样。同样道理,如果SetWindowOry里面使用的是(100,50),则效果等同于向下、向右滚动了窗口。

对应图形如下:

/-----视口的原点

(-100,-50)

+-------------+

/-----视口的原点 | (视

口) |

+-------------+-------+---->页面坐标系

x + +--------+-----------+----->页面坐标系x

|(0,0) | | | | (0,0) | |

| | | | |

| |

| (视

口) | | | | | |

| (屏幕上的)

| | | | | |

| (部分 ) | |设置SetWindowOrg

后 | | | |

| | | ---------------------〉

+----+--------+ |

+-------------+ | |

|

| | |

|

| 整个窗口比视口大 | |窗口 |

| 有些部分需要滚

动 | | |

| 才能显示出

来 | | |

+---------------------+ +--------------------+

| |

\/ Y \/ Y

从效果上SetWindowOrg(-100,-50)和SetViewportOrg(100,50)是等价的。但是使用一下就会发现SetViewportOrg(100,50)以后如果滚动窗口的话,窗口的刷新有些问题,所以在CScrollView里面用SetWindowOrg比较好,对于非滚动形式的窗口,使用SetViewportOrg比较直观一些。窗口对应的就是页面坐标系,也就是逻辑坐标系,视口对应的是设备坐标系。

2、关于映射模式,上面的例子用的是缺省的映射模式MM_TEXT,现在改变一下映射模式,看看有什么变化。去掉设置原点的代码,加上:

void CSdiscroView::OnDraw(CDC* pDC)

{

pDC->SetMapMode(MM_LOMETRIC);

//用绿色填充一个圆形区域(中心[200,200],半径150)

... //原来代码不变

}

运行一下看看,怎么Y坐标轴和圆都不见了,原来这个模式下面,Y轴是向上的。把程序里面的Y坐标都改成负值:

void CSdiscroView::OnDraw(CDC* pDC)

{

pDC->SetMapMode(MM_LOMETRIC);

//用绿色填充一个圆形区域(中心[200,200],半径150)

CRect rect;

rect.SetRect(50,-50,350,-350);

...

//用蓝色输出坐标原点

pDC->TextOut(0,0,"(0,0)");

//画出坐标轴

...

pDC->MoveTo(0,0);

pDC->LineTo(0,-500); //y轴

pDC->LineTo(5,-490);

pDC->MoveTo(0,-500);

pDC->LineTo(-5,-490);

}

运行一看,OK都出来了,但是尺寸比原来小多了。原来每个逻辑单位被映射成0.1毫米。那么圆的直径是300,应该对应30毫米,用尺子在屏幕上面量一下吧,几乎就是30毫米啊:)。不相信,设置成MM_HIMETRIC,天啊,看不到了,可能太小了?把圆的半径加大:

rect.SetRect(50,-50,1350,-1350);

嗯,出来了,直径好像是1300*0.01 = 13毫米。既然这样MM_HIENGLISH

和MM_LOENGLISH以及MM_TWIPS就不测试了。需要注意一点,SetMapMode函数调用后,仅仅影响后续的画图函数,而它前面的画图函数仍然按照原来的映射模式输出。所以同一个绘图函数中,可以调用多次SetMapMode改变映射模式,比如绘图单位在英寸和厘米之间,绘图的精度在0.01厘米和0.1厘米之间可以时刻根据需要进行切换。

3、SetWindowExt 和 SetViewportExt。由于它们仅仅在MM_ISOTROPIC 模式下有效,所以这样做:

void CSdiscroView::OnDraw(CDC* pDC)

{

pDC->SetMapMode(MM_ISOTROPIC );

CSize sizeOrg = pDC->SetWindowExt(200,100);

//查看返回值可以发现SetViewportExt返回的是当前屏幕设置的分辨率1024 x 768,不过y是负值

//因为MM_ISOTROPIC模式下,Y轴是向下的。所以记得所有画图代码中的Y坐标用正值!

sizeOrg =pDC->SetViewportExt(200,100);

...//画图代码

}

通过改变两个Set函数中的参数值,发现系统自动管理x/y的比率关系,使圆形保持正确形状。而且图形的大小和参数有关:

假设SetWindowExt(xWin,yWin); SetViewportExt(xView,yView);则系统使用xView/xWin , yView/yWin 两个比值中较小的一个作为x/y两个方向共同的压缩比例。最后图形的大小仅仅和这个缩放系数有关。如果两个系数都大于1,则系统使用1:1比例,并不放大图形。

4、DPtoLP 和 LPtoDP 。这两个函数用于逻辑坐标和设备坐标之间的转换。在MM_TEXT模式下两个坐标是一样的。现在设置成MM_LOMETRIC模式,看看它们的作用。

void CSdiscroView::OnDraw(CDC* pDC)

{

//每个逻辑单位对应0.1毫米设备单位

pDC->SetMapMode(MM_LOMETRIC );

CPoint p(100,200);

pDC->DPtoLP(&p,1);

CString str;

str.Format(" Use DPtoLP : (100,200) -> (%d,%d)\n",p.x,p.y);

TRACE(str);

p.x = 100; p.y = 200;

pDC->LPtoDP(&p,1);

str.Format(" Use LPtoDP : (100,200) -> (%d,%d)\n",p.x,p.y);

TRACE(str);

}

//调试窗口输出

Use DPtoLP : (100,200) -> (313,-625)

Use LPtoDP : (100,200) -> (32,-64)

可见设备坐标系中的(100,200)对应的是逻辑坐标系(窗口)中的(313,-625)一点,逻辑坐标系下面的(100,200)对应设备坐标系下面的(32,-64)点。注意这个变换结果是设备相关的。对于不同的dc得到不同的结果。设置相同的都用屏幕dc,用不同计算机测试,不同的显示器,不同的显示模式设置也会得到不同的变换结果。

