当前位置:文档之家› 从诺贝尔物理学奖看物理对社会发展的影响

从诺贝尔物理学奖看物理对社会发展的影响

从诺贝尔物理学奖看物理对社会发展的影响
从诺贝尔物理学奖看物理对社会发展的影响

摘要

物理学研究的物质内部结构、运动及其规律的普遍性,是各门自然科学的基础;另一方面,物理学的研究领域涉及社会生产和生活的诸多领域,对社会发展起着巨大的作用。作为自然科学中三大诺贝尔奖之一的物理学奖则充分产县了物理学发展的辉煌成就,获奖者们在各自领域中取得的成就对社会发展起的作用也是显著的。因此,对历年来的诺贝尔物理学奖加以统计、分析、提炼,归纳出其中的规律,并加以阐述,便可以将20世纪物理学发展的脉络清晰地战线出来。物理学的发展也推动着社会的发展,尤其以对科学技术和军事的推动重要最为明显,又以X 射线学、核物理学、光学、微电子和微电子技术几个典型的物理领域对社会发展的影响最为深远。本文将对上述的内容加以论述。

关键词:

诺贝尔物理学奖发展脉络作用典型领域

Abstract

The physics research matter internal structure, the movement and its the rule universality, is various natural sciences foundation; On the other hand, the physics research area involves the social product and life many domains, develops the huge function to the society. As natural sciences in of a physics prize three big Nobel prizes then sufficiently divided an inheritance the county physics development magnificent achievement, prize-winner the achievement which obtained in respective domain the function which developed to the society also is remarkable. Therefore, comes to all previous years the Nobel physics prize performs to count, the analysis, the refinement, induces rule, and performs to elaborate, then may come out 20th century physics development vein clearly front. The physics development also is impelling society's development, especially by to science and technology and military impetus important most obvious, also by X beam study, the nuclear physics, optics, the micro electron and the micro electron technology several typical physics domains the influence which develop to the society is profoundest. This article will perform to the above content to elaborate.

Key word:Nobel physics prize,development vein function typical domain

第1章绪论

物理学作为一门科学,它的形成和发展是近四五百年的事情,但是物理知识的形成可以追溯到人类文明之初。从早期人类社会的遗迹中,已经出现人类形成的对物质运动认识具有最初的、不成系统的知识。随着生产的发展,社会的进步,物理知识逐步系统化、科学化,逐渐成为一门精密的科学。物理学研究的物质结构、运动及其规律的普遍性,是各门自然科学的基础,也是各门技术科学的基础。

到19世纪以后,自然科学在收集大量科学材料的基础上,通过整理,分门别类地研究,使它的各门科学得到发展,物理学也不例外。在伽利略、牛顿建立的经典力学的基础上,物理学的各分支科学都得到发展。经过长达百年之久的争辩,对光的本性有了新的认识,光的波动学说获得胜利,从而物理光学很快发展。经过好几个国家六七十位科学家的努力,建立了能量守恒与转化定律,随之诞生了热力学第二定律,使热学、分子物理学得到发展。经过奥斯特、法拉第等人的研究,使人们知道电和磁有密切联系,在一定的条件下可以相互转化。经过麦克斯韦深入研究,使电磁场理论更加完善,使一些学者认为献词厂理论更加完善,使一些学者认为电磁理论是无懈可击的,经典物理学达到颠峰时期。

历史进入20世纪以后,物理学进入了一个全新的时期,经过物理学家的努力和探索,诞生了量子论和相对论,开创了现代物理学。物质结构理论也得到了快速的发展。此外,物理学的各个分支学科也都得到了发展,连古老的分支学科声学、光学,在20世纪也焕发了青春,有的向理论深度拓展,有的则向应用方面进军。物理学的快速发展,在科学技术、军事等方面发挥着重要的作用,极大地推动着社会发展。

提起现代物理学的各项成就,就不能不提诺贝尔物理学奖。诺贝尔物理学奖包括了物理学的许多重大研究成果,遍及现代物理学的各个主要领域。100多年来的颁奖显示了现代物理学发展的轨迹。可以说,诺贝尔物理学奖是现代物理学伟大成就的缩影,折射出了现代物理学的发

展脉络。诺贝尔物理学奖的办法颁发体现了物理新成果的社会价值和历史价值,对科学进步有举足轻重的作用,对社会发展起着重要的影响。因此,研究物理学诺贝尔奖是研究物理对社会发展的一条捷径,有很强的学术价值和现实意义。

第二章诺贝尔物理学奖概述

2.1 诺贝尔及诺贝尔物理学奖的设立

诺贝尔(Alfred Bernhard Nobel,1833-1896)是一位瑞典发明家的儿子,他从小身体欠佳,因此主要靠家庭教师教育。他曾经在彼得堡学习工程,也曾经到美国,在伊里克逊指导下学习了大约一年。诺贝尔在他父亲的工厂里做实验时,发现当把甘油炸药分散在漂白土或木浆之类的惰性物质中时,可以使炸药的稳定性更高,从而更安全地处理。他还发明了其他炸药和雷管,并取得了这些发明的专利权。

诺贝尔因炸药的制造和巴库油田的开发而得到了一笔巨额财产。他终生未婚,被认为是一个有自卑感和孤独感的人。他对同伴常抱有一种嘲笑态度,但他为人心肠慈善,对人类的未来满怀希望。

诺贝尔留下9百万美元的基金,他在遗嘱中写道:“这些基金的利息每年以奖金的形式分发给那些在前一年中对人类作出最大贡献的人,上述利息分为相等的五部分:一部分奖给在物理领域有最重要发现和发明的人;一部分奖给在化学上有最重要发现和改革的人;一部分奖给在生理学或医学上有最重要发现的人;一部分奖给在文学领域内著有带理想主义倾向的最杰出作品的人;一部分奖给在促进国家之间友好、取缔或裁减常备军以及举行和促进和平会议方面作出显著贡献的人。”

“物理学奖和化学奖由瑞典科学院颁发,生理学或医学奖由斯德哥尔摩的加罗琳斯卡研究院颁发,文学奖、由斯德哥尔摩研究院颁发,和平奖由挪威议会推选出一个五人委员会颁发。”

诺贝尔提出奖金只授予“前一年间”所做的工作这一规定,从一开始就未实行。这是因为推选委员会考虑到要确认这一项成果对物理学的

贡献的价值,往往需要很多年。诺贝尔奖不授予毕生的工作,而授予那些有特殊成果的工作。狄塞留斯在大诺贝尔化学委员会主任期间,曾经写道:“诺贝尔奖不能由于我称之为‘科学上良好行为’而授予。有很多伟大任务,他们曾经起到导师、组织者和鼓舞源泉的作用,但当要找出一项具体的贡献、具体的发明时,也许会一无所获。”

诺贝尔奖只授予活着的人们,并且按照传统,没有任何一次诺贝尔奖授予三人以上的小组。每年秋天,大约有650封信发到瑞典皇家科学院成员、物理学和化学的诺贝尔委员会的成员、从前的物理学奖和化学奖获得者、瑞典8所大学以及科学院选出的40-50个大学和研究所的物理学教授和化学教授,以及国外的研究院和大型研究所的其他科学家,以征求诺贝尔奖的获奖者名单。这样,大约有60-100名物理学家被提名为候选人,然后,由一些非常严肃认真的人组成一个小组,承担这项繁重的业余工作,细心研究提出人选。有一位委员会主席说过:“你无法确定谁是最好的,因而唯一可行的是另外一种方法:即试图寻找一位特别值得推荐的候选人。”

2.2 诺贝尔物理学奖得主的国籍分布与分析

自1901年到2004年的104年中,诺贝尔物理学奖有6届由于世界大战和经济萧条而没有颁发(1919年、1931年、1934年和1940-1942年)。所以物理学奖实际上只颁发了98届,共174人次,173位科学家获得过诺贝尔物理学奖。其中美国著名物理学家巴丁是唯一的在物理学领域中两次获得诺贝尔物理学奖的物理学家。

