当前位置:文档之家› 碳纳米管文献综述

碳纳米管文献综述

碳纳米管文献综述
碳纳米管文献综述

文献综述

纳米碳管作为一种碳素新材料,具有优异的力学、电学、储氢等物理性质,在纳米材料、纳米生物学、纳米化学等方面具有潜在的应用价值,成为近年来人们的研究热点。大批量、低成本合成纳米碳管是拓展纳米碳管应用研究的基础,因此对纳米碳管的合成研究也最多,并取得了一定的进展。纳米碳管的机械强度高,比表面积大,界面效应强,容易吸附金属催化剂,而被认为在催化剂载体领域里有很好的应用前景。

一碳纳米管简史

研究碳纳米管的历史,可以追溯到1889年,一项专利阐明了如何制备一维碳纳米材料,产物中可能有碳纳米管。1970年,法国奥林大学(University of Orleans)的En-do 用气相生长技术制成了直径为7nm 的碳纤维,由于他没有对这些碳纤维的结构进行细致的评估和表征,所以并没有引起人们的注意。后来科学家在研究C60,C70的基础上认识到产生无数种近石墨结构成为可能。1991年1月,日本筑波NEC 实验室的饭岛澄男首先用高分辨率电镜观察到了他认为是一种螺旋状的微管,也就是碳纳米管,文章发表在《自然》(Nature)杂志上。从而饭岛成为公认的碳纳米管发现者。1993年,等和DS。Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。1997年,等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。

二碳纳米管的分类

按照石墨烯片的层数,可分为:单壁碳纳米管(Single-walled nanotubes, SWNT s):由一层石墨烯片组成。单壁管典型的直径和长度分别为~3nm和1~50μm。又称富勒管(Fullerenes tubes);多壁碳纳米管(Multi-walled nanotubes, MWNTs):含有多层石墨烯片。形状象个同轴电缆。其层数从2~50不等,层间距为±,与石墨层间距相当。多壁管的典型直径和长度分别为2~30nm和~50μm。

三碳纳米管的制备方法

目前合成纳米碳管的方法主要有电弧法、催化裂解法、化学气相沉积法、固相热解法、激光法等。其中催化裂解法具有方法简便、条件容易控制、可大量生产等优点,受到了人们的重视,成为制备纳米碳管的主要方法。但一般的催化裂解法生产的纳米碳管粗品中,通常含有催化剂载体,如SiO:和AlO,需经分离、纯化才能得到较为纯净的纳米碳管。这样既增加了中间步骤和生产成本,也降低了收率。

其它得到碳纳米管的方法:碳纳米管可以在50℃的低温下通过铯与纳米孔状无定形碳的放热反应自发形成;乙炔和苯低压火焰燃烧的烟灰里也发现了碳纳米管;

以熔融碱金属卤化物为电解液,以石墨棒为电极,在氩气气氛中通过电解方法合成了碳纳米管以及葱状结构;在粉末冶金法制备的合金Fe-Ni-C、Fe-Ni-Co-C的微孔洞中发现了富勒烯和单层碳纳米管。

四碳纳米管的纯化

碳纳米管分为单壁碳纳米管和多壁碳纳米管两类,它们的性质不同,所以其纯化方法也有所不同;而且由于不同的制备方法和实验条件引人的杂质不同,所以纯化方法还因具体的制备方法而异。到目前为止,已经提出的碳纳米管的纯化方法有许多种,这些方法大致可分为物理方法、化学方法和综合纯化法。

1、物理纯化法

(1) 离心分离法

由于石墨微粒、碳纳米粒子和无定形碳等杂质的粒度比碳纳米管大,在离心分离时它们受到离心力的作用先沉积下来,而粒度较小的碳纳米管则留在溶液中,从而分离。

(2) 电泳纯化法

Yamamoto等利用电泳原理,先将传统电弧放电法所制备的CNTs充分分散于异丙醇溶液中,离心除去较大的碎片,然后在充满分散液的容器中放人两个间距为的共面铝电极。因为CNTs有电各向异性这一特征,所以当两个铝电极之间加上大小为

的交变电场时,在电场的作用下,CNTs将向阴极移动,并沿着电场方向进行有规律的定向排列。计算表明,CNTs在电场中迁移速率大于5×。该方法根据电泳速率的不同将CNTs与其它杂质颗粒分离,且所得CNTs未受到损坏其研究人员还认为电泳法为单根碳纳米管的选择和操作提供了可能。

(3) 过滤纯化法

碳纳米管在具有水表面活性的溶液中可以呈动态稳定的投胶状分散物存在。过滤法具有简捷、高效的特点,同时不会破坏样品,但该方法成本较高。

(4) 空间排斥色谱法

空间排斥色谱法(SEC)也称凝胶渗透色谱法。该方法是基于试样分子尺寸和形状的不同来实现分离。该方法所用的填充剂是凝胶,其孔穴大小应与被分离试样的大小相当。对于那些太大的分子(如碳纳米管)不能进人孔穴而被排斥,故随流动相移动而最先流出;小分子能深人大大小小的孔穴,完全不受排斥,而最后流出;中等大小的分子可进人较大孔穴,但会受到较小孔穴的排斥,所以在介于上述两种情况之间流出。