这是什么意思呢?就是说窗口中,逻辑坐标(313,-625)在MM_LOMETRIC模式下,对应设备坐标系中X方向距离原点31.3毫米,Y方向距离原点62.5毫米的一个点,那个点在设备坐标系中坐标是(100,200),其实就是MM_TEXT模式下,逻辑坐标系下面的那个(100,200)点。同样道理,逻辑坐标(100,200)点,映射到设备坐标系中,是x轴方向距离原点10mm,y轴方向距离原点-20mm的点(注意方向),那个点的逻辑坐标是(32,-64)。也就是MM_TEXT模式下逻辑坐标系中的(32,-64)点。

最后要说明一点,OnEraseBkgnd(CDC* pDC)里面的DC和OnDraw(CDC* pDC)里面的DC有所不同啊。窗口的滚动对前者没有影响,也就是说无论窗口如何滚动,在OnEraseBkgnd函数中输出的东西永远在视口固定的位置上,不受滚动影响。所以画图的时候,不要把背景和前景混淆了,什么函数就是干什么工作。

空间坐标转换说明

空间坐标转换说明 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

坐标转换说明 GPS 接收机接收到GPS (大地坐标:经度、纬度和高度值)信号后,并不利于显示,需要将大地坐标进行转换,现选用东北天坐标系(也叫站心坐标系)作为显示的依据。 GPS 接收机接收到的第一个信号L (经度)、B (纬度)和H (高度),作为东北天坐标系的原点。当接收到第二个信号时L 1、B 1和H 1,应用坐标转换公式,转换到东北天坐标系下进行显示。依次类推,凡是接收到的GPS 信号都转换到东北天坐标系下进行显示,在东北天坐标系下预测出来的坐标值通过坐标转换公式在显示屏上显示大地坐标(经度、纬度和高度)。 1.大地坐标与直角坐标的相互转化 对空间某一点,大地坐标系(L ,B ,H )到直角坐标系(X ,Y ,Z )的转换关系如下: ?? ? ?? +-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2(1) 由直角坐标系(X ,Y ,Z )转化到大地坐标系(L ,B ,H )的公式如下: ??? ? ??? --=+-++==)1(sin /]})1((/[)(arctan{) /arctan(2222e N B Z H H e N Y X H N Z B X Y L (2) 式中:B e a N 22sin 1/-=,N 为该点的卯酉圈曲率半径;2222/)(a b a e -=,a 、 b 、e 分别为该大地坐标系对应参考椭球的长半轴、短半轴和第一偏心率。长半轴 a =6378137±2m ,短半轴 b =6356.7523142km ,90130066943799.02=e 。 从公式(2)看出,经度比较容易求得,纬度和高度必须通过迭代计算获直接计算得到。迭代计算的次序为:N H B →→,通常迭代四次可以达到H 优于0.001m ,B 优于0.00001''的计算精度;教科书中给出的直接法计算公式比较繁琐,有的计算公式的应用条件受到一定限制,例如要求大地高度小于10000m 时,才能使B 、H 达到上述计算精度,有的直接计算公式精度较低。 根据[张华海]提供的方法,本文建议采用该方法将直角坐标(X ,Y ,Z )转变成大地坐标(L ,B ,H )。该方法的公式形式比较简便,B 、H 的计算精度高;用计算出

变频调速系统的调试

(一)变频调速系统的调试 1、电和功能预置 1、1通电 变频器通电后,须观察以下情况: 1、1、1显示。变频器通电后,观测显示屏、显示内容及变化情况,应对照 变频手册,观察其通电后的显示过程是否正常。 1、1、2内部风机的工况。变频器内部都有冷却风机向外鼓风,应注意观察。 一是听其声音是否正常:二是用手在风口试探其风量。 1、1、3 测量电压。主要是三相进线及出线电压是否正常。,各控制回路输入直流电压。 1、2熟悉显示内容的切换 通过切换显示内容预调变频器的工作参数,如运行频率、电压、电流等。并通过各项显示内容来检查变频器的状况。 1、3进行功能预置 根据提升系统的具体要求,调整变频器内各功能的设定,使变频器速度系统在最佳状态下运行。 二、电动机空载实验 将变频器的输出端与电动机相连、电动机脱开负载。 2、1进行基本的运行观察 电机旋转方向是否正确,升、降速时间是否与预置时间相符,电动机的运行是否正常等。 2、2电动机参数的自动检测 通过电动机的空转来自动测定电动机矢量控制参数。 3、3频器的基本操作功能 如启动、停止、加速、减速、点动等。 3带载试验 将电动机负载连接起来进行试车。这时,须特别注意观察以下几个方面。 4、1电动机的启动 3、1、1将频率缓慢上升至一个较低的数值,观察机械的运行情况是否正常,同时注意观察电动机的转速是否从一开始就随频率的上升而上升。如果在频率很低时,电动机不能很快旋转起来,说明启动困难,应适当增大u/f,或增大启动频率。 3、1、2显示内容切换至电流显示,将频率给定调至最大值,使电动机按预置的升速时间启动到最高转速。观察在启动过程中的电流变化,首先启动电流限制在电动机的额定电流以内,如因电流过大而跳闸,应适当延长加速时间。 3、2停机试验 在停机实验过程中,应把显示内容切换至直流电压显示,并注意以下内容: 3、2、1观察在减速过程中直流电压是否过高,如因电压过高而跳闸,应适当延长减速时间,并观测接入制动电阻和制动单元。 3、2、2观察当频率降至Ohz时,绞车是否有“蠕动”现象。 3、3带载能力试验 3、3、1观察电动机的发热情况。 二过电流、过载与过热