从1901年-2004年诺贝尔物理学奖获得者的国籍和统计(表1)中可以看到,全世界共有17个国家的174位物理学家(以下均指人次)获此殊荣。获奖者最多的国家是美国,共有77人;英国第2;德国第3;中国有两位,他们是杨振宁和李政道(获奖时持有的是当年留学出国时的中国护照)。

表1 诺贝尔物理学奖得主的国籍分布

58年,则可以明显看到一个现象:即在前45年中,美国获诺贝尔物理学奖的人数比英国与德国少,美国在这段时间内有8人获得物理学奖,而英国10人,德国11人。这一情况说明,在第二次世界大战以前,自然科学提别是物理学研究的中心在欧洲,尤其是在德国。德国格丁根大学是当时公认的世界理论物理研究中心,一大批诺贝尔物理学奖获得者曾在那里学习或工作过。而英国剑桥大学的卡文迪什实验室则是实验物理的研究中心,很多新发现都是在那里作出的。可是自从第二次世界大战结束至今的60年中,获得诺贝尔物理学奖的美国人和具有美国国籍的科学家明显增多,世界自然科学的研究中心已从欧洲转移到了美国。

2.3 诺贝尔物理学奖获奖项目专门学科分布与分析

表2列出了诺贝尔物理学奖的获奖项目在各专门学科的获奖次数。需要指出的是获奖项目在各个专门学科的划分只是相对的,因为同一内容完全可以归入到两个甚至三个不同学科中,同一年的奖项也可因人而分在多个不同的学科中。

表2 诺贝尔物理学奖获奖项目学科分布

理学、量子物理学(量子力学、量子电动力学、弱电统一理论)和凝聚态物理学,这三门学科都是20世纪物理学发展的主要分支,也是研究物质微观规律的基本学科。自从1895年发现X射线和1896年发现放射性,物理学在物质的微观结构上的研究在100年间取得了巨大的成就。

从表2也可看到,新技术和新方法的获奖项目也占了一定的比例。1909年的诺贝尔物理学奖就授予在无线电通讯技术的推广和应用中作出突出贡献的意大利科学家马可尼和德国物理学家布劳恩。1939年的诺贝尔物理学奖奖给发明和制造出回旋加速器的美国物理学家劳伦斯,1960年的诺贝尔物理学奖授予了气泡室的发明者美国物理学家格拉塞。1922年物理学奖授予发明和研制出多丝正比探测器的法国实验物理学家夏帕克。1997年物理学奖授予发展了用激光冷却和捕捉原子方法的美国物理学家朱棣文、法国物理学家科恩·塔诺季和美国物理学家菲利普斯。

诺贝尔物理学奖如果按照理论方面和实验方面来划分,初步统计,理论方面为50人次,实验方面为92人次。,可以看出,实验方面的比

重远大于理论方面。如果把新技术的开发也算在实验的名下,则实验的比例就更大了。

第三章从诺贝尔物理学奖看现代物理学发

展脉络

3.1 20世纪第一个25年:现代物理学革命的开始

第一个25年,诺贝尔物理学奖主要反映世纪之交及随后的年代里现代物理学革命的基本内容。值得注意的是,有些项目并不是获奖者最突出的成就。爱因斯坦1921年因理论物理学的成果得奖,主要奖励他在光电效应方面的工作。主持者特别申明,此奖与相对论的创建无关。这件事反映了20世纪初学术界对相对论的怀疑态度;迈克尔逊1907年因光谱学和精密计量得奖,却闭口不提迈克尔逊--莫雷实验的零结果以及因此造成的影响,然而,以太漂移实验的结果对经典物理学的冲击是众所周知的。在量子现象和原子物理学方面,诺贝尔物理学奖的判定总的来说是公正的。维恩黑体辐射定律的研究(1911年物理学奖)、普朗克发现能量子(1918年诺贝尔物理学奖)以及佩兰证实物质结构的不连续性(1926年诺贝尔物理学奖),为微观世界的不连续性提供了基本的依据,这是现代物理学的又一个出发点。

在这25年中,除了某些项目,例如瑞利关于气体密度的研究(1904年诺贝尔物理学奖)、李普曼关于彩色照相的研究(1908年诺贝尔物理学奖)、马可尼、布劳恩关于无线电报的研究(1909年诺贝尔物理学奖)、范德瓦尔斯关于气液状态方程的研究(1910年诺贝尔物理学奖)、纪尧姆关于合金反常特性的研究(1920年诺贝尔物理学

奖)等属于经典物理学范畴的补充和应用外,首届诺贝尔物理学奖就授予发现X射线的伦琴,正是这一发现拉开了现代物理学革命的序幕。 X射线的发现和随后放射性和电子的发现以及作为其起因的阴极射线的研究相继在1902年、1903年、1905年、1906年授予诺贝尔物理学奖。α射线的研究导致了原子核的发现,虽然卢瑟福没有得到诺贝尔物理学奖,但在1908年获得了诺贝尔化学奖。X射线的研究,特别是X 射线光谱学的研究,为原子结构提供了详细的信息,为此劳厄获得了1914年诺贝尔物理学奖(发现X射线衍射)、亨利·布拉格和劳伦斯·布拉格获得了1915年诺贝尔物理学奖(X射线晶体结构分析的研究)、巴克拉获得了1916年诺贝尔物理学奖(发现元素的标识X辐射)以及卡尔·西格班获得1924年诺贝尔物理学奖(X射线光谱学)。密立根的基本电荷实验和光电效应实验获得了1923年的诺贝尔物理学奖,弗兰克和古斯塔夫·赫兹对电子--原子碰撞的研究获得了1925年诺贝尔物理学奖,这些实验为原子物理学奠定了进一步的实验基础。而尼尔斯·玻尔对原子结构和原子光谱的研究获得了1923年诺贝尔物理学奖,则肯定了他在创建原子理论方面的功绩。

3.2 20世纪第二个25年:量子力学、原子核物理

学及粒子物理学建立

20世纪第二个25年是量子力学和原子核物理学建立的时期。在这一期间,现代物理学取得了辉煌的发展。1927年诺贝尔物理学奖授予了康普顿效应的发现者康普顿;1929年诺贝尔物理学奖授予论证电子波动性的路易斯·德布罗意;1930年诺贝尔物理学奖授予发现赖曼效应的赖曼;1932年、1933年诺贝尔物理学奖授予创立量子力学的海森伯、薛定谔和狄拉克;1945年诺贝尔物理学奖授予提出不相容原理的泡利。在核物理方面,查德威克发现中子(1935年奖)、费米发现慢中子的作用(1938年奖)并由此导致核裂变的发现,劳伦斯建造回旋加速器(1939年奖),汤川预言介子的存在(1949年奖)以及鲍威尔发明核乳胶(1950年奖)都是有重大意义的成就。

伴随着原子物理学和原子核物理学的发展,粒子物理学也逐步形

成。自从1932年发现中子和正电子(1936年奖)以后,人们提出了基本粒子的概念,由于回旋加速器和核乳胶的发明,一大批基本粒子陆续得到发现,于是在20世纪的第三个25年,出现了粒子物理学发展的高潮。与此同时,凝聚台物理学也得到很大发展。而在理论物理学方面,量子电动力学和核模型理论都是诺贝尔物理学奖的重点项目。例如:格拉塞发明泡室(1960年奖),为发现新粒子提供了重要工具。二战期间发展起来的微波技术为分子束方法打开了新的局面,人们用一颗树来形容分子束方法的发展,称之为“拉比树”。这颗树可以说是由斯特恩“栽种”,由拉比“培育”(斯特恩和拉比先后于1943年和1944年获得诺贝尔物理学奖)并在第三个25年里结出了丰硕的果实,其中在第三个25年里获得诺贝尔物理学奖的有兰姆位移和库什的电子反常磁矩(1955年奖),这两个实验的结果,为朝永振一郎、施温格和费因曼建立量子电动力学重正化理论(1965年奖)提供了实验基础。这些年代里对起义粒子的研究,导致了李政道和杨振宁发现弱相互作用的宇称不守恒定律(1957年奖)以及盖尔曼提出基本粒子及其相互作用的分类方法(1969年奖)。有些项目则是为了20余年后才给予表彰的,例如:克罗宁和菲奇发现C-P破坏(1980年奖);莱德曼、施瓦茨、斯坦博格通过μ子中微子的发现显示轻子的二重态结构(1988年奖)。

