当前位置:文档之家› 细解扬声器的Q值

细解扬声器的Q值

细解扬声器的Q值
细解扬声器的Q值

细解扬声器的Q值

在扬声器的Thiele-Small参数中,其品质因素Q值作为评价低频性能和低音箱体设计的关键参数,经常被大家提起和引用;但作为一个数学模型的辅助参量,Q值的概念是非常抽象的,远远不如Fs(谐振频率)、Vas(等效容积)等参数容易得到感性的认识。下面,本文将通过不同的角度,来分析、阐释Q值的意义,希望能够加深大家对Q值的理解。

基本概念

根据T-S参数的定义,Q(quality factor)是描述扬声器阻尼系数(damping factor)的一组参数。在T-S参数中,Q值分为Qms,Qes和Qts。

Qms为机械系统的阻尼,体现了扬声器支片、边等支撑系统对能量的消耗、吸收和音盆、音圈、防尘帽等质量系统对能量的内在消耗;

Qes为电力系统的阻尼,主要体现在音圈直流电阻对电能的消耗;

Qts为总阻尼,为上述两者的并联。即Qts=Qms*Qes/(Qms+Qes)。

扬声器Qts对低频声压特性的影响如图(1)所示,这在很多参考书上都有描述,这儿不再讨论。

图(1)Qts对扬声器低频声压特性的影响

阻抗曲线的数学模型

考虑到扬声器Q值与阻抗Ze密不可分的关系,在具体分析Q值前,我们简单了解一下扬声器阻抗曲线。

在阻抗型电声类比中,扬声器的等效阻抗为:

其中,Re为扬声器的直流阻抗,L为音圈线圈的感抗;

Res为振动系统的力学等效阻抗,Res=(BL)2/(Rms+2Rmr),Rms振动系统的力阻,Rmr为扬声器振膜单面的辐射力阻;

Cmes为质量抗,Cmes=Mms/(BL)2;

Lces为弹性抗,Lces=Cms*(BL)2。

当频率在Fs的时候,动生阻抗达到最大值;同时由于在低频阶段,音圈感抗相当小,基本上可以忽略,所以我们有:

Zmax=Re+|Res|

参考下面Mlssa对某款扬声器的测试结果,我们可以对其进行直观地理解。

图(2)扬声器的阻抗曲线

Q值与阻抗Ze的关系

根据Qms的定义,有Qms=ωMms/(Rms+2Rmr)。

由ω=2πFs以及

我们不难得到:

同样,对于Qes和Qts有:

对于上述的BL、Cms和Mms,一般的测试软件都可以通过附加已知质量法测得或者通过Fs推算得到,具体的方法及推算过程由于不是本文的内容,这儿就不做介绍。

感性认识Qms

在T-S参数的三项Q值中,大部分人对Qts与Qes非常敏感,而对Qms都不会太过注重。的确,作为描述低频份量的参数,从图(1)中我们就可以看出Qts 的重要性;更何况在低音箱体设计时,作为判断使用何种箱体以及计算箱体尺寸的重要依据,Qts一直被音箱开发者频繁使用;而对于扬声器单体的开发者,Qts也是经常被客户要求的参数之一。对于Qes,由于其值比Qms一般都小很多,根据Qms=Qms*Qes/(Qms+Qes),Qes基本上决定了Qts,甚至很多参考书上都直接将Qes当作Qts使用。所以相对而言,大部分扬声器开发者对Qes和Qts的设计和调整都比较轻车熟路。而对于Qms,由于使用的频率不高,大部分参考书上也甚少介绍,相当多的人对其本质意义以及控制办法都没有太深的理解。

下面,我们就重点分析一下Qms。

根据前面的分析结果,Qms反映了阻抗曲线上的峰值,即动生阻抗的最大值Res 的大小。从另一方面说,Res越大,其阻抗峰越尖锐,Qms也就越大。

而对于动生阻抗,顾名思义,其阻抗因动而生。其产生的根本原因就是音圈在磁场中运动时切割磁力线而产生了感应电动势,而感应电动势对音圈输入电流反向作用的效果,就相当于在音圈中产生了变化的阻抗;感应电动势的大小为:e=BLv;

其中v为音圈的磁场中的运动速度。

显然,v越大,扬声器的感应电动势越强,动生阻抗也就越大;而在振动最快的Fs这一点,动生阻抗也就达到了最大值。

所以间接看来,Qms越高,就表示扬声器振动系统的振动速度越快。

根据扬声器的辐射功率P=v2*2Rmr,我们可以知道Qms越高,扬声器在Fs附近的效率也就越高。

另一方面,v越大,同时意味着扬声器振动系统越容易起动,而一旦振动起来后,却更加难以控制了。这句话从换个角度理解,就意味着Qms越高,扬声器瞬态的前沿特性就越好,而后沿特性就会比较差;反之,则前沿特性差,而后沿特性比较好。这点我们可以简单的根据下图理解:

图(4)扬声器的瞬态特性

一些发烧友音质评价术语中,有个词汇叫做“速度快”,从瞬态的角度理解,所谓的“速度快”就是扬声器前沿特性比较好,对信号的反映比较及时,也就是说,Qms比较高。一般来说,前沿特性的提高必然导致后沿特性的恶化,而后沿特性比较差的扬声器,听起来就会拖尾较长,声音浑浊不清。