交直交变频器详细说明书

交直交变频器 一变频器开发基础 三相交流异步电动机发明于1881年,一经问世,便以起结构简单,坚固,价格低廉二迅速的在电力拖动领域成为拖动系统中"骄子"。但正式由于其结构,在调速性能上使其失去欢颜。从异步电动机的转速公式n=60f/p(1-s) ,可知。除变频{f}调速以外,异步电机调速基本途径有:1改变极对数{p}。2改变转差率{s}。显然其调速缺点为调速范围低,工作效率下降,负载能力不一致,消耗电能多,机械特性较软,控制电路较复杂。科技的进步,社会的发展,要求生产机械对电动机进行无级调速满足工艺要求是多么的迫切。 随着20世纪60年代功率晶闸管{SCR},70年代功率晶体管{GTR},可关断晶闸管{GTO},80年代绝缘栅双极晶体管{IGBT}的相继开发,把变频器由希望,推广,发展到今天的普及阶段。 二变频器基本结构 目前应用的最广泛的是交直交变频器,其基本结构如图所示: 其工作过程是先将三相{或单相}不可调工频电源经过整流桥整流成直流电,再经过逆变桥把直流电逆变成频率任意可调的交流电,以实现无级调速。 逆变器的原理框图 三功率部分 交直交变频器的主电路如图所示,变频器调速过程中出现的许多现象都应通过主电路来进行分析,因此,熟悉主电路的结构,透彻了解各部分的原理,具有十分重要的意义。 1 交-直变换电路 ⑴图I(VD1-VD6)为交直变换全波整流电路,在中小容量变频器中,整流器件采用不可控整流二极管或二极管模块。(2)图中(CF1 CF2)为滤波电容器,由于交流电被整流出的直流电中会有交流含量,为了获取平稳的直流电而设置滤波电容。(3)因为电解电容器的电容量有较大的离散性,故电容器组CF1 和CF2的电容量常不能完全相等,这将导致各自压降不相等。为了使其压降相等,在CF1 CF2旁各并联一个阻值相等的均压电阻RC1和RC2。(4)(RH HL)为电源指示电路,除此之外HL也具有提示保护的作用,当变频器

简易通用型变频调速系统的安装与调试13

___电机驱动与伺服控制_课程 单元测试卷 简易通用型变频器安装与调试 单元 班级__________ 学号______________ 姓名__________ 分数__________ 一、 单选题(3分×10) 1. 对电动机从基本频率向上的变频调速属于( )调速。 A .恒功率 B .恒转矩 C .恒磁通 D .恒转差率 2. 变频器的节能运行方式只能用于()控制方式。 A .U/f 开环 B .矢量 C .直接转矩 D .CVCF 3. 三相异步电动机的旋转磁场的转速0n 为()。 A .1 60f p B .160p f C .1f 60p D .以上都不是 4. 带式输送机负载转矩属于( )。 A .恒转矩负载 B .恒功率负载 C .二次方律负载 D .以上都不是 5. 由三相电压不平衡电机的过载跳闸,如果变频器的输出端不平衡,则应检查( ) 。 A .变频器到电动机的线路 B .所有的接线端的螺钉 C .触点的接触情况 D .变频器的逆变模块及驱动电路 6. 变频器规格一般采用输入的( )表示。 A .有功功率 B .无功功率 C .视在功率 D .输入功率 7. 空气压缩机案例中,变频器一般采用( )控制方式。 A. U/f B .转差频率 C .矢量 D .直接转矩 8. 恒压供水案例中,变频器一般采用( )控制。 A. U/f B .转差频率 C .矢量 D .直接转矩 9. 变频恒压供水中变频器接受什么器件的信号对水泵进行速度控制?( ) A .压力传感器 B .PID 控制器 C .压力变送器 D .接近传感器 10.三相异步电动机的转速n 为()。 A .160f p B .160p (1)f S C .1f 60p D .以上都不是 二、多选题(2分×5) 1. 怎样防止变频器使用时线路传播引起的干扰( )。

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间大地坐标系 空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间大地坐标系可用图2-4来表示:

图2-4空间大地坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我国采用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

西门子6SE70变频调速装置调试步骤

西门子6SE70变频调速装置调试步骤 1.1 出厂参数设定 P053=7 允许CBP+PMU+PC 机修改参数 P60=2 固定设置,参数恢复到缺省 P366=0 PMU 控制 P970=0 启动参数复位 执行参数出厂设置,只是对变频器的设定与命令源进行设定,P366 参数选择不同,变频器的 设定和命令源可以来自端子,OP1S,PMU。电机和控制参数未进行设定,不能实施电机调试。 1.2 简单参数设定 P60=3 简单应用参数设置,在上述出厂参数设置的基础上,本应用设定电机控制参数 P071 进线电压(变频器400V AC / 逆变器540V DC) P95=10 IEC 电机 P100=1 V/F 开环控制 3 不带编码器的矢量控制 4 带编码器的矢量控制 P101 电机额定电压 P102 电机额定电流 P107 电机额定频率HZ P108 电机额定速度RPM P114=0

P368=0 设定和命令源为PMU+MOP P370=1 启动简单应用参数设置 P60=0 结束简单应用参数设置 执行上述参数设定后,变频器自动组合功能图连接和参数设定。P368 选择的功能图见手册S0-S7,P100 选择的功能图见手册R0-R5。电机控制效果非最优。 1.3 系统参数设置 P60=5 P115=1 电机模型自动参数设置,根据电机参数设定自动计算 P130=10 无编码器 11 有编码器(P151 编码器每转脉冲数) P350=电流量参考值A P351=电压量参考值V P352=频率量参考值HZ 3 3 P353=转速量参考值1/MIN P354=转矩量参考值NM P452=正向旋转最大频率或速度%(100%=P352,P353) P453=反向旋转最大频率或速度%(100%=P352,P353) P60=1 回到参数菜单,不合理的参数设置导致故障 1.4 补充参数设定如下 P128=最大输出电流A P571.1=6 PMU 正转