“拉比树”的丰硕成果还可以用如好几项获得诺贝尔奖的项目来代表:1946年布洛赫和珀赛尔分别用核感应法和共振吸收法测核磁矩(1952年奖);1948年拉姆齐用分离振荡场方法常见了铯原子钟,随后又于1960年制成氢原子钟,原子钟后来发展成为最准确时间基准(1989年奖);1950年卡斯特勒提出光抽运方法(1966年奖);1954年,汤斯小组研制“分子振荡器”成功,实现了氨分子束的粒子数反转;接着,汤斯和肖洛提出激光原理;汤斯、巴索夫和普罗霍罗夫因量子电子学方面的基础工作1964年获诺贝尔物理学奖;布隆姆贝根和肖洛获1981年物理学奖。

3.3 20世纪第三个25年:凝聚态物理学的大发展在第三个25年里,凝聚态物理学的大发展可以用如下的诺贝尔物

【历届诺贝尔奖得主(五)】1956年物理学奖得主

物理学奖 美国,布拉顿(WalterHouserBrattain1902-1987),研究半导体、发明晶体管 获奖理由:因对半导体的研究和发现了晶体管效应,与肖克利和巴丁分享了1956年度的诺贝尔物理学奖金。 简历 布拉顿(Brattain,WalterHouser)美国物理学家。1902年2月10日生于中国(父母是美国人)厦门。布拉顿的少年时期是在牧场上度过的。他1924年毕业于惠特曼学院(在华盛顿州沃拉沃拉),1929年在明尼苏达大学取得博士学位。同年,他进入贝尔电话实验室,成为一名物理学研究人员。第二次世界大战期间,他在那里从事潜艇磁探测的工作。他同肖克利和巴丁共同获得1956年诺贝尔物理学奖。1967年,他接受惠特曼学院的聘请,担任了自己母校的教授。 美国,巴丁(JohnBardeen1908-1991),研究半导体、发明晶体管 生平 1908年5月23日生于威斯康星州麦迪逊城,1923年入威斯康星大学电机工程系就学,毕业后即留在该校担任电机工程研究助理。1930-1933年在匹兹堡海湾实验研究所从事地球磁场及重力场勘测方法的研究。1928年获威斯康星大学理学士学位,1929年获硕士学位。1936年获普林斯顿大学博士学位。1933年到普林斯顿大学,在E·P·维格纳的指导下,从事固态理论的研究。1935-1938年任哈佛大学研究员。1936年以《金属功函数理论》的论文从普林斯顿大学获得哲学博士学位。1938-1941年任明尼苏达大学物理学助理教授,1941-1945年在华盛顿海军军械实验室工作,1945-1951年在贝尔电话公司实验研究所研究半导体及金属的导电机制、半导体表面性能等基本问题。1947年和其同事W·H·布喇顿共同发明第一个半导体三极管,一个月后,W·肖克莱发明PN结晶体管。这一发明使他们三人获得1956年诺贝尔物理学奖,巴丁并被选为美国科学院院士。 科研方向与获奖情况 1951年迄今,他同时任伊利诺伊大学物理系和电机工程系教授。他和L·N·库珀、J·R·施里弗合作,于1957年提出低温超导理论(BCS理论),为此,他们三人被授予1972年诺贝尔物理学奖,在同一领域(固态理论)中,一个人两次获得诺贝尔奖,历史上还是第一次。 晚年他研究如何用简单而基本的成分理解大自然非常复杂的性质,对整个近代理论物理学发展提出明确的见解。1980年他发表题为《物质结构的概念统一》的总结性论文,强调相同的基本物理概念可以广泛地用于表面上似乎悬殊的各个问题上,包括固体、液晶、核物质、高能粒子等领域。 巴丁发明了晶体管.1956年和肖拉克一起获得了诺贝尔物理学奖.1972年巴丁,库柏,施里弗一起获得了诺贝尔物理学奖. 巴丁于1991年1月30日上午8时45分去世 美国,肖克利(WilliamBradfordShockley1910-1989),研究半导体、发明晶体管 发明创造 获奖理由:因对半导体的研究和发现了晶体管效应,与巴丁和布拉顿分享了1956年度

对诺贝尔物理学奖获得者的统计与分析

对诺贝尔物理学奖获得者的统计与分析 物理是一门神奇的学科,在努力学好规定课程外,还应该多了解一些课外知识,随着2012年诺贝尔奖揭晓仪式将于10月8日起陆续举行,物理学奖于2012年10月9日揭晓。我们对历届诺贝尔物理学将获得者是否有一些共性产生了兴趣,为此组成了课题组对历届诺贝尔物理学奖获得者进行了统计与分析。 诺贝尔物理学奖是根据诺贝尔遗嘱而设立的五个基本奖项之一,旨在奖励那些在物理学领域里做出突出贡献的科学家。自1901年首届诺贝尔物理学奖颁发至2012年112年间,除了1916 年因第一次世界大战,1931年和1934 年因世界经济大萧条,以及1940~1942年因第二次世界大战未颁发外,一共授奖106次,共有192人次,191人获得此项殊荣。其中美国科学家巴丁是唯一一位两次荣获诺贝尔物理学奖的物理学家。他分别在1956年因发明晶体管及对晶体管效应的研究以及时隔16年后与库伯、施里弗创立BCS超导微观理论而两次获此殊荣。获奖者中有2名女科学奖。她们是法国的居里夫人1903年因发现自发放射性和在放射学方面的深入研究和杰出贡献而获奖,以及美国的迈耶夫人1963年因对原子核和基本粒子理论所做的贡献,特别是对称性基本原理的发现和应用获得该奖,其余186人皆为男性。对女性科学家的关注不够是造成这种现象的重要原因。而居里夫妇也是这112年中唯一一对获得该奖的夫妻,更令世人对他们的甜蜜爱情和同登科学高峰的研究精神羡慕钦佩。在这112年中,最年轻的物理学奖得主是1915年获此殊荣的英国物理学家劳伦斯·布拉格,时年25岁;最年长的物理学奖得主是2002年获得该奖的美国物理学家雷蒙德·戴维斯,他得奖时已是85岁高龄。112年中曾出现过布拉格父子、汤姆孙父子、玻尔父子和西格班父子等四对父子获得诺贝尔物理学奖,他们父子情深、追求卓越、同攀科学高峰的精神彪炳史册,为世人学习和铭记。 一、诺贝尔获奖者所处的环境 影响诺贝尔物理学奖获得者的环境因素很多,经过查阅资料发现诺贝尔物理学奖获得者所处的环境的几个共同点是:开放的国家环境、稳定的社会环境、激发创造活力的教育环境与和谐的人际关系。以马克斯·玻恩为例(1954年获奖),在获奖前,他的主要经历是1907年哥廷根大学获得博士,1908年剑桥大学学习物理知识,1909年至1915年先后在哥廷根大学,及印度科学院学习和工作。后来在爱丁堡大学工作17年。许多获奖物理学家都有相似的经历,而这样的经历又只有在开放的国家环境中才能实现。稳定的社会环境是科学家潜心研究的必要条件战争和动乱是对科学研究的最大干扰,对科学家的身心也是极大的磨损和消耗。以德国为例,1933年希特勒上台后,德国在22年里无一人获奖,其中奥托·斯特恩、马克斯·玻恩、贝蒂、加波等四位科学家是在希特勒执政时离开德国分别在美英继续研究。可见一个稳定的社会环境对科学研究时多么的重要。富有创造活力的教育环境是科学幼苗成长为科学巨匠的适宜土壤。因发现泡利不相容原理而于1945年获诺贝尔物理学奖的泡利其成长经历就是一例,证上中学时18岁的泡利就写了一篇关于相对论的论文讨论了引力场动量一能量张量的能量分量,他把论文带到了慕尼黑经过著名物理学家索末菲的推荐发表在德国期刊上,此后他继续研究了广义相对论问题发表的论文引起了同行们的注意。随后又和数学家克莱因合作编写《数理科学全书》第五卷,不久泡利就写出了一篇250页左右的综述文章。克莱因看完文章后,把著作权给了泡利。这篇稿子成了全面论述爱因斯坦的数学思想和物理观念的最早论著之一,而且至今仍是有关相对论的重要经典。 192位获奖者不仅在物理学研究领域有很高的造诣而且大多表现出了高尚的人格魅力和处理人际关系的艺术,师生关系和谐、合作伙伴关系和谐、家庭,和谐是科学家研究取得突破的重要基础。例如居里夫妇,劳伦斯·布拉格父子等等。