按照个人设计经验,由于材料特性的关系,往往Qms都相对比较高;而对个人而言,本人则更倾向于后沿特性好一点的扬声器。

影响Qms和Res的因素

根据我们前面对Qms的计算公式,我们知道与Qms相关共有四个参数:Res,BL、Mms和Cms,其中BL、Cms和Mms的概念比较简单,开发过程中调整起来也相对比较容易,在这儿就不重点讨论了。

对于Res,从前面的介绍中我们已经知道:

Res=(BL)2/(Rms+2Rmr)

在低频段,扬声器振膜做活塞振动,其辐射力阻抗Rmr比较简单,有:

Rmr=ρω2SD2/(2πc)

式中ρ为空气密度,SD为扬声器的有效振动面积,c为空气中的声速。

所以Rmr基本上是仅与振动面积相关的一个参数,在扬声器开发过程中,一旦扬声器的尺寸确定,Rmr基本上就已经确定。

对于Rms,其基本定义为扬声器振动系统的机械力阻。由于扬声器参与振动的因素较多,各个部分对其作用也各不相同,为了方便理解,我们先来看看扬声器振动系统的结构图。

图(5)扬声器结构

上图中,1为扬声器的折环,2为音盆,3为支片,4为音圈,5为防尘帽。

在上述各个部件中,折环和支片作为支撑系统,对Rms的作用主要体现在自身的内部阻尼消耗能量上,从而抑制振动,所以其材料内部阻尼就特别重要。限于篇幅,对于材料的内部阻尼我们就不做具体介绍了。不过对于支片的阻尼,有两点经验,可以给大家分享。

支片的直径越大,相同顺性的情况下,阻尼越高;这点应该比较容易想象,一方面为了保持顺性,直径大的支片必然需要更多的胶水(酚醛树脂)来定型,另一方面,直径大的支片在振动传递过程中,需要更长的距离,其能量消耗自然也就比较大;

部分人的经验,降低支片的顺性可以降低Qms;从前面的分析来看,显然是不对的。但降低支片的顺性,必然需要更多的胶水定型,其内部阻尼也就更大;所以在某些情况下,内部阻尼的作用大于由顺性带来的影响时,Qms确实是会降低的。

音盆和防尘帽对Rms的作用则有下面几个方面:

利用了空气形成的阻力抑制振动;相对来说,比弹性率E/ρ(弹性模量/密度)大的材料,即刚性好,密度低的材料,对Rms的贡献就比较大;

音盆内部阻尼在传递音圈引发的振动过程中产生的能量消耗;这一点对中高频来说,是影响分割振动的一个重要因素,而对于低频,这种作用则与折环和支片类似;

利用表面阻尼在与空气摩擦产生的损耗。我们经常看到在一些低音扬声器纸盆的表面涂一层阻尼胶,很大一部分的作用就在于此。

从以上分析可以看出,扬声器品质因素Q作为描述振动系统所受阻尼的参数,与扬声器大部分部件的材料、性能以及结构都相关;实际上,扬声器的很多参数都是互相影响甚至互相矛盾的,扬声器的开发过程就是一个平衡其中各项矛

盾的系统工程。本文通过对Q值的详细分析,希望能够加深大家对各项相关因素的理解,从而在开发过程中能够更轻松的做出相应调整,找到一个符合自己意愿的平衡点。

相关图片

带通滤波器的设计

目录 一.设计概述 二.设计任务及要求 2.1 设计任务 2.2 设计要求 三.设计方案 3.1设计结构 3.2元件参数的理论推导 3.3仿真电路构建 3.4仿真电路分析四.所用器件 五.实验结果 5.1 实验数据记录 5.2 实验数据分析六.实验总结 6.1 遇到的主要问题 6.2 解决问题的措施 6.3 实验反思与收获 附图 参考文献

一.设计概述 根据允许的通过的频率范围,可以将滤波器分为低通滤波器,高通滤波器,带通滤波器和带阻滤波器4种。其中,带通滤波器是指允许某一频率范围内的频率分量通过,其他范围的频率分量衰减到极低水平的滤波器。 在滤波器中,信号能够通过的范围成为通频带或通带,信号受到很大衰减或完全被抑制的频率范围成为阻带,通带和阻带之间的界限称为截止频率。对于一个理想的带通滤波器,通带范围内则完全平坦,对传输信号基本没有增益的衰减作用,其次,通带之外的所有频率均能被完全衰减掉,通带和阻带之间存在一定的过渡带。 在带通滤波器的实际设计过程中,主要参数包括中心频率f0,频带宽度BW,上限截止频率fH和下限截止频率fL。一般情况下,为使滤波器在任意频段都具有良好的频率分辨能力,可采用固定带宽带通滤波器(如收音机的选频)。所选带宽越窄,则频率选择能力越高。但为了覆盖所要检测的整个频率范围,所需要的滤波器数量就很大。因此,在很多场合,固定带宽带通滤波器不一定做成固定中心频率的,而是利用一个参考信号,使滤波器中心频率跟随参考信号的频率而变化,其中,参考信号是由信号发生器提供的。上述可便中心频率的固定带宽带通滤波器,经常用于滤波和扫描跟踪滤波应用中。 二.设计任务及要求 1)设计任务 带通滤波器的设计方案有很多,本实验将采用高通滤波器和低通滤波器级联的设计方案实现一个带通滤波器,通过多级反馈,减少干扰信号对滤波器的影响。为了检测滤波电路的通带特性,设计一个带宽检测电路,通过发光二极管的亮灭近似检测电路的带宽范围。 设计要求 2)设计要求 (1)性能指标要求 1.输入信号:有效值为1V的电压信号。 2.输出信号中心频率f0通过开关切换,分别为500Hz 1.5KHz 3KHz 10KHz 误差10%。 3.带通滤波器带宽BW