西门子PLC课程设计PLC控制变频调速系统设计与调试

目录 第一章绪论 (1) 第二章课程设计内容 (2) 2.1 设计要求 (2) 2.2 设计任务和目的 (2) 2.3 系统控制求 (2) 2.4 控制系统的I/O点 (3) 第三章总体设计方案 (4) 3.1 选择机型 (4) 3.2 系统控制结构 (4) 3.2.1 系统主电路图 (4) 3.2.2 系统控制电路图 (4) 3.2.2 系统外围接线图 (4) 3.3 设计步骤 (5) 3.4 系统流程框图 (6) 第四章硬件部分设计 (7) 4.1 输出规格 (7) 4.2 标度变换 (7) 4.3 变频器参数设置表 (7) 第五章软件部分设计 (8) 5.1 程序的主体 (8) 5.1.1 控制主程序 (8) 5.1.2 0-20秒上升子程序...........................。.. (9) 5.1.3 3O-40秒下降子程序 (10) 5.1.4 60-65秒下降子程序 (10) 第六章调试过程和结果 (12) 6.1 调试过程 (12) 6.2 调试结果 (12) 第七章心得体会 (13) 第八章参考文献 (14)

第一章绪论 可编程控制器(PLC)是在计算机技术、通信技术和继电器控制技术的发展基础上开发出来的,现已广泛应用于工业控制的各个领域。它以微处理器为核心,用编写的程序进行逻辑控制、定时、计数和算术运算等,并通过数字量和模拟量的输入/输出来控制机械设备或生产过程。 如今,PLC在我国各个工业领域中的应用越来越广泛。在就业竞争日益激烈的今天,掌握PLC设计和应用是从事工业控制研发技术人员必须掌握的一门专业技术。 任何生产机械电气控制系统的设计,都包括两个基本方面:一个是满足生产机械和工艺的各种控制要求,另一个是满足电气控制系统本身的制造、使用以及维修的需要。因此,电气控制系统设计包括原理设计和工艺设计两个方面。前者决定一台设备使用效能和自动化程度,即决定着生产机械设备的先进性、合理性,而后者决定着电气控制设备生产可行性、经济性、外观和维修等方面的性能。 在现代控制设备中,机-电、液-电、气-电配合得越来越密切,虽然生产机械的种类繁多,其电气控制设备也各不相同,但电气控制系统的设计原则和设计方法基本相同。

第六章 交流异步电动机变压变频调速系统精讲

第六章 交流异步电动机变压变频调速系统 本章主要问题: 1. 在变频调速中变频时为什么要保持压频比恒定? 2. 交-直-交电压源型变频器调压、调频的有哪几种电路结构,并说明各种电压结构的优缺点。 3. SPWM 控制的思想是什么? 4. 什么是1800导通型变频器?什么是1200导通型变频器? 5. 电压、频率协调控制有几种控制方式,各有哪些特点? 6. 在转速开环恒压频比控制系统中,绝对值单元GAB 的作用?函数发生器GFC 的作用?如 何控制转速正反转。 7. 总结恒11 ωU 、恒1ωg E 、恒1ωr E 三种控制方式的特点。 ———————————————————————————————————————— §6-1 交流调速的基本类型 要求:掌握交流调速哪几种基本类型有以及各种调速方法的特点。 目的:能根据不同应用场合选择出相应的调速方式。 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(交流调速的基本类型、变频调速的基本要求) 思考: 1. 交流异步电动机调速的方式有哪几种?并写出各方式的优缺点? 2. 在变频调速中变频时为什么要保持压频比恒定? 教学设计:交流调速的基本类型采用多媒体课件讲授,用大量的实例,说明几种类型的应用场合。 复习感应电动机转速表达式: )1(60)1(1 0s n f s n n p -= -= 异步电动机调速方法:?? ?? ??? ?????? ? ??型变频调速:绕线式、笼:绕线式串级调速(转差电压)电磁转差离合器调转子电阻:绕线式、调压(定子电压)变转差率调速变极调速:笼型异步机异步电动机 §6-2 变频调速的构成及基本要求 目的、教学要求:掌握变频调速时基频以下和基频以上调速的特点 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(变频调速的基本要求)

变频调速系统PLC控制

变频调速系统PLC控制 1 变频调速系统PLC控制设计 1.1 设计目的 通过变频调速系统PLC控制的设计,对专业知识进行巩固,并熟悉掌握组态软件的使用。在完成课程学习的同时实际动手设计,通过理论和实践相结合,把专业的理论知识应用到实际设计中,既能对所学知识加深理解,又能对专业知识的应用有更深刻的熟悉和掌握,从而将变频调速系统PLC的相关知识理解的更扎实透彻,完整掌握PLC的相关内容。 1.2 设计概要 1.2.1 设计任务 完成一个由组态软件为上位机控制,PLC为下位机控制,变频器、异步电动机组成的变频调速控制系统的设计,并完成组态控制界面的设计,控制梯形图以及PLC接线图。利用实验装置实现上下位机的联通,完成PLC端子、变频器以及异步电动机的接线,然后利用PC 机输入梯形图控制程序,并在实验室内进行调试。 1.2.2 控制系统的要求 PLC、变频器以及异步电动机共同组成了控制系统。其中可编程控制器(PLC)的作用是处理各种信息的逻辑问题,并向变频器发出起、停等指令,同时变频器也会将工作状态信号反馈回PLC,形成双向联通的关系,这是此系统的核心部分。变频器能对电机进行调速控制。按下启动键,可选择工频或变频控制,能完成自动控制和手动控制之间的转换,即自动转换和手动输入,同时实现高、低速的转换。 1.2.3 设计过程 调速系统由PLC控制变频器,同时由变频器实现电机的调速。变频调速系统主要分为两部