物理学对人类的影响

魅力科学论文 题目物理学对人类的影响 姓名吴赐恩 专业交通运输 学号 201334012 指导教师张志强 郑州科技学院车辆与交通工程系 二O一六年六月

摘要:从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理 中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。 关键词:渗入;各个领域;科学意识;科学学习方法 一、物理学对生活的影响 物理是一门具有悠久历史的自然学科。随着科技的发展,社会的进步,物理已渗入人类生活的各个领域;物理学存在于物理学家的身边;物理学也存在于我们身边;在学习中,我们要应树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式。 科学思维方式物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。 例如,日常生活中的雨衣。下雨天,外出的人们不是打伞,就是穿雨衣。雨衣为什么不透水呢?奥妙就在制作材料上。就拿布制雨衣来说吧,它是用防雨布(经过防水剂处理的普通棉布)制成的。防水剂是一种含有铝盐的石蜡乳化浆。石蜡乳化以后,变成细小的粒子,均匀地分布在棉布的纤维上。石蜡和水是合不来的、水碰见石蜡,就形成椭圆形水珠,在石蜡上面滚来滚去。可见,是石蜡起了防雨的作用。物理学上把这种不透水的现象,叫做“不浸润现象”。而水一旦遇到普通棉布,就通过纤维间的毛细管渗透进去,这就叫做“浸润现象” 物体是由分子组成的。同一种物质的分子之间的相互作用力,叫做内聚力;而不同物质的分子之间的相互作用力,叫做附着力。在内聚力小于附着力的情况下,就会产生“浸润现象”;反之,则会出现“不浸润现象”。雨衣不透水,正是由于水的内聚力大于水对雨衣的附着力的缘故。 再如下面一个例子:五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。 一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收

历年诺贝尔物理学奖得主(1901-2016)汇总

历年诺贝尔物理学奖得主(1901-2016)年份获奖者国籍获奖原因 1901年威廉·康拉德·伦琴德国“发现不寻常的射线,之后以他的名字命名”(即X 射线,又称伦琴射线,并伦琴做为辐射量的单位) 1902年亨得里克·洛仑兹荷兰 “关于磁场对辐射现象影响的研究”(即塞曼效应)彼得·塞曼荷兰 1903年亨利·贝克勒法国“发现天然放射性” 皮埃尔·居里法国“他们对亨利·贝克勒教授所发现的放射性现象的 共同研究” 玛丽·居里法国 1904年约翰·威廉·斯特拉斯英国“对那些重要的气体的密度的测定,以及由这些研究而发现氩”(对氢气、氧气、氮气等气体密度的测量,并因测量氮气而发现氩) 1905年菲利普·爱德华·安 东·冯·莱纳德 德国“关于阴极射线的研究” 1906年约瑟夫·汤姆孙英国"对气体导电的理论和实验研究" 1907年阿尔伯特·迈克耳孙美国“他的精密光学仪器,以及借助它们所做的光谱学和计量学研究” 1908年加布里埃尔·李普曼法国“他的利用干涉现象来重现色彩于照片上的方法” 1909年古列尔莫·马可尼意大利 “他们对无线电报的发展的贡献”卡尔·费迪南德·布劳恩德国 1910年范德华荷兰“关于气体和液体的状态方程的研究”1911年威廉·维恩德国“发现那些影响热辐射的定律” 1912年尼尔斯·古斯塔夫·达伦瑞典“发明用于控制灯塔和浮标中气体蓄积器的自动调节阀” 1913年海克·卡末林·昂内斯荷兰“他在低温下物体性质的研究,尤其是液态氦的制成” 1914年马克斯·冯·劳厄德国“发现晶体中的X射线衍射现象” 1915年威廉·亨利·布拉格英国 “用X射线对晶体结构的研究”威廉·劳伦斯·布拉格英国 1917年查尔斯·格洛弗·巴克拉英国“发现元素的特征伦琴辐射” 1918年马克斯·普朗克德国“因他的对量子的发现而推动物理学的发展” 1919年约翰尼斯·斯塔克德国“发现极隧射线的多普勒效应以及电场作用下谱线的分裂现象” 1920年夏尔·爱德华·纪尧姆瑞士“他的,推动物理学的精密测量的,有关镍钢合金的反常现象的发现” 1921年阿尔伯特·爱因斯坦德国“他对理论物理学的成就,特别是光电效应定律的发现” 1922年尼尔斯·玻尔丹麦“他对原子结构以及由原子发射出的辐射的研究”1923年罗伯特·安德鲁·密立根美国“他的关于基本电荷以及光电效应的工作” 1924年卡尔·曼内·乔奇·塞格 巴恩 瑞典“他在X射线光谱学领域的发现和研究”[3]

物理学的进步对社会发展的贡献

物理学的进步对社会发展的贡献 早在1000多年前,马克思就把科学首先看成是历史的有力的杠杆,看成是最高意义上的革命力量。其中,物理学研究提高了我们对自然界的基本认识,产生了对人类有深远意义的知识。它所孕育出的新技术扎根于我们的文化中。因此,物理学的每一次革命都会推动人类社会的巨大进步。 一、日心说的建立——科学战胜神学 古希腊曾创造过灿烂的科学文化。从公元5世纪起,西方进入了黑暗的中世纪。此后,“科学只是教会恭顺的婢女”。地心说的思想博大精深并计算精确,基督教将它与神学融为一体,形成了封建神权的思想基础。由于神学的桎梏,在此后1000多年的历史长河中西方科学停滞不前。中世纪末,先进的思想家们发起了文艺复兴运动,同时宗教界也兴起了改革。这二者的结合,为科学和文艺的复兴鸣锣开道。科学,从此开始了艰难的革命。 1543年,哥白尼提出了日心说。日心说与地心说比较,最大的区别就是把宇宙的中心由地球换成了太阳。也将宇宙的中心放在一个“象征性的太阳”上在计算精度方面,哥白尼的星表“并不远比那些被它们所代替的表好”。另外,日心说还存在两个无法解答的问题:如果地球在运动,第一,为什么看不到恒星的视差?第二,竖直上抛的物体为什么会落回原处所以直到临终前,哥白尼才出版了《天体运行论》。但日心说在客观上产生了向宗教神学挑战的效果。

对地心说进行脱胎换骨的改造的是开普勒。他从弟谷·布拉赫大量的精确有天文观测资料中,总结出了行星运动三定律。其第一定律指出:行星绕太阳运动的轨道是一个椭圆,太阳处在椭圆的一个焦点上,从而确立了太阳在宇宙中真正的中心地位这样一来,开普勒引起了教会的极度不满。他虽然被任命为“皇家数学家”,但长期领不到薪俸,只能靠为皇室贵族算命维持生计。开普勒说:“如果‘占星术’女儿不争来两份面包,那么‘天文学’母亲就准会饿死。”1630年11月,开普勒因贫病交加而死。 伽利略为捍卫、发展和传播哥白尼学说作出了特殊的贡献。 首先,伽利略用自制的望远镜进行天文观测,有力地证实了地球在宇宙中并不比其他星球特殊。1610年,他发行了《星界信使》,公开了自己的观测成果。1632年,他又出版了《关于托勒密和哥白尼两大世界体系的对话》,对亚里士多德进行了批判,在书中,他为日心说的两大困难做了辩护:指出没发现恒星视差是因为恒星离地球太远;他用惯性原理对上抛物体落回原处作出了解释。由于该书是用意大利语写成,又是以对话的形式出现,通俗易懂,使哥白尼学说广为传播。 在1615年,伽利略受到过教会的警告。《对话》发表后的第二年,教会传讯了他并对他刑讯逼供最后伽利略被判为监禁终身,《对话》也列为禁书。相传伽利略被迫公开认错之后,还自语道:“可是,地球是在运动。”在监禁之中,他又完成了《两门新科学的对话》——这是近代自然科学诞生的标志性著作。 日心说与地心说进行了残酷的较量,直到1687年,牛顿的《自然哲学的数学原理》出版,才取得了历史性的胜利。《原理》建立了经典力学的理论体系提出了运动三定律和万有引力定律,揭示了行星绕太阳运动的根本原因,完成了物理学发展史上的第一次