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

有源带通滤波器设计

二阶有源模拟带通滤波器设计 摘要 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。文中结合实例,介绍了设计一个二阶有源模拟带通滤波器。 设计中用RC网络和集成运放组成,组成电路选用LM324不仅可以滤波,还可以进行放大。 关键字:带通滤波器 LM324 RC网络

目录 目录 (2) 第一章设计要求 (3) 1.1基本要求 (3) 第二章方案选择及原理分析 (4) 2.1.方案选择 (4) 2.2 原理分析 (5) 第三章电路设计 (7) 3.1 实现电路 (7) 3.2参数设计 (7) 3.3电路仿真 (9) 1.仿真步骤及结果 (9) 2.结果分析 (11) 第四章电路安装与调试 (12) 4.1实验安装过程 (12) 4.2 调试过程及结果 ..................................................................................................... 错误!未定义书签。 4.2.1 遇到的问题 .................................................................................................. 错误!未定义书签。 4.2.2 解决方法 ...................................................................................................... 错误!未定义书签。 4.2.3 调试结果与分析 (12) 结论 (13) 参考文献 (14)

带通滤波电路设计

带通滤波电路设计一.设计要求 (1)信号通过频率范围 f 在100 Hz至10 kHz之间; (2)滤波电路在 1 kHz 电路的幅频衰减应当在 的幅频响应必须在± 1 kHz 时值的± 3 dB 1 dB 范围内,而在 范围内; 100 Hz至10 kHz滤波 (3)在10 Hz时幅频衰减应为26 dB ,而在100 kHz时幅频衰减应至少为16 dB 。 二.电路组成原理 由图( 1)所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较, 不难发现低通与高通滤波电路相串联如图(2),可以构成带通滤波电路,条件是低通滤波电路的截止角频率 W H大于高通电路的截止角频率 W L,两者覆盖的通带就提供了一个带通响应。 V I V O 低通高通 图( 1) 1 W H低通截止角频率 R1C1 1 W L高通截止角频率 R2C2 必须满足W L

│A│ O │A│ O │A│ O 低通 W w H 高通 W w L 带通 W W w L H 图( 2) 三.电路方案的选择 参照教材 10.3.3 有源带通滤波电路的设计。这是一个通带频率范围为100HZ-10KHZ的带通滤波电路,在通带内我们设计为单位增益。根据题意,在频率低端f=10HZ 时,幅频响应至少衰减 26dB。在频率高端 f=100KHZ 时,幅频响应要求衰减不小于16dB。因此可以选择一个二阶高通滤波电路的截止频率fH=10KHZ,一个二阶低通滤波电路的fL=100HZ,有源器件仍选择运放 LF142,将这两个滤波电路串联如图所示,就构成了所要求的带通滤波电路。 由教材巴特沃斯低通、高通电路阶数n 与增益的关系知 A vf1 =1.586 ,因此,由两级串联的带通滤波电路的通带电压增益(Avf1 ) 2=( 1.586 )2=2.515, 由于所需要的通带增益为0dB, 因此在低通滤波器输入部分加了一个由电阻R1、 R2组成的分压器。

带通滤波器设计步骤

带通滤波器设计步骤 1、根据需求选择合适的低通滤波器原型 2、把带通滤波器带宽作为低通滤波器的截止频率,根据抑制点的频率距离带通滤波器中心频点距离的两倍作为需要抑制的频率,换算抑制频率与截止频率的比值,得出m 的值,然后根据m 值选择低通滤波器的原型参数值。 滤波器的时域特性 任何信号通过滤波器都会产生时延。Bessel filter 是特殊的滤波器在于对于通带内的所有频率而言,引入的时延都是恒定的。这就意味着相对于输入,输出信号的相位变化与工作的频率是成比例的。而其他类型的滤波器(如Butterworth, Chebyshev,inverse Chebyshev,and Causer )在输出信号中引入的相位变化与频率不成比例。相位随频率变化的速率称之为群延迟(group delay )。群延迟随滤波器级数的增加而增加。 模拟滤波器的归一化 归一化的滤波器是通带截止频率为w=1radian/s, 也就是1/2πHz 或约0.159Hz 。这主要是因为电抗元件在1弧度的时候,描述比较简单,XL=L, XC=1/C ,计算也可以大大简化。归一化的无源滤波器的特征阻抗为1欧姆。归一化的理由就是简化计算。 Bessel filter 特征:通带平坦,阻带具有微小的起伏。阻带的衰减相对缓慢,直到原理截止频率高次谐波点的地方。原理截止频率点的衰减具有的经验公式为n*6dB/octave ,其中,n 表示滤波器的阶数,octave 表示是频率的加倍。例如,3阶滤波器,将有18dB/octave 的衰减变化。正是由于在截止频率的缓慢变化,使得它有较好的时域响应。 Bessel 响应的本质截止频率是在与能够给出1s 延迟的点,这个点依赖于滤波器的阶数。 逆切比雪夫LPF 原型参数计算公式(Inverse Chebyshev filter parameters calculate equiations ) ) (cosh )(cosh 11Ω=--Cn n 其中 1101.0-=A Cn , A 为抑制频率点的衰减值,以dB 为单位;Ω为抑制频率与截止频率的比值 例:假设LPF 的3dB 截止频率为10Hz,在15Hz 的频点需要抑制20dB,则有: 95.91020*1.0==Cn ;Ω=15/10=1.5 1.39624.0988.2) 5.1(cosh )95.9(cosh 11===--n ,因此,滤波器的阶数至少应该为4