分:手动控制和自动控制。手动控制可以选择电机正转或是反转,在一到七速之间也能自由转换。自动控制则是先将电机设置为正转或反转,然后逐渐从低速升为高速,通过复位能自动从高速降回低速。最后手动控制停止可以直接切换成自动控制。 1.2.4 电气设备详细表 电源控制屏:提供三相四线制380V、220V电压;变频调速装置;三菱PLC主机;异步电动机;力控监控组态软件实战指南;力控监控组态软件。 2 PLC设计系统思考 2.1 设计系统过程中出现问题及解决方法 第一,根据控制要求直接编写控制程序,始终不知道如何动手。对于该问题的解决方法为从头开始了解硬件,学习变频器资料,掌握变频器和电机的使用,在熟练掌握的基础上才会知道怎么去控制。 第二,在编写梯形图完成后,plc始终没有输出。该问题的出现主要是因为没有熟练使用plc 编程步骤,编写程序中没有end。仔细检查,一步一步从新学习plc编程,从最简单的控制开始。 第三,电机在接线时不知道是星型接线还是三角形接线。笔者为了更好的解决该问题,在回去后仔细研究电机发现,我们使用的是小型异步电动机不带负载,可以直接启动,星型和三角形接线影响不大。 第四,手动程序在plc上可以直接实现控制,而把变频器和电动机连起来,电动机直接受变频器控制,我们的手动程序没有用。该问题的出现主要是变频器资料没有学习深入,我们始终让变频器运行在内部(PU)模式,这款FR-S500没有通讯功能。在PU模式下可以直接在变频器上调节电动机不同速度,而用plc程序控制必须使变频器工作在外部(exit)模式下。第五,手动程序和自动程序不能结合起来。导致这种情况的出现与自己没有太深入的了解三

交直交变频调速设计及仿真

摘要 近些年来,随着现代电力电子技术、计算机技术和自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。变频调速技术的迅速发展被越来越多的应用于电机控制领域中,是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,以及广泛的适用范围和调速时因转差功率不变而无附加能量损失等优点而被国内外公认为是最有发展前途的高效调速方式。所以,对交—直—交变频调速系统的基本工作原理和特性的研究是十分有积极意义的。 本文研究了变频调速系统的基本组成部分,主回路主要有三部分组成:将工频电源变换为直流电源的“整流器”;吸收由整流器和逆变器回路产生的电压脉动的“滤波回路”,也是储能回路;将直流功率变换为交流功率的“逆变器”。以Matlab/Simulink为仿真工具,搭建交—直—交变频调速系统的仿真模型,并对仿真结果进行分析研究。通过仿真试验对该交—直—交变频调速系统的基本工作原理、工作特性及作用有更深的认识,也对谐波对于交—直—交变频调速系统的影响有了一定的了解。 第一章绪论 1.1 交流调速技术发展概况 在很长的一个历史时期内,直流调速系统以其所具有优良的静、动态性能指标垄断调速传动应用领域。但是随着生产技术的不断发展,直流电机的缺点逐步显示出来,由于机械式换向器的存在使直流电机的维护工作量增加并限制了电机容量、电压、电流和转速的上限值,加之故障率高、效率低、成本高、使用环境受限等缺点,使其在一些大容量的调速领域中无法应用。 而异步电动机特别是鼠笼异步电动机,容量、电压、电流和转速的上限,不像直流电动机那样受限制。而且异步电动机的转子绕组不需与其他电源相连,其

简易通用型变频调速系统的安装与调试7

___电机驱动与伺服控制_课程单元测试卷 简易通用型变频器安装与调试单元 班级__________ 学号______________ 姓名__________ 分数__________ 一、单选题(3分×10) 1.风机.泵类负载运行时,叶轮受的阻力大致与()的平方成比例。 A.叶轮转矩B.叶轮转速C.频率D.电压 2.IGBT是指()。 A.绝缘栅双极型晶体管B.晶闸管C.双极型晶体管D.门极关断晶闸管 3.变频器的调压调频过程是通过控制()进行的。 A.载波B.调制波C.输入电压D.输入电流 4.变频器是一种()设置。 A.驱动直流电机B.电源变换C.滤波D.驱动步进电机 5.为了适应多台电动机的比例运行控制要求,变频器设置了()功能。 A.频率增益B.转矩补偿C.矢量控制D.回避频率 6.卷扬机负载转矩属于()。 A.恒转矩负载B.恒功率负载C.二次方律负载D.以上都不是 7.带式输送机负载转矩属于()。 A.恒转矩负载B.恒功率负载C.二次方律负载D.以上都不是 8.变频器的节能运行方式只能用于()控制方式。 A.U/f开环B.矢量C.直接转矩D.CVCF 9.变频器按照直流电源的性质分类有:()。 A.平方转矩变频器B.电流型变频器 C.高性能专用变频器D.交直交变频器 10.由于受到电解电容的容量和耐压能力的限制,滤波电路通常由两组电容器()组成。A.并联B.串联C.先串联再并联D.先并联再串联 二、多选题(2分×5) 1.作为变频器的室内设置,其周围不能有()的气体。 A.腐蚀性B.爆炸性C.燃烧性D.刺味性 2.变频器采用多段速时,需预置以下功能:()。 A.模式选择B.多段速设定C.直流制动时间D.直流制动电压

基于PLC模拟量的变频器闭环调速控制

闽南师范大学 PLC课程设计 课题:基于PLC模拟量的变频器闭环调速控制 姓名: 学号: 1205000529 系别:物理与信息工程学院 专业:电气工程及其自动化 年级: 12级电气1班 指导教师:洪清辉 2015年5月18日

目录 1 引言 (3) 2 系统设计 (3) 2.1 设计目的 (3) 2.2 设计要求 (3) 2.3 设计思路 (3) 2.4 系统硬件配置及组成原理 (4) 2.5变频器 (7) 2.5.1变频器主要功能 (7) 2.5.2 变频器平面图 (7) 2.6 同轴编码器 (7) 3 硬件接线图 (8) 4 软件设计 (8) 4.1 软件流程图 (8) 4.2梯形图 (8) 5 应用扩展------基于PLC模拟量的矿井通风系统 (10) 5.1设计内容 (10) 5.2设计实现目标 (10) 5.3控制系统设计 (11) 5.3.1控制程序流程图设计 (11) 5.3.1控制程序设计思路 (11) 6心得体会 (11) 7 参考文献 (12)