1998年诺贝尔物理学奖

·1998年诺贝尔物理学奖——分数量子霍耳效应的发现 1998年诺贝尔物理学奖授予美国加州斯坦福大学的劳克林(Robert https://www.doczj.com/doc/989045406.html,ughlin,195O—),美国纽约哥伦比亚大学与新泽西州贝尔实验室的施特默(Horst L.St rmer,1949—)和美国新泽西州普林斯顿大学电气工程系的崔琦(Daniel C.Tsui,1939—),以表彰他们发现了一种具有分数电荷激发状态的新型量子流体,这种状态起因于所谓的分数量子霍耳效应。 量子流体早在研究极低温状态下的液氦和超导体时就已有所了解。在这些领域里,已经有好几位物理学家获得过诺贝尔物理学奖。例如,卡末林-昂内斯由于液氦的研究和超导电性的发现获1913年诺贝尔物理学奖;朗道由于液氦和超流理论获1962年诺贝尔物理学奖;巴丁、库珀和施里弗由于提出超导电性的BCS 理论获1972年诺贝尔物理学奖;卡皮查由于发现氦的超流动性获1978年诺贝尔物理学奖;柏诺兹和缪勒由于发现高温超导获1987年诺贝尔物理学奖;戴维·李、奥谢罗夫和R.C.里查森则因发现氦-3的超流动性获1996年诺贝尔物理学奖。这么多的物理学家受到如此殊荣,说明凝聚态物理学在20世纪有极大的发展,而低温和超导在这一领域内又具有特殊重要的地位。分数量子霍耳效应正是继高温超导之后凝聚态物理学又一项崭新课题。 分数量子霍耳效应是继霍耳效应和量子霍耳效应①的发现之后发现的又一项有重要意义的凝聚态物质中的宏观量子效应。冯·克利青由于在1980年发现了量子霍耳效应而于1985年获得诺贝尔物理学奖。图98-1表示冯·克利青所得霍耳电阻随磁场变化的台阶形曲线。台阶高度等于物理常数h/e2除以整数i。e 与h是自然的基本常数——e是电子的基本电荷,h是普朗克常数。h/e2值大约 为25kΩ。图中给出了i=2,3,4,5,6,8,10的各层平台。下面带峰的曲线表示欧姆电阻,在每个平台处趋于消失。量子数i也可用填充因子f 代替,填 充因子f由电子密度和磁通密度确定,可以定义为电子数N与磁通量子数Nφ(=φ/φ0)之比,即f=N/Nφ,其中φ为通过某一截面的磁通,φ0为磁通量子, φ0=h/e=4.1×10-15Vs.当f是整数时,电子完全填充相应数量的简并能级(朗 道能级),这种情况的量子霍耳效应叫做整数量子霍耳效应,以与分数量子霍耳效应相区别。

物理学的发展对现代通信的影响

物理学对通信技术的影响 摘要:在过去的200年里,世界的通信技术以及手段发生了翻天覆地的变化,这和物理学上的一些列发明创造是分不开的,物理学上的电磁感应、卫星通信、光纤维、网络的诞生、电的产生等等都推动并加快了通信技术的发展,使人们在日常生活的沟通交流变得更加便捷、随意,并渗透到生活的没一个角落。更多物理学上的发明创造应用到通信技术上,让我们的日常更加方便,让我们的生活更加优越。 关键词:物理学通信技术移动通信发展应用 一、物理学的影响 近代通信技术的发展在第一次工业革命的时候得到创新和发展。电的发现、电磁感应现象、蒸汽机的发明等等一系列物理学上的发展推动并加快了近代通信技术的发展。尤其是电话、电报的发明为通信技术的发展开启了新的一页。电话的发明是很曲折的,最初,贝尔用电磁开关来形成一开一闭的脉冲信号,但是这对于声波这样高的频率,这个方法显然是行不通的。最后的成功源于一个偶然的发现,1875年6月2日,在一次试验中,他把金属片连接在电磁开关上,没想到在这种状态下,声音奇妙地变成了电流。分析原理,原来是由于金属片因声音而振动,在其相连的电磁开关线圈中感生了电流。现在看来,这原理就是一个学过初中物理的学生也知道,但是那个时候这对于贝尔来说无疑是非常重要的发现。而电报的发明也是和物理学上的一个突破密切相关的(摘自《传播科技纵横》第四章)莫尔斯于1836年发明了继电器,这个装置是利用接收机收到的微弱电流通过电池电源,由电池电源向接收机供给新的强电流。1937年,莫尔斯在纽约大学的会议室里,架设了518米长的导线,获得通报实验成功,电报机由此诞生。 除此之外,在现代的物理发展史上,网络、卫星的发明及探索使通信技术得到了跳跃式的发展,在以下内容会有详细介绍。 二、移动通信手段的发展 随着物理学在通信技术方面的发展,移动通信手段也随之向前推进。从最原始时候的古代非移动通信说起,从烽火台到两千多年前的邮译通信再到民信局和侨批局。而通信的发展在近代工业革命的时候达到高潮,近代通信最重要的发明是电报和电话。电报(包括有线电报和无线电报)的发明使人类第一次借助科技的翅膀实现了远距离通信。电话的发明则使信息即时的双向交流得以实现。今天,电报的作用已微乎其微,但电话的作用非但没有减弱,反而得到更广泛地应用,所发生的巨大变化堪称史无前例。而在现代,通信技术的发展得到了空前飞跃的发展。从固定电话到寻呼机,从移动的手提电话再到手机,一步步的演变让人们的通信变得越来月便捷。网络的发展也让通信更加方便,QQ、MSN、电子邮件等等,除此之外,还有卫星通信、光纤通信、数字通信等等。 21世纪是信息的世纪,而大量的信息传输必然需要进行大量的通信手段,因此移动通信的发展成为了必然的趋势。移动通信的种类按工作场合和实用要求不同可以分为:1)集群移动通信,也称大区制移动通信。2)蜂房移动通信,也称小区制移动通信。3)卫星移动通信。利用卫星转发信号也可以实现移动通信对于车载移动通信可采用迟到固定卫星,而对手持终端,采用中低轨道的多颗星座卫星较为有利。4)无绳电话。对于室内外慢速移动的手持终端的通信,则采用小功率、通信距离近的、轻便的无绳电话机。(摘自《浅析移动通信技术应用与发展》刘志远)。 除此之外,光纤通信由于其具有的一系列特点,使其在运输平台中居于十分重要的地位。虽然目前移动通信,甚至卫星移动通信的热浪再现高潮,但光光纤通信仍然是最重要的传输手段。在北美,信息量的80%以上是通过光钎网来传输的。在我国光钎通信也得到广泛的应用,全国通信王的传输光纤化比例已高达82%。光钎通信技术的应用基本已达到国际同