带通滤波器设计实验报告

电子系统设计实践 报告 实验项目带通功率放大器设计学校宁波大学科技学院 学院理工学院 班级12自动化2班 姓名woniudtk 学号12******** 指导老师李宏 时间2014-12-4

一、设计课题 设计并制作能输出0.5W功率的语音放大电路。该电路由带通滤波器和功率放大器构成。 二、设计要求 (1)电路采用不超过12V单(或双)电源供电; (2)带通滤波器:通带为300Hz~3.4kHz,滤波器阶数不限;增益为20dB; (3)最大输出额定功率不小于0.5W,失真度<10%(示波器观察无明显失真);负载(喇叭)额定阻抗为8?。 (4)功率放大器增益为26dB。 (5)功率放大部分允许采用集成功放电路。 三、电路测试要求 (1)测量滤波器的频率响应特性,给出上、下限截止频率、通带的增益; (2)在示波器观察无明显失真情况下,测量最大输出功率 (3)测量功率放大器的电压增益(负载:8?喇叭;信号频率:1kHz); 四、电路原理与设计制作过程 4.1 电路原理 带通功率放大器的原理图如下图1所示。电路有两部分构成,分别为带通滤波器和功率放大器。 图1 滤波器电路的设计选用LM358双运放设计电路。LM358是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。高输入阻抗使得运放的输入电流比较小,有利于增大放大电路对前级电路的索取信号的能力。在信号的输入的同时会不可避免的掺杂着噪声和温漂而影响信号的放大,因此高共模抑制比、低温漂的作用尤为重要。 带通滤波器的设计是由上限截止频率为3400HZ的低通滤波器和下限截止频率为300HZ 的高通滤波器级联而成,因此,设计该电路由低通滤波器和高通滤波器组合成二阶带通滤波器(巴特沃斯响应)。 功率放大电路运用LM386功放,该功放是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 4.2电路设计制作 4.2.1带通滤波电路设计 (1)根据设计要求,通带频率为300HZ~2.4KHZ,滤波器阶数不限,增益为 20dB,所以采取二阶高通和二阶低通联级的设计方案,选择低通放大十倍。高通不放大。

二阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。 带通滤波器(BPF) (a)电路图(b)幅频特性 图1 压控电压源二阶带通滤波器 工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图1(a)所示。 电路性能参数 通带增益 中心频率 通带宽度

选择性 此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。例.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 通带中心频率处的电压放大倍数: 带宽: 设计步骤: 1)选用图2电路。 2)该电路的传输函数: 品质因数: 通带的中心角频率: 通带中心角频率处的电压放大倍数: 取,则:

平面带通滤波器设计说明

一设计选题 选题:平面带通滤波器设计与测量 微带基片选择:RO5880 板材厚度:0.254mm 指标要求: 通带围12.25GHz-12.75GHz(中心频率12.5GHz 相对带宽4%) 带插损IL小于4dB 带反射系数RL大于10dB 边带抑制:13GHz以上至少抑制15dB 14-16 GHz抑制30dB以上 12GHz以下至少抑制15dB 11GHz以下至少抑制40dB 8-10GHz以下至少抑制50dB 在上述指标要求达成的前提下,过渡带宽越窄越好;归一化滤波器的面积越小越好。 二基本原理 2.1 滤波器设计方案的选取 本次设计的主要评分指标之一为滤波器的选择性,为了实现高选择性的带通滤波器,本文利用源-负载耦合,交叉耦合,以及混合电磁耦合等方式在带外适当位置引入传输零点,从而大大改善了带通滤波器的矩形度。该设计思路优势在于可以方便地调节传输零点的位置,从而改善带通滤波器的矩形度。但是随着滤波器的矩形度不断提