摘要 一种基于FX2NPLC控制的变频调速的闭环控制系统及其在液位控制中的应用,在电机速度闭环控制中,由同轴编码器对电机测速,经PLC内部A/D转换后与给定值比较再由PID运算控制得出的值经D/A转换后输出给变频器,从而闭环控制电机的转速。 关键词:plc 模拟量变频器 1 引言 随着变频调速技术的应用日益广泛,应用水平的不断提高,对变频调速控制系统的精度要求也越来越高。目前,许多变频调速装置属于开环控制方式,不能满足有较高精度的控制要求。为提高开环变频调速器控制精度,本系统采用有编码器速度检测的、由高性能FX2NPLC 调节控制的闭环系统。 2 系统设计 2.1 设计目的 1.利用可编程控制器及其模拟量模块,通过对变频器的控制,实现电机的闭环调速。 2.了解可编程控制器在实际工厂生产中的应用及可编程控制器的编程方法。 2.2 设计要求 电机的实际转速在较快的时间内接近给定目标转速,并且能够稳定运行。当改变给定速度时,电机能快速响应达到接近给定值。 2.3 设计思路 变频器控制电机,电机上同轴连旋转编码器。编码器根据电机的转速变化而输出电压信号Vil 反馈到PLC模拟量模块(Fx2n-3A)的电压输入端,在PLC 内部给定量经过运算处理后,通过PLC模拟量模块的电压输出端输出一路DC0~+10V电压信号Vout来控制变频器的输出,达到闭环控制的目的。 运算方案一: 采用数学运算,当反馈值小于给定值时,让控制信号Vout加适当值。同理,当反馈量大于给定值时,用软件给控制信号减适当值。

变频调速系统技术原理及应用

变频调速系统技术原理及应用 0 引言 随着工业自动化技术的飞速发展,人们对自动化监控系统的要求越来越高,如要求界面简单明了,易于操作,实时性好,开发周期短,便于修改、扩充、升级。这些要求促使工控组态软件应运而生,组态是指通过专用的软件定义系统的过程,工控组态软件是利用系统软件提供的工具,通过简单形象的组态工作,构成系统所需的软件。国外软件商推出了各种工业控制软件包,如美国Wonderware 公司的In-Touch,美国Intellution 公司的iFIX,德国西门子公司的WinCC;国产工控组态软件则以北京亚控科技发展有限公司出品的“Kingview (组态王)”组态软件为代表[1]。 PLC 作为现代工业控制的三大支柱(PLC、机器人和CAD/CAM)之一,编程、操作简易方便,程序修改灵活,功能强大。被广泛应用于冶金、矿业、机械、轻工等领域,加速了机电一体化的进程。科威公司生产的EASY系列嵌入式PLC 是将PLC 内核构建于控制器内,运用PLC 语言开发用户所需产品,能提高开发速度,降低开发费用,提高控制器的稳定性[2]。嵌入式PLC 又称客制式PLC,即根据用户的控制需要定制硬件,以PLC 的应用方式解决对象控制问题的专用PLC。EASY嵌入式PLC软件平台具有开发通用、专用PLC 的基本功能,支持CAN bus现场总线、支持通用HMI、组态软件包。 变频器技术是一门综合性的技术,它建立在控制技术、电力电子技术、微电子技术和计算机技术的基础上。与传统的交流拖动系统相比,利用变频器对交流电动机进行调速控制,可以实现大范围内的高效连续精确调速控制。其完善的保护功能既能保护变频器,又能保护电机及相关用电设备[3]。富士系列变频器是高性能和多功能的理想结合,动态转矩矢量控制能在各种运行条件下实现对电动机的最佳控制。强大的功能和鲜明的特点使其广泛应用于工业场合。 1 Kingview组态软件 Kingview(组态王)完全基于网络概念,支持客户机- 服务器模式和Internet/Intranet 浏览器技术,并且是一种可伸缩的柔性结构,根据网络规模大小,可以将不同站点设计成I/O 服务器、报警服务器、数据服务器、登录服务器、校时服务器、客户机等,在系统扩展和变化时,有着极大的灵活性。组态王设计成全冗余结构,在五个层面上提供了冗余:I/O通道冗余、双设备冗余、双网冗余、双机冗余及双系统冗余。组态王被设计成一个完全意义上的软件平台,允许用户进行功能扩展和发挥,它也是一个ActiveX容器,无须编程即可将第三方控件直接连入组态王中[4]。

基于PLC模拟量方式变频闭环调速控制系统设计

***************************************** 基于PLC模拟量方式的变频闭环 调速控制系统设计 学生学号:********** 学生姓名:****** 专业班级:********* 指导教师:****** 职称:**** 起止日期:*********~********* ********* ******************

课程设计任务书 一、设计题目:基于PLC模拟量方式的变频闭环调速控制系统设计 二、设计目的: 1.掌握S7-200 SMART PLC数据转换指令的使用及编程; 2.掌握S7-200 SMART PLC模拟量控制MM440变频器进行闭环调速的接线、调试、操作; 三、设计任务及要求: 1. 设计任务: 用S7-200 SMART PLC控制西门子MM440变频器,PLC根据模拟量输入端的给定值和过程变量值,经过程序运算后由模拟量输出端输出值控制变频器运行。 2. 设计要求: 2.1电机运行速度超出设定值时开始减速; 2.2电机运行速度低于设定值时开始加速; 四、设计时间及进度安排: 设计时间共三周,具体安排如下表:

目录 第1章绪论 (1) 第2章系统设计 (2) 2.1 设计思路 (2) 2.2 系统硬件配置及组成原理 (3) 2.3 变频器 (4) 第3章MM440变频器简介 (5) 3.1 MM440变频器 (5) 3.2 MM440变频器的组成 (5) 3.3 主电路工作原理 (6) 第4章西门子S7-200 (7) 4.1 S7-200的介绍 (7) 4.2 S7-200SMART系列PLC结构 (8) 4.3 S7-200 SMART的特点 (8) 4.4 CPU单元设计 (9) 第5章PLC PID变频调速系统结构 (10) 5.1 系统结构控制模型 (10) 5.2 PID调节 (11) 总结 (17) 参考文献 (18)