历届诺贝尔物理学奖

历届诺贝尔物理学奖 1901年威尔姆·康拉德·伦琴(德国人)发现X 射线 1902年亨德瑞克·安图恩·洛伦兹、P. 塞曼(荷兰人)研究磁场对辐射的影响 1903年安东尼·亨利·贝克勒尔(法国人)发现物质的放射性皮埃尔·居里(法国人)、玛丽·居里(波兰人)从事放射性研究 1904年J.W.瑞利(英国人)从事气体密度的研究并发现氩元素 1905年P.E.A.雷纳尔德(德国人)从事阴极线的研究 1906年约瑟夫·约翰·汤姆生(英国人)对气体放电理论和实验研究作出重要贡献1907年 A.A.迈克尔逊(美国人)发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究 1908年加布里埃尔·李普曼(法国人)发明了彩色照相干涉法(即李普曼干涉定律)1909年伽利尔摩·马可尼(意大利人)、K . F. 布劳恩(德国人)开发了无线电通信O.W.理查森(英国人)从事热离子现象的研究,特别是发现理查森定律 1910年翰尼斯·迪德里克·范德华(荷兰人)从事气态和液态议程式方面的研究1911年W.维恩(德国人)发现热辐射定律 1912年N.G.达伦(瑞典人)发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置 1913年H·卡末林—昂内斯(荷兰人)从事液体氦的超导研究 1914年马克斯·凡·劳厄(德国人)发现晶体中的X射线衍射现象 1915年威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国人)借助X射线,对晶体结构进行分析 1916年未颁奖 1917年 C.G.巴克拉(英国人)发现元素的次级X 辐射的特征 1918年马克斯·卡尔·欧内斯特·路德维希·普朗克(德国人)对确立量子理论作出巨大贡献 1919年J.斯塔克(德国人)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象 1920年 C.E.纪尧姆(瑞士人)发现镍钢合金的反常现象及其在精密物理学中的重要性

物理学的发展对人类社会的影响

物理学的发展对人类社会的影响 中国民间有句俗话称“时势造英雄”,这虽然过份夸大了客观因素的作用,而忽视了个人的智慧和创造力,但也从另一侧面提示了客观历史背景对事物发展的积极推进作用。 一、物理学发展的一些历史背景 在古代,人类自身因为生存的需要而不得不有效地利用畜力、风力、水力和人力,因此发明了许多机械,促进了物理知识的不断积累。经典力学的诞生,也是当时人们在先人已积累的知识体系中遇到了矛盾,为解决矛盾而对实践进行充分的检验,从此促进物理学新体系的形成:首先是伽利略对亚里士多德运动理论的检验和批判为起点,对阿基米德静力学理论进行了继承和发展,以1632年出版的《关于两大世界体系的对话》和1638年出版的《关于力学和局部运动两门新科学的谈话和数学证明》两本书为标志;其次是牛顿的的经典力学,他概括了伽利略、笛卡儿、开普勒、惠更斯、胡克等人的研究成果以及他自己的创造,在1687年著名的《自然哲学的数学原理》中,首次创立了一个地面力学和天体力学统一的严密体系,成为经典力学的基础,实现了物理学史上的第一次大综合。二次大战中核武器的应用,加速了人们对核物理世界的认识,使人们对物质的认识越来越细微和深入。同样,为解决物理学晴朗的天空中漂浮着的两朵令

人不安的“乌云”,狭义相对论和量子力学便因运而生,为当代物理学的发展叩开了大门。在物理学发展的历史上,诸如此类的突破不胜枚举,充分说明人类在探索自然过程中,一方面是自身知识积累的必然——从量变到质变;另一面,客观的历史背景给予我们足够的推动力。换言之,物理学发展的背后蕴涵着人类社会进步的历史动力。 二、物理学的发展对人类社会的价值 一部人类发展的历史就是一部改造自然的历史,每一次大的技术变革乃至社会变革都有其物理方面的成因,物理在其中扮演着举足轻重的角色。物理学作为一门最基本的自然哲学,是一个充满活力的带头学科,其具有的价值也是多方面的。 1、美学价值 物理学研究的是物质世界最基本最普遍的规律,回答的是人类对于物质世界中原始而又最深刻的问题,面对的是客体世界对人类的主观世界平台上的投影——物理模型世界。物质世界在最原始的层面上是按美学原理构筑的,所以庄子说:“判天地之美,析万物之理。” 在西方古代,毕达哥拉斯学派把对自然奥秘的探索与对自然美的追求统一起来,自那时起,寻求自然界的和谐成为推动天文学发展的基本路标。20世纪以来,以相对论和量子力学为代表的现代物理学革命的兴起在更大的程度上推动

【历届诺贝尔奖得主(八)】1983年物理学奖

1983年12月10日第八十三届诺贝尔奖颁发。 物理学奖 美国科学家昌德拉塞卡因对恒星结构方面的杰出贡献、美国科学家福勒因与元素有关的核电应方面的重要实验和理论而共同获得诺贝尔物理学奖。 苏布拉马尼扬·钱德拉塞卡是一位印度裔美国籍物理学家和天体物理学家。钱德拉塞卡在1983年因在星体结构和进化的研究而与另一位美国体物理学家威廉·艾尔弗雷德·福勒共同获诺贝尔物理学奖。他也是另一个获诺贝尔奖的物理学家拉曼的亲戚。钱德拉塞卡从1937年开始在芝加哥大学任职,直到1995年去世为止。他在1953年成为美国的公民。钱德拉塞卡兴趣广泛,年轻时曾学习过德语,并读遍自莎士比亚到托马斯·哈代时代的各种文学作品。 人物简介 苏布拉马尼扬·钱德拉塞卡(SubrahmanyanChandrasekhar,1910年10月19日 —1995年8月15日),在恒星内部结构理论、恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学和相对论天体物理学等方面都有重要贡献。1983年因在星体结构和进化的研究而获诺贝尔物理学奖。他是另一个获诺贝尔奖的物理学家拉曼的亲戚。 他一生中写了约四百篇论文和诸多书籍。他兴趣广泛,年青时曾学习德语,读遍自莎士比亚到托马斯·哈代的文学作品。 1937年起钱德拉塞卡在芝加哥大学工作,1953年取得美国国籍。晚年他曾研读牛顿的《自然哲学的数学原理》,并写了《Newton'sPrincipiafortheCommonReader》。此书出版后不久他便逝世了。 他算过白矮星的最高质量,即钱德拉塞卡极限。所谓“钱德拉塞卡极限”是指一颗白矮星能拥有的最大质量,任何超过这一质量的恒星将以中子星或黑洞的形式结束它们的命运。 人物生平 钱德拉塞卡于1910年出生在英属印度旁遮普地区拉合尔(现在的巴基斯坦),在家中排名第3,父亲为印度会计暨审计部门的高阶官员。 钱德拉塞卡的父亲也是一位技术娴熟的卡纳蒂克音乐(Carnaticmusic)演奏者与一些音乐学著作的作者。他的母亲则是一位知识份子,并曾将亨利克·易卜生的剧作《玩偶之家》翻译成泰米尔语。 钱德拉塞卡起初在家中学习,后来则进入清奈的高中就读(1922年至1925年间)。他在1925年至1930年进入了清奈的院长学院(PresidencyCollege),并获得学士学位。钱德拉塞卡在1930年7月获得印度政府的奖学金,于是前往英国剑桥大学深造。他后来进入剑桥三一学院就读,并成为劳夫·哈沃德·福勒(RalphHowardFowler)的学生。在保罗·狄拉克的建议下,钱德拉塞卡花费一年的时间在哥本哈根进行研究,并且认识了尼尔斯·玻尔。 钱德拉塞卡在1933年夏天获得剑桥大学的博士学位,并且在当年十月成为三一学院的研究员(1933年-1937年),他在这段时期认识了天文学家亚瑟·爱丁顿与爱德华·亚瑟·米尔恩(EdwardArthurMilne)。 钱德拉塞卡在1936年与LalithaDoraiswamy结婚。 学术生涯 苏布拉马尼扬·钱德拉塞卡,1930年毕业于印度马德拉斯大学,1933年获得英国剑桥大学三一学院博士学位。 1930~1934年在英国剑桥大学三一学院学习理论物理。