高,对于滤波器通带外的抑制也随之恶化,故设计中需要考虑在满足带外抑制要求的前提下尽量使滤波器获得较好的矩形度。另外,滤波器的阶数也会对滤波器的矩形度产生巨大影响。随着滤波器阶数的提高,滤波器的矩形度逐渐改善。但与此同时,滤波器的带插损也逐渐恶化。故在滤波器的设计过程中需要权衡矩形度与带插损两个指标要求,选择合适的滤波器阶数。 除此之外本次滤波器的设计还需考虑到介质基板板材与厚度的选取对于滤波器性能参数的影响。首先考虑到要求插损越高越好,故选取了损耗正切较小的板材RO5880,其损耗正切为0.0009,介电常数为2.2。板材厚度的选取主要是考虑到了其对于滤波器尺寸以及插损的影响。较薄的介质板可以使滤波器的尺寸进一步减小,但是与此同时,滤波器的插损也会变差。权衡考虑滤波器的尺寸以及插损的要求,本文选取介质基板厚度为0.254mm。 最终,本文采用六阶交叉耦合谐振腔体滤波器设计方案,其基本谐振单元的结构为如图2.1所示的半波长开环谐振器。整个滤波器的耦合拓补结构见图2.2。最终设计得到的滤波器结构如图2.3所示。 图2.1 基本谐振单元

带通滤波器的设计与制作

滤波器电路设计实验报告 院系:物理科学与技术学院 专业班级: 学号: 学生姓名: 指导教师:杨鸣 2013年12月20日

目录 0、设计要求 (1) 1、电路基本模型的选择以及参数的计算。 (1) 2、电路元件参数的计算 (4) 3、Multisim仿真 (5) 4、器件的选择 (8) 5、Protel制板 (9) 6、体会 (9)

一、电路基本模型的选择以及参数的计算。 (1)选择有源滤波器 有源滤波器:由有源器件构成的滤波器。 一般由集成运放与RC 网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 (2)滤波电路传递函数 分为:低通(LPF )、高通(HPF )、带通(BPF )、带阻(BEF )、全通(APF ) 理想滤波电路的频响在通带内具有一定幅值和线性相移,而在阻带内其幅值为0。实际电路往往难以达到理想要求。 根据不同要求,常用低通有三种: 巴特沃斯滤波器通带最平坦,阻带下降慢。 切比雪夫滤波器通带有纹波,阻带下降较快。 贝塞尔滤波器通带有纹波,阻带下降慢,且群时延恒定,失真小。 我们选择通带平坦的巴特沃思滤波器 n 阶巴特沃思传递函数。 ()A j ω= n: 阶数 ωC :3dB 截止角频率 A0:通带电压增益 0|()|1()()10 n n c A j A ωωω≈= 026lg 220 A n A ?=-=≈ 因此本电路采用二阶巴特沃思低通滤波器与二阶巴特沃思高通滤波器级联而成。 基本框图如下

课程设计带通滤波器.

湘潭大学 集成电路课程设计 题目:带通滤波器 学院:材料与光电物理学院 专业:微电子 学号:2009700113 姓名:闫少阳 指导教师:唐明华教授 提交日期:2012年9月

目录 摘要 (1) Abstract (2) 1 引言 (3) 2滤波器的分类 (5) 3 级联实现带通滤波器原理 (6) 4压控电压源二阶有源带通滤波器设计、仿真和测试 (7) 4.1 压控电压源二阶有源带通滤波器理论概述 (7) 4.2 压控电压源二阶带通滤波器电路模型 (7) 4.3 压控电压源二阶带通滤波器电路特点 (8) 4.4 设计要求 (8) 4.5 设计步骤 (8) 4.5.1元器件的选择与LM324介绍 (8) 4.5.2multisim仿真 (14) 4.6 元器件的调整 (16) 4.7 利用protel 99SE进行电路板的制作 (16) 4.8 电路板的测试 (18) 4.9 小结 (18) 5结束语 (19) 参考文献 (20) 致谢 (21)

带通滤波器 摘要:近年来,各种基于电力电子技术的非线性装置在电力系统中的应用日益广泛,使得谐波危害日益严重。为了保证电力系统的安全运行,必须对谐波污染进行治理,以改善电能质量。 就当前的工业现实而言,抑制谐波的基本手段是装各类滤波补偿装置。无源滤波器的结构简单,经济性好,但易受电网阻抗和运行状态影响与系统发生谐振,且仅能补偿固定频率的谐波。而有源滤波器则可以解决这些问题,并且可以自动跟踪补偿变化的谐波,具有高度可控性,因而具有极高的发展前景。 本文的主要内容有: 1. 压控电压源二阶有源带通滤波器理论,包括其数学模型和典型参数[1]; 2. 介绍集成运放LM324的结构、引脚及性能参数; 3. 软件protel 99SE[2]和multisim 10的简要介绍; 4.设计、仿真、制作一个二阶压控电压源滤波器,并对其进行测试[3]。 关键词:带通滤波器;中心频率;通频带带宽;multisim 9;protel 99SE;仿真