转速开环交-直-交电流源变频调速系统

学号: 中州大学电机及拖动课程设计 题目:转速开环交-直-交电流源变频调速系统 姓名:xxx 专业:09 电气自动化(对口) 班级:电气一班 指导老师:xxx 2010年6月30日

中文摘要 20世纪后半叶,变频调速技术的出现和日益完善,成为电力拖动领域的一个重大事件。由于这门技术的发展,使结构简单牢固、价格低廉、应用普及的交流异步电动机有了性能良好的调速手段。变频调速技术的全面推广,是一个实践性工作,必然是大多数电气工程技术人员需要掌握的知识。 交-直-交变频调速系统有整流、滤波、逆变等部分组成。交流电源经整流、滤波、逆变后变成直流电源,再通过逆变器有规则的导通和截止,是输出频率可变的电源。交流电机变频调速在频率范围、动态响应、调速精度、低频转矩、输出性能、功率因数、工作效率、节电降耗、使用方便等方面是以往的交流调速方式无法比拟的。它以体积小、重量轻、通用性强、工艺先进、保护功能完善、设计思想丰富、可靠性高、操作简便等优点深受电力、冶金、矿山、石油、化工、自来水等行业的欢迎。 关键字:交-直-交电流源、变频、调速、转速开环

The English abstract 20 century, variable-frequency regulating speed technology and increasingly perfect, become a major power drag events. Due to the development of technology, simple structure, low cost, strong communication application popularize asynchronous motors have good performance of the control method. Variable-frequency regulating speed technology of comprehensive promotion, is a practical work, must be most electrical engineering and technical personnel need to master the knowledge. Pay - straight - into speed-adjusted system have rectifier, filtering, inverter, etc. The ac power rectifier, filtering, inverter, again after into dc power supply by inverter have rules of conduction and deadline, the variable frequency power output. Ac motor speed in frequency range, the dynamic response speed and accuracy, low torque output performance, and power factor, the work efficiency and saving energy, use convenient communication is ever aspects of speed way and incomparable. It with small volume, light weight, versatility, advanced technology, good protecting function, design thought rich, high reliability, simple operation advantages by electric power, metallurgy, mine, petroleum, chemical industry, water etc. Key words: straight into - into current source and frequency - speed, speed and open loop

闭环变频调速系统

苏州市职业大学实验报告 院系电子信息工程系班级 10电气(4)姓名齐国昀学号 107301427 实验名称闭环变频调速系统实验日期 2012 年4 月24 日 一、实验目的 1、学习闭环变频调速系统的构成方法。 2、比较开环变频调速系统和闭环变频调速系统的差别。 二、接线图 三、实验内容: 1、开环加载实验。按接线图接线,将作为发电机负载的阻值调至最大。依次合上变频器、触摸屏和PLC的电源开关。P0700设置为1,P1000设置为1,P1080设置为0。电动机空载(断开K),按按钮起 第 1 页共 2 页指导教师签名

苏州市职业大学实验报告 院系电子信息工程系班级 10电气(4)姓名齐国昀学号 107301427 实验名称闭环变频调速系统实验日期 2012 年4 月24 日 动变频器,用变频器按键调节频率,使电动机平均转速至800r/min,将数据记入表1中。给电动机加负载(合上K),将数据记入表1中;再逐渐调高频率,使电动机平均转速回至800r/min,将数据记入表1中。结束按变频器按钮停止电动机。 表1 频率(Hz)转速(r/min) 1 2 3 平均值 1 2 3 平均值 )27.8 27.8 27.8 27.8 805.6 791.7 819.4 805.56 空载(f 1 )27.8 27.8 27.8 27.8 763.9 777.8 791.7 777.8 负载(f 1 )29.8 29.8 29.8 29.8 819.4 805.6 819.4 814.8 负载(f 2 2、闭环加载实验。接线和负载的阻值不变。P1000设置为2,其余参数不变。触摸屏屏上选闭环,电动机空载(断开K),设定转速格中键入800r/min,P格中键入5~8的数字,其余格中键入0。按按钮起动变频器,待电动机转速稳定后,将数据记入表2中。给电动机加负载(合上K),待电动机转速稳定后,将数据记入表2中。结束按变频器按钮停止电动机。最后,按PLC、触摸屏、变频器的顺序关闭各自的电源开关。 表2 频率(Hz)转速(r/min) 1 2 3 平均值 1 2 3 平均值 )27.64 28.6 28.5 28.24 791.7 805.6 833.3 812.3 空载(f 1 )28.5 29.7 30.6 29.6 791.7 805.6 833.3 812.3 负载(f 2 四、实验小结 本次实验是最后一次实验,也是我们涉及的功能最多的一次。这次实验我学到了变频调速的构成方法,知道了开环变频调速系统与闭环变频调速系统的本质的差别!这次实验也让我学习到了更多的东西! 第 2 页共 2 页指导教师签名