1983年诺贝尔物理学奖——天体物理学的成就

1983年诺贝尔物理学奖——天体物理学的成就 1983年诺贝尔物理学奖一半授予美国伊利诺斯州芝加哥大学的钱德拉塞卡尔(Subrahmanyan Chandrasekhar,19l0—1995),以表彰他对恒星结构和演变有重要意义的物理过程的理论研究;另一半授予加利福尼亚州帕萨迪那加州理工学院的W.A.福勒(William AlfredFowler,1911—1995),以表彰他对宇宙中化学元素的形成有重要意义的核反应的理论和实验研究。 钱德拉塞卡尔是另一诺贝尔物理学奖获得者拉曼(SirChandrasekhara Venkata Raman)的外甥,1910年10月19日出生于巴基斯坦的拉合尔,1930年毕业于印度马德拉斯大学,后在英国剑桥大学学习和任教。1937年移居美国。 钱德拉塞卡尔的主要贡献是发展了白矮星①理论。 白矮星的特性是大约在1915年由美国天文学家亚当斯(W.S.Adams)发现的。1925年英国物理学家R.H.福勒(R.H.Fowler)用物质简并假说解释了白矮星的巨大密度。物质简并假说称,电子和电离的核在极大的压力下组成高度密集的物质。1926年爱丁顿(A.S.Eddington )建议,氢转变为氦是恒星能量的可能泉源,这就为恒星演化理论奠定了基础。 1930年—1936年,钱德拉塞卡尔在剑桥大学三一学院工作期间,就投入到了白矮星的研究之中。他找到了决定恒星生命的基本参数,通过应用相对论和量子力学,利用简并电子气体的物态方程,为白矮星的演化过程建立了合理的模型,并作出了如下预测: 1.白矮星的质量越大,其半径越小; 2.白矮星的质量不会大于太阳质量的1.44倍(这个值被称为钱德拉塞卡尔极限); 3.质量更大的恒星必须通过某些形式的质量转化,也许要经过大爆炸,才能最后归宿为白矮星。 钱德拉塞卡尔的理论解释了恒星演化的最后过程,因此对宇宙学作出了重大贡献。1939年他在全面研究了恒星结构的基础上出版了《恒星结构研究导论》一书,系统总结了他的白矮星理论。他还在恒星和行星大气的辐射转移理论、星系动力学、等离子体天体物理学、宇宙磁流体力学等方面进行了许多工作。 钱德拉塞卡尔1995年8月21日由于心脏病发作而去世,享年84岁。他在晚年时潜心研究牛顿的《自然哲学的数学原理》。1995年3月20日他还在美国物理学会圣何塞年会上做过题为“牛顿…原理?的一些命题”的特邀报告。当时他正在写一本有关牛顿的书。 W.A.福勒1911年8月9日出生于美国宾夕法尼亚州的匹兹堡。由于从事与

物理学的发展对人类社会的影响上课讲义

精品文档 物理学的发展对人类社会的影响 中国民间有句俗话称“时势造英雄”,这虽然过份夸大了客观因素的作用,而忽视了个人的智慧和创造力,但也从另一侧面提示了客观历史背景对事物发展的积极推进作用。 一、物理学发展的一些历史背景 在古代,人类自身因为生存的需要而不得不有效地利用畜力、风力、水力和人力,因此发明了许多机械,促进了物理知识的不断积累。经典力学的诞生,也是当时人们在先人已积累的知识体系中遇到了矛盾,为解决矛盾而对实践进行充分的检验,从此促进物理学新体系的形成:首先是伽利略对亚里士多德运动理论的检验和批判为起点,对阿基米德静力学理论进行了继承和发展,以1632年出版的《关于两大世界体系的对话》和1638年出版的《关于力学和局部运动两门新科学的谈话和数学证明》两本书为标志;其次是牛顿的的经典力学,他概括了伽利略、笛卡儿、开普勒、惠更斯、胡克等人的研究成果以及他自己的创造,在1687年著名的《自然哲学的数学原理》中,首次创立了一个地面力学和天体力学统一的严密体系,成为经典力学的基础,实现了物理学史上的第一次大综合。二次大战中核武器的应用,加速了人们对核物理世界的认识,使人们对物质的认识越来越细微

和深入。同样,为解决物理学晴朗的天空中漂浮着的两朵令精品文档. 精品文档 人不安的“乌云”,狭义相对论和量子力学便因运而生,为 当代物理学的发展叩开了大门。在物理学发展的历史上,诸如此类的突破不胜枚举,充分说明人类在探索自然过程中,一方面是自身知识积累的必然——从量变到质变;另一面,客观的历史背景给予我们足够的推动力。换言之,物理学发展的背后蕴涵着人类社会进步的历史动力。 二、物理学的发展对人类社会的价值 一部人类发展的历史就是一部改造自然的历史,每一次大的技术变革乃至社会变革都有其物理方面的成因,物理在其中扮演着举足轻重的角色。物理学作为一门最基本的自然哲学,是一个充满活力的带头学科,其具有的价值也是多方面的。 1、美学价值 物理学研究的是物质世界最基本最普遍的规律,回答的是人类对于物质世界中原始而又最深刻的问题,面对的是客体世界对人类的主观世界平台上的投影——物理模型世界。物质世界在最原始的层面上是按美学原理构筑的,所以庄子说:“判天地之美,析万物之理。” 在西方古代,毕达哥拉斯学派把对自然奥秘的探索与对自然美的追求统一起来,自那时起,寻求自然界的和谐成为推

1918年诺贝尔物理学奖——能量子的发现

1918年诺贝尔物理学奖——能量子的发现 1918年诺贝尔物理学奖授予德国柏林大学的普朗克(Max KarlErnst Ludwig Planck ,1858—1947),以承认他发现能量子对物理学的进展所作的贡献。 1895年前后,普朗克正在德国柏林大学当理论物理学教授,由于鲁本斯(H.Rubens )的介绍,经常参加以基本量度基准为主要任务的德国帝国技术物理研究所(Physikalisch Technische Reichsanstalt ,简称PTR )有关热辐射的讨论。这时PTR 的理论核心人物维恩(W.Wien )因故离开PTR ,PTR 的实验研究成果需要有理论研究工作者的配合,普朗克正好补了这个空缺。 维恩在1893年提出了关于辐射能量分布的定律,即著名的维恩分布定律: T a e b u --=5λ 其中u 表示能量随波长λ分布的函数,也叫能量密度,T 表示绝对温度,a ,b 是两个任意常数。 维恩分布定律发表后引起了物理学界的注意。实验物理学家力图用更精确的实验予以检验;理论物理学家则希望把它纳入热力学的理论体系。普朗克认为维恩的推导过程不大令人信服,假设太多,似乎是凑出来的。于是从1897年起,普朗克就投身于这个问题的研究。他企图用更系统的方法以尽量少的假设从基本理论推出维恩公式。经过二三年的努力,终于在1899年达到了目的。他把电磁理论用于热辐射和谐振子的相互作用,通过熵的计算,得到了维恩分布定律,从而使这个定律获得了普遍的意义。 然而就在这时,PTR 成员的实验结果表明维恩分布定律与实验有偏差。1899年卢梅尔(O.R.Lummer )与普林舍姆(E.Pringsheim )向德国物理学会报告说,他们把空腔加热到800K ~1400K ,所测波长为0.2μm ~6μm ,得到的能量分布曲线基本上与维恩公式相符,但公式中的常数,似乎随温度的升高略有增加。第二年2月,他们再次报告,在长波方向(他们的实验测得8μm )有系统偏差。 根据维恩公式,应有:lnu=ln (bλ-5)T a λ- 从而lnu ~T 1曲线应为一根直线。但是,他们却发现温度越高,偏离得越厉害。 接着,鲁本斯和库尔班(F.Kurlbaum )将长波测量扩展到5.2μm 。他们发现在长波区域辐射能量分布函数(即能量密度)与绝对温度成正比。 普朗克刚刚从经典理论推导出的辐射能量分布定律,看来又需作某些修正。正在这时,瑞利(Lord Rayleigh )从另一途径也提出了能量分布定律。