带通滤波器的设计和仿真

带通滤波器的设计和仿真 学院信息学院 姓名吴建亮 学号201203090224 班级电信1202 时间2014年10月

1.设计要求 设计带通为300Hz ~10KHz 的带通滤波器并仿真。 2.原理与方案 2.1工作原理: 带通滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制,本实验通过一个4阶低通滤波器和一个4阶高通滤波器的级联实现带通滤波器。 2.2总体方案 易知低通滤波电路的截止角频率ωH 大于高通滤波电路的截止角频率ωn ,两者覆盖的通带就提供了一个带通响应。先设计4阶的低通滤波器1A 0=,截止频率z 10f f c kH H ==,选取第一级高通滤波器的541.01=Q ,第二级的高通滤波器的306.12=Q 。 主要参数: 电容,p 1000 2F C =则 基准电阻Ω== 5.15945f 21 2 c 0C R π, F C A Q C p 2341)1(400112 =+=,取标称值2400pF , Ω== 1470920 10 1A Q R R ,取标称值14.7k Ω, Ω==k R A R 7.14102,取标称值14.7k Ω, Ω=+= 7354) 1(2010 3A Q R R ,取标称值7.32k Ω, Ω== 609320 20 4A Q R R ,取标称值6.04k Ω, Ω==k R A R 04.6405, F C A Q C p 13645)1(440232=+=,取标称值0.013μF,

Ω=+= 3046) 1(2020 6A Q R R ,取标称值3.01?Ω, 同理,设计一个4阶高通滤波器,通带增益1A 0=,截止频率z 300f f c H L ==,选取第一级高通滤波器的541.03=Q ,第二级的高通滤波器的306.14=Q 。 主要参数如下: 电容F C C C μ033.0~0105==, , Ω== k R 08.16C f 21 0C 0π Ω=+= k A Q R R 9.9) /12(030 7,取标称值10k Ω, Ω=+=k A Q R R 1.26)21(0308,取标称值27k Ω, Ω=+= k A Q R R 10.4) /12(040 9 ,取标称值3.9k Ω, Ω=+=k A Q R R 98.62)21(04010,取标称值62k Ω。 3 电路设计 图3-1 高通滤波器

带通滤波器设计

¥ 实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 ; 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 , 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数, C A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当=0时,(2)式有最大值1; 。 =C 时,(2)式等于,即A u 衰减了 n=2 3dB ;n 取得越大,随着的增加,滤波器 n=8 的输出电压衰减越快,滤波器的幅频特性 越接近于理想特性。如图1所示。 0 C

当 >> C 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线 两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: 20ndB/十倍频或6ndB/倍频,该式称为衰减估算式。 [ 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 n 归一化的巴特沃斯低通滤波器传递函数的分母多项式 1 1+L s 2 122++L L s s 》 3 )1()1(2+?++L L L s s s 4 )184776.1()176537.0(2 2++?++L L L L s s s s 5 )1()161803.1()161807.0(22+?++?++L L L L L s s s s s 6 )193185.1()12()151764.0(222++?++?++L L L L L L s s s s s s [ 7 )1()180194.1()124698.1()144504.0(2 22+?++?++?++L L L L L L L s s s s s s s 8 )196157.1()166294.1()111114.1()139018.0(2222++?++?++?++L L L L L L L L s s s s s s s s 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω, C 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) >

阶带通滤波器的设计报告

课程设计说明书 课程设计名称:模拟电子技术基础 课程设计题目:二阶带通滤波器的设计 学院名称:信息工程学院 专业:通信工程班级: 学号:姓名: 评分:教师:李忠民20 13 年 3 月15 日

模拟电路课程设计任务书 20 12 -20 13 学年第2学期第1 周-3 周 题目二阶带通滤波器的设计 内容及要求 ①分别用压控电压源和无限增益多路反馈二种方法设计电路; ②中心频率fO=1KHz; ③增益AV=2; ④品质因数Q=10。 注:可使用实验室电源。 进度安排 第1周周一至第1周周五:查资料,完成原理图设计及仿真; 第2周周一至第2周周四:完成系统的制作、调试; 第2周周五:设计结果检查; 第3周:撰写设计报告。 学生姓名: 指导时间周二、周三、周四指导地点:E 楼311室 任务下达2013 年 2 月25 日任务完成2013 年 3 月15日 考核方式 1.评阅□√ 2.答辩□√ 3.实际操作□√ 4.其它□ 指导教师李忠民陈光系(部)主任付崇芳 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。 摘要

带通滤波器,是有选择性传输特定频率范围内信号的电路称为滤波器,其功能是:允许规定频率范围内的有用信号通过,不允许规定之外的干扰信号通过。本文重点介绍了带通滤波器工作原理以及设计方法。介绍了高低通滤波器的工作原理。设计了一个由高通滤波电路和低通滤波电路级联而组成的带通滤波,给出了系统的电路设计方法以及主要模块的原理分析。实验结果表明,该滤波器具良好的滤波效果以及运行稳定可靠等优点。 关键词:带通滤波器参数设计稳定可靠 目录

带通滤波器设计

信号与系统带通滤波器设计 学生姓名:李吉凯 学号:1400309003 班级:14光伏

设计任务书 目录 设计目的要求 (7) 设计原理 (7) 设计内容 (8) 1. 连续输入信号产生 (8) 2.抽样、频谱分析 (11) 3.带通滤波器设计 (12) 4.滤波结果 (13) 5.总程序 (14) 使用函数说明 (17) 结果分析 (17) 设计心得 (17)