交--交变频器与交--直--交变频器有什么区别

1交直交电压型变频器,此类变频器价格比较贵,另外技术上存在二大问题,一是存在中间整流滤波环节,故效率比较低,二是当电动机处于发电状态能量返回电网困难,通常是接通电阻回路把能量消耗掉,这样一方面增大设备的体积,另一方面能量未得到利用,是极大的浪费,为了使能量能得到利用,可增加有源逆变电路,但这又增加成本和电路的复杂性。 交交变频器其工作原理是将三相工频电源经过几组相控开关控制直接产生所需要变压变频电源,其优点是效率高,能量可以方便返回电网,其最大的缺点输出的最高频率必须小于输入电源频率1/3或1/2,否则输出波形太差,电机产生抖动,不能工作。故交交变频器至今局限低转速调速场合,因而大大限制了它的使用范围。 2交- 交变频技术 交-交变频器采用晶闸管自然换流方式,工作稳定,可靠,适合作为双馈电机转子绕组的变频器电源,交交变频的最高输出频率是电网频率的1/3-1/2,在大功率低频范围有很大的优势。交交变频没有直流环节,变频效率高,主回路简单,不含直流电路及滤波部分,与电源之间无功功率处理以及有功功率回馈容易。虽然交交变频双馈系统得到了普遍的应用,但因其功率因数低,高次谐波多,输出频率低,变化范围窄,使用元件数量多使之应用受到了一定的限制。 矩阵式变频器是一种交交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。虽然矩阵变换器有很多优点,但是在其换流过程中不允许存在两个开关同时导通的或者关断的现象,实现起来比较困难。矩阵变换器最大输出电压能力低,器件承受电压高也是此类变换器一个很大缺点。应用在风力发电中,由于矩阵变换器的输入输出不解耦,即无论是负载还是电源侧的不对称都会影响到另一侧。另外,矩阵变换器的输入端必须接滤波电容,虽然其电容的容量比交直交的中间储能电容小,但由于它们是交流电容,要承受开关频率的交流电流,其体积并不小。

空间坐标转换说明

坐标转换说明 GPS 接收机接收到GPS (大地坐标:经度、纬度和高度值)信号后,并不利于显示,需要将大地坐标进行转换,现选用东北天坐标系(也叫站心坐标系)作为显示的依据。 GPS 接收机接收到的第一个信号L (经度)、B (纬度)和H (高度),作为东北天坐标系的原点。当接收到第二个信号时L 1、B 1和H 1,应用坐标转换公式,转换到东北天坐标系下进行显示。依次类推,凡是接收到的GPS 信号都转换到东北天坐标系下进行显示,在东北天坐标系下预测出来的坐标值通过坐标转换公式在显示屏上显示大地坐标(经度、纬度和高度)。 1.大地坐标与直角坐标的相互转化 对空间某一点,大地坐标系(L ,B ,H )到直角坐标系(X ,Y ,Z )的转换关系如下: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin ])1([sin cos )(cos cos )(2 (1) 由直角坐标系(X ,Y ,Z )转化到大地坐标系(L ,B ,H )的公式如下: ??? ????--=+-++==)1(sin /]})1((/[)(arctan{)/arctan(2222e N B Z H H e N Y X H N Z B X Y L (2) 式中:B e a N 22sin 1/-=,N 为该点的卯酉圈曲率半径;2222/)(a b a e -=,a 、b 、e 分别为该大地坐标系对应参考椭球的长半轴、短半轴和第一偏心率。长半 轴a =6378137±2m ,短半轴b =6356.7523142km ,90130066943799 .02=e 。 从公式(2)看出,经度比较容易求得,纬度和高度必须通过迭代计算获直接计算得到。迭代计算的次序为:N H B →→,通常迭代四次可以达到H 优于0.001m ,B 优于0.00001''的计算精度;教科书中给出的直接法计算公式比较繁琐,有的计算公式的应用条件受到一定限制,例如要求大地高度小于10000m 时,才能使B 、H 达到上述计算精度,有的直接计算公式精度较低。 根据[张华海]提供的方法,本文建议采用该方法将直角坐标(X ,Y ,Z )转变成大地坐标(L ,B ,H )。该方法的公式形式比较简便,B 、H 的计算精度高;用计算出的具有一定精度的0B ,直接求出H ,一次性计算出满足精度要求的H ;再将H 值代入公式(2)中,求出B 值。 令))/(arctan(22b Y X Za u ?+=,a 、b 分别为长半轴和短半轴。将u 代入下

交-直-交变频调速系统仿真研究

摘要 随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流变频调速技术得到了迅速发展,其显著的节能效益,高精确的调速精度,宽泛的调速范围,完善的保护功能,以及易于实现的自动通信功能,得到了广大用户的认可,在运行的安全可靠、安装使用、维修维护等方面,也给使用者带来了极大的便利。因此,研究交—直—交变频调速系统的基本工作原理和作用特性意义十分重大。 本文研究了变频调速系统的基本组成部分,主回路主要有三部分组成:将工频电源变换为直流电源的“整流器”;吸收由整流器和逆变器回路产生的电压脉动的“滤波回路”,也是储能回路;将直流功率变换为交流功率的“逆变器”。使用Matlab/Simulink搭建交—直—交变频调速系统的仿真模型,通过试验对该交—直—交变频调速系统的基本工作原理、工作特性及作用有更深的认识,也对谐波对于交—直—交变频调速系统的影响有了一定的了解。 关键词:交—直—交变频,整流,逆变,谐波,仿真。

Abstract With power electronic technology, computer technology, automatic control tech-nology is developing rapidly, AC variable-frequency system technology has been de-veloping rapidly. Significant energy efficiency and precision and broad scope of spe-ed control, perfect protection and easy to implement automatic communications, all which have win the many users acceptance . Therefore, studying the AC-DC-AC variablefrequency systerm for the role of the basic working principle and characteristics of great significance. In this paper we studied the basic component of the variable frequency speed regulation system. There are three main components: the "rectifier" which convert the AC power into DC power; the "loop filter " can absorbed the voltage pulse which the rectifier and inverter circuit generated by,it is also energy storage circuit; the “inverter” converts the DC power into the AC power. Then we used the Matlab / Simulink to build an AC-DC-AC Frequency Control System Simulation Model. Through the test of the AC-DC Frequency Control System to pay the basic working principle and working characteristics, we not only had a deeper understanding of the role,but also had a certain degree of understanding about the harmonic AC-DC-DC Frequency Control System. Key Words :AC-DC-AC variable requency systerm,rectifier,inverter,harmonics, simulation

相关主题
文本预览
相关文档 最新文档