近五年诺贝尔物理学奖简介

2008年至2012年诺贝尔物理学奖获得者及其主要贡献简介 获奖年度:2012年 获奖者:沙吉·哈罗彻(Serge Haroche)大卫·温兰德(David J. Wineland) 获奖者简介:沙吉·哈罗彻1944年生于摩洛哥的卡萨布兰卡,现为法 国籍。他1971年在巴黎第六大学获得博士学位,曾任职于法国国家科研中心和法国综合理工大学,现为法兰西学院和巴黎高等师范学院教授。 大卫·温兰德1944年生于美国密尔沃基,1970年在哈佛大学获得博士学位,现任职于美国国家标准与技术研究所和科罗拉多大学博尔德分校。 获奖原因 瑞典皇家科学院授予这二人奖项的原因是他们在“突破性的试验方法使得测量和操纵单个量子系统成为可能”。 塞尔日·阿罗什和大卫·维因兰德独立地发明并拓展出能够在保持个体粒子的量子力学属性的情况下对其进行测量和操控的方法,而这在之前被认为是不能实现的。 在不破坏单个量子粒子的前提下实现对其直接观测,两位获奖者以这样的方式为量子物理学实验新纪元开辟了一扇大门。对于单个光子或物质粒子来说,经典物理学定律已不再适用,量子物理学开始“接手”。但从环境中分离出单个粒子并非易事,而且一旦粒子融入外在世界,其神秘的量子性质便会消失。因此,许多通过量子物理学推测出来的现象看似荒诞,也不能被直接观测到,研究人员也只能进行一些猜想实验,试图从原理上证明这些荒诞的现象。 通过巧妙的实验方法,阿罗什和维因兰德与研究小组一起成功地实现对量子碎片的测量和控制,颠覆了之前人们认为的其无法被直接观测到的看法。这套新方法允许他们检验、控制并计算粒子。 两位获奖者均在量子光学领域研究光与物质间的基本相互作用,这一领域自1980年代中期以来获得了相当多的成就。他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步。就如传统计算机在上世纪的影响那样,或许量子计算机将在本世纪以同样根本性的方式改变我们的日常生活。极端精准的时钟在他们研究的推动下应运而生,有望成为未来新型时间标准的基础,而其精准度超越现代铯时钟百倍以上。

谈谈物理学史对我们世界观的影响

谈谈物理学史对我们世界观的影响 2009121202 吴楷盛 纵观我们物理学的发展历史,无论是从阿里士多德时代,还是到牛顿时代,还是到后来的近代物理发展史,都涌现出一代又一代的物理学家,这些物理学家,靠他们坚强的意志力与毅力,持之以恒的钻研态度,在他们的时代里,叱咤风云,用他们对科学的热情与痴迷,风雨无阻,虽然经历过种种失败与挫折,但越是失败,他们就越败越战,激情更好。所以,物理学上的种种重大发现,就这样出来了,也就是因为这些人,因为他们的重大发现,我们人类的发展才会这么快,我们人类才会从钻木取火到蒸汽时代,再到电力时代,再到现在的电子信息时代的一步步跨越,一步步发展。 在这物理学史发展的过程中,里面的种种精神,也在我们学习物理学史的过程中,慢慢的渗入我们的思想中,影响着我们,使我们的价值观,世界观发生着变化。物理学史通过描述物理学家探索科学的成功与失败、喜悦与懊悔、曲折与反复、分歧与争论,使受教育者在精神上受到感染、情操上得到陶冶、意志得到磨练、鉴赏力得到提高,正确理解人和自然的关系,正确理解人与社会的关系,产生热烈的情感,形成了对美和善的辨别力和追求热情,使自己的心智与世界观得到和谐的发展。 那么,在学习物理学史中,它对我们世界观的影响是怎么样的呢? 一、物理学史的学习,培养我们的质疑精神,不迷信权威,敢于提出与别人不同的见解,也勇于放弃或修正自己的错误观点

众所周知,在爱因斯坦之前,洛伦兹和彭加勒已经走到相对论的大门口,只是由于未能摆脱绝对时空观的束缚,才没有最终迈入相对论的门槛。正是由于爱因斯坦抛开了“绝对运动”和“静止以太”的观念,并深刻地审察了“同时性”概念的物理学根据,才创建了狭义相对论,引起了人类时空观的巨大变革。物理学中几乎每一个重大发现都表明,创造性思维活动起始于对困难或问题的认识,是围绕着解决问题展开的,批判的头脑,质疑的精神,是打开未知科学大门的钥匙。同时,真理具有相对性,科学是不断发展的,任何科学的结论或发现都可能存在局限性,因此,也要勇于放弃或修正自己的错误观点,这既是一种科学的态度,也是一种历史责任感。 二、学习物理学史,培养了我们主动与他人合作的精神,认识交流与合作的重要性 牛顿的万有引力定律是在哥白尼、开普勒、伽利略等人研究的基础上,又经过牛顿长达20年的探索才得以完成的,从这些史料中我们可以看到,科学是全人类的事业和财富,任何一个科学概念的形成,每一个科学定律的建立,所有重大的科学发现,都是经过不同国家,一代乃至几代人的艰苦努力,汇聚和利用了许多人的研究成果才得以完成的,这就培养了我们的合作精神,善于与他人相处与交流,尊重他人,信赖他人,建立和谐的人际关系。 三、学习物理学史,培养了我们克服困难的信心和不屈不挠的顽强意志

历届诺贝尔物理学奖得主及成就汇总

若雷斯·阿尔费罗夫 2000 年赫伯特·克勒默杰克·基尔比埃里克·康奈尔2001 年卡尔·威曼沃尔夫冈·克特勒雷蒙德·戴维斯 2002 年小柴昌俊里卡尔多·贾科尼阿列克谢·阿布里科索夫 2003 年维塔利·金兹堡安东尼·莱格特戴维·格罗斯 2004 年戴维·普利策弗朗克·韦尔切克 2005 罗伊·格劳伯俄罗斯德国美国美国美国德国美国日本美国俄罗斯俄罗斯英国美国美国美国美“发展了用于高速电子学和光电子学的半导体异质结构” “在发明集成电路中所做的贡献” “在碱性原子稀薄气体的玻色-爱因斯坦凝聚态方面取得的成就,以及凝聚态物质属性质的早期基础性研究” “在天体物理学领域做出的先驱性贡献,尤其是探测宇宙中微子” “在天体物理学领域做出的先驱性贡献,这些研究导致了宇宙X 射线源的发现” “对超导体和超流体理论做出的先驱性贡献” “发现强相互作用理论中的渐近自由” “对光学相干的量子理论的贡献” 年约翰·霍尔特奥多尔·亨施 2006 年约翰·马瑟乔治·斯穆特艾尔伯·费尔彼得·格林贝格小林诚 2008 年益川敏英南部阳一郎高锟 2009 年威拉德·博伊尔乔治·史密斯安德烈·海姆康斯坦丁·诺沃肖洛夫布莱恩·施密特国美国德国美国美国法国德国日本日本美国英国美国美国荷兰英/ 俄澳大利亚美国“发现对称性破缺的来源,并预测了至少三大类夸克在自然界中的存在” “发现巨磁阻效应” “发现宇宙微波背景辐射的黑体形式和各向异性” “对包括光频梳技术在内的,基于激光的精密光谱学发展做出的贡献,” 2007 年“发现亚原子物理学的自发对称性破缺机制” “在光学通信领域光在纤维中传输方面的突破性成就” “发明半导体成像器件电荷耦合器件” 2010 年“在二维石墨烯材料的开创性实验”[3] 2011 “透过观测遥距超新星而发现宇宙加速膨胀” 亚当·里斯 索尔·珀尔马特塞尔日·阿罗什大卫·维因兰德彼得·希格斯 2013 弗朗索瓦·恩格勒赤崎勇 2014 天野浩中村修二 2015 梶田隆章阿瑟·B·麦克唐纳 2016 戴维·索利斯迈克尔·科斯特利茨邓肯·霍尔丹美国法国美国英国比利时日本日本美国日本加拿大英/美英/美英国他们发现中微子振荡现象,该发现表明中微子拥有质量。发明“高亮度蓝色发光二极管” 对希格斯玻色子的预测[4] “能够量度和操控个体量子系统的突破性实验手法” 2012 发现了物质的拓扑相变和拓扑相。[5]

相关主题
文本预览
相关文档 最新文档