一、设计目的要求 要求产生一个连续信号,包含低频、中频、高频分量,对其进行采样,进行频谱分析,并设计带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 1.熟悉有关采样,频谱分析的理论知识,对信号作频谱分析; 2.熟悉有关滤波器设计理论知识,选择合适的滤波器技术指标,设计带通滤波器对信号进行滤波,对比分析滤波前后信号的频谱; 3.实现信号频谱分析和滤波等有关Matlab函数; 4.写出基本原理,有关程序,得到的图表,结果分析,总结; 二、设计原理 1.利用MATLAB软件产生一个包含低频、中频、高频分量的连续信号。 2.对信号进行抽样,进行频谱分析。 (1)时域采样(奈奎斯特采样)定理:为了避免产生混叠现象,能从抽样信号无失真地恢复出原信号,抽样频率必须大于或等于信号频谱最高频率的两倍。本设计中信号最高频率是300Hz,抽样频率采用1200Hz。 (2)频谱分析:频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 3.带通滤波器滤波的工作原理 现代生活中,为了滤除谐波干扰,获得所需要的高精度的模拟信号,经常要用到滤波器对信号进行滤波。典型的模拟滤波器有巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)

有源带通滤波器设计报告

有源带通滤波器设计报告Last revision on 21 December 2020

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益 80dB以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

梯形晶体带通滤波器设计

梯形晶体带通滤波器设计 BG6RDF 晶体带通滤波器(crystal band-pass filter)是短波收发信机中常见的核心部件,晶体滤波器的优劣直接影响到短波接收机的性能。梯形晶体带通滤波器(crystal ladder band-pass filter,以下简称梯形晶体滤波器),见图1,是一种常见的晶体带通滤波器的形式。由于其便于DIY,因此在DIY短波收发信机时,梯形晶体滤波器被广泛采用。本文是我学习DIY梯形晶体滤波器后一些资料的总结和心得。 A.电路图 B.仿真结果 图1:6晶体梯形滤波器 一. 晶体带通滤波器的性能 描述晶体带通滤波器的性能主要指标如下: 中心频率:fo,滤波器通带中心频率 带宽:BW,通常指-3dB带宽,用于SSB的晶体滤波器的带宽通常在1.8KHz到2.8KHz 之间。 矩形系数:通常用(-60dB带宽)÷(-6dB带宽)表示。矩形系数约接近1越好,即滤波器的频幅曲线越接近矩形,这样对带外临近频率的衰减越大。 插入损耗:插损,滤波器通带的插入损耗,通常以dB表示。插损当然是越小越好,但是插损和制作晶体滤波器的Q值、晶体滤波器的中心频率、晶体滤波器的带宽有一定关系。简单地说就是晶体Q值越高,制作出的滤波器插损越小;带宽越大,插损越小。 纹波系数:ripple,指通带内频幅曲线的波动幅度,通常以dB表示。当然纹波系数越小越好,但有些形式的滤波器具有这样的特性,就是在加大纹波系数后,阻带曲线能变得更为陡峭,最终的设计需要设计者权衡。 阻抗:指滤波器的终端阻抗,在特定的终端阻抗下,滤波器的响应才能够达到特定的性

能。如果终端阻抗不匹配,滤波器的性能将偏离设计值。 滤波器还有一些其他性能指标,如群延迟(group delay),参考文献3中指出,群延迟特性会影响收发信机的听感。 二. 晶体的测量 要设计晶体滤波器,必须了解自己手头晶体的参数,为此,必须对晶体参数进行测量。说到晶体参数,不得不说晶体的等效模型,见图2。 图2:晶体等效模型 图2中Lm称为等效串联电感,也有Cm称为等效串联电容,梯形晶体滤波器主要利用晶体的串联谐振,因此这两个参数是晶体测量的重点。Rm称为等效串联电阻,这个值实际体现了晶体的Q值,Q值越高,Rm越小。C0称为等效并联电容,对于梯形晶体滤波器,C0是有害的。 在了解了晶体的等效模型后,我们看看晶体的测量方法。晶体的测量方法有很多种,强烈建议阅读参考文献1和参考文献2。这里只详细介绍G3UUR的振荡器法,因为这种方法简便易行,不需要使用昂贵的网路分析仪,测量仪器仅需要一个频率计。G3UUR振荡器的电路如图3所示, 图3:G3UUR晶体测量振荡器电路图 该电路中,Q1、Q2采用常见的2N4401、2N3904、S9014等小功率NPN型三极管都可以满足20MHz以内晶体的测量要求。具体测量方法是: 1.将频率计接在Output输出端。 2.闭合电路中的开关,旁路Cs使晶体Y1的一端直接接地,测量振荡器的输出频率, 这时测出的频率记为f3。 3.断开电路中的开关,是晶体Y1的一端通过Cs接地,测量震荡器的输出频率,这时 测出的频率记为f2。f2>f3。 4.如果有LC表,用LC表测量Y1的等效并联电容C0。如果没有也没关系,C0通常 是3pF-5pF之间。C0测量精度对最终测量的结果影响不大。 测量完成后,将测量值带入下面的计算公式:

带通滤波电路设计

带通滤波电路设计 一.设计要求 (1)信号通过频率范围f 在100 Hz 至10 kHz 之间; (2)滤波电路在1 kHz 的幅频响应必须在±1 dB 范围内,而在100 Hz 至10 kHz 滤波电路的幅频衰减应当在1 kHz 时值的±3 dB 范围内; (3)在10 Hz 时幅频衰减应为26 dB ,而在100 kHz 时幅频衰减应至少为16 dB 。 二.电路组成原理 由图(1)所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较,不难发现低通与高通滤波电路相串联如图(2),可以构成带通滤波电路,条件是低通滤波电路的截止角频率W H 大于高通电路的截止角频率W L ,两者覆盖的通带就提供了一个带通响应。 低通高通 V I V O 图(1) 111 C R W H = 低通截止角频率 2 21 C R W L = 高通截止角频率 必须满足W L

低通 高通 带通 O O O │A │ │A │ │A │ w w w W H W H W L W L 图(2) 三.电路方案的选择 参照教材10.3.3有源带通滤波电路的设计。这是一个通带频率范围为100HZ-10KHZ 的带通滤波电路,在通带内我们设计为单位增益。根据题意,在频率低端f=10HZ 时,幅频响应至少衰减26dB 。在频率高端f=100KHZ 时,幅频响应要求衰减不小于16dB 。因此可以选择一个二阶高通滤波电路的截止频率fH=10KHZ,一个二阶低通滤波电路的fL=100HZ ,有源器件仍选择运放LF142,将这两个滤波电路串联如图所示,就构成了所要求的带通滤波电路。 由教材巴特沃斯低通、高通电路阶数n 与增益的关系知A vf1=1.586,因此,由两级串联的带通滤波电路的通带电压增益(Avf1)2=(1.586)2=2.515,由于所需要的通带增益为0dB,因此在低通滤波器输入部分加了一个由电阻R1、R2组成的分压器。

有源带通滤波器设计

有源带通滤波器设计

一.有源带通滤波器简介 带通滤波器(band-pass filter)是一个允许特定频段的波通过同时屏蔽其他频段的设备。比如RLC振荡回路就是一个模拟带通滤波器。带通滤波器是指能通过某一频率范围内的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。这些滤波器也可以用低通滤波器同高通滤波器组合来产生。 二.工作原理 一个理想的滤波器应该有一个完全平坦的通带,例如在通带内没有增益或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度dB来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦—开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤最近3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。 有源带通滤波器电路

三.设计要求: 要求频率范围10-20kHz f1=10kHz,f2=20kHz 四.实验原理和设计思路 有源带通滤波器可由有源低带滤波器与有源高通滤波器组成,因此将有源低通滤波器截止频率为20kHz,有源高通滤波器的截止频率为10kHz.考虑到实验时间比较紧,实验的仪器比较简单,我们小组最后决定使用二阶的滤波器。下表为巴特沃思低通、高通电路阶数N与增益G的关系 由上表可找二阶巴特沃思滤波器的Avf1=1.586,因此由两级串联的带通滤波电路的通带电压为2.515,由于所需要的通带增益为0dB,因此在低通滤波器输入部分加了一个由两电阻组成的分压器。 最终电路图如下:

带通滤波器的仿真设计

电子科技大学学院电子工程系 学生实验报告 课程名称HFSS电磁仿真实验实验名称实验一-带通滤波器的仿真 班级,分组14无线技术实验时间 2017年03月07日,学号指导教师袁海军 报告容 一、实验目的 (1)加深对滤波器理论方面的理解,提高用程序实现相关信号处理的能力; (2)掌握HFSS实现带通滤波器混频的方法和步骤; (3)掌握用HFSS实现带通滤波器的设计方法和过程,为以后的设计打下良好的基础。 二、实验原理和电路说明 带通滤波器是指能通过某一频率围的频率分量、但将其他围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。一个模拟带通滤波器的例子是电阻-电感-电容电路(RLC circuit)。 这些滤波器也可以用低通滤波器同高通滤波器组合来产生. 三、实验容和数据记录 为了方便创建模型,在Tools>Options>HFSSOptions中将Duplicate boundaries with geometry 复选框选中,这样可以使得在复制模型的同时,所设置的边界也一同复制。 2)设置求解类型 将求解类型设置为激励求解类型: (1)在菜单栏中点击HFSS>SolutionType。 (2)如图5-1-7所示,在弹出的SolutionType窗口中: (a)选择DrivenModal。 (b)点击OK按钮。

图5-1-7设置求解类型 图5-1-9建立介质基片 (a)在菜单栏中点击Draw>Box或者在工具栏中点击按钮,这时可以在(b)在右下角的坐标输入栏中输入长方体的起始点位置坐标,即 按回车键结束输入。输入各坐标时,可用Tab键来切换。 (c)输入长方体X、Y、Z三个方向的尺寸,即 dX:40,dY:70,dZ:-1.27 按回车键结束坐标输入。 (d)在特性(Property)窗口中选择Attribute标签,将该长方体的名字修改为(e)点击Material对应的按钮,在弹出的材料设置窗口中点击 数为10.8的介质,将其命名为sub。

相关主题
文本预览
相关文档 最新文档