由于碳纳米管与其它杂质的尺寸不同,故该方法可有效将单壁或多壁碳纳米管与其它杂质分离。

2、化学纯化方法

碳纳米管具有很高的结构稳定性,耐强酸、强碱腐蚀,而其它的杂质,如石墨微粒、碳纳米粒子、富勒烯,它们的稳定性都远不如碳纳米管。可用酸(如盐酸,氢氟酸等)去除金属催化剂颗粒,同时利用碳纳米管稳定性高、不易氧化的这一特性,用氧化剂把其它碳成分除掉。通常采用的氧化方法有气相氧化法和液相氧化法,也称为干法和湿法。

(1)气相氧化纯化法

气相氧化法主要是利用空气或氧气对含碳纳米管的样品进行氧化从而达到提纯的目的,该方法不需要特殊的实验装置,反应条件容易控制,操作简单、易行,有工业化应用前景。但是气相氧化法的氧化时间难以掌握,氧化过程中氧气具有局部不均匀性,产率低。气相氧化纯化法:(1) 氧气氧化法(2) 空气氧化法(3) CO2氧化法(4)

H2S-02氧化法(5) 金粉催化O2氧化法

(2)液相氧化纯化法

液相氧化法是利用氧化性酸对碳颗粒的氧化反应处理粗产物,同时用酸溶掉金属催化剂颗粒,得到纯净的碳纳米管。液相氧化法虽然除去副产物,但改变了碳纳米管的表面结构,使纳米碳管表面产生了许多酸性功能基(-COO、>C=0、-COH等)。这一点对于碳纳米管在电学、力学、材料学等方面的应用是不利的,但对于碳纳米管在化学领域、尤其在多相催化领域中的应用却是有利的,因为碳纳米管表面有了这些功能基以后,更有利于用金属对其进行表面修饰。常用的氧化性酸溶液有硝酸、混酸、重铬酸钾和高锰酸钾的硫酸溶液等。液相氧化纯化法:(1)硝酸氧化法(2)混酸氧化法(3)重铬酸钾氧化法(4)高锰酸钾氧化法

3、综合纯化法

化学纯化方法在氧化掉其它杂质的同时,有相当一部分的碳纳米管管壁和管端也相应被氧化掉了,残余的碳纳米管无论是管径还是管长都小于未纯化前的状态,其结构受到了较大的破坏;物理纯化法在纯化过程中可避免碳纳米管受到破坏,但是由于碳纳米管和大部分杂质均为碳质,在物理性质上的差异并不大,所以很难得到高纯度的碳纳米管。可见都有各自的优势,也存在弊端。因此,就有了物理化学方法的综合使用。综合法是一种纯化流程,它结合了化学方法高效分离和物理法不破坏碳纳米管结构的优势,在尽量高效的分离地同时,把对碳纳米管的破坏程度降为最低。综合纯化法:(1)酸处理与电泳法的结合(2)微孔过滤与电解法的结合(3) 气相氧化、酸处理与微孔过滤的结合(4) 酸处理与离心分离的结合(5)萃取、酸处理与冷冻法的结合

五.碳纳米管表面改性

1、共价功能化

碳纳米管的共价化学功能化最初是从氧化剂对碳纳米管的化学切割开始的。1994年Tsang 等发现, 将多壁碳纳米管在强酸中超声可对其进行切割, 从而得到开口的碳纳米管。在随后的研究中,Lago等发现, 开口的碳纳米管顶端含有一定数量的活性基团, 如经基、梭基等。1998年, Liu等研究了单壁碳纳米管的切割方法,利用强酸和超声波对单壁碳纳米管进行切割, 得到了长度介于100一300nm 之间的富勒烯管, 接着用体积比为4: 1的浓硫酸与3 0% 的过氧化氢氧化, 得到端基为梭基的单壁碳纳米管。这些截短的碳纳米管在水中单分散性良好。后来,人们尝试利用其它氧化剂如K2CrO2;OsO4 ; KMnO4 等对碳纳米管进行了功能化。活性基团的存在不仅改善了碳纳米管的亲水性, 使其更容易溶于水等极性溶剂, 而且为碳纳米管与其它物质或基团反应, 从而对其表面进行广泛的改性提供了基础。2、非共价功能化

虽然碳纳米管的共价功能化在碳纳米管分散及表面改性方面取得了很大的进展, 但这类功能化方法是直接与CNT的石墨晶格结构作用, 可破坏CNT功能化位点的sP2结构, 从而可能对CNT 的电子特性造成一定程度的破坏。而非共价功能化的方法不会对碳纳米管本身的结构造成破坏, 从而可以得到结构保持完好的功能性碳纳米管。

碳纳米管的侧壁由片层结构的石墨组成, 碳原子的sP2杂化形成高度离域化π电子。这些π电子可以被用来与含有π电子的其它化合物通过π-π非共价键作用相结合, 得到功能化的碳纳米管。聚(间一亚苯亚乙烯)衍生物(poly p一phnylenevinylen e 一co-2,5一dio etoxv 一m 一phenylenevinylene , 简称PmPV)是一种共扼发光聚合物,Curran 等利用多壁碳纳米管与之通过π-π相互作用形成MWNTs 一PmPV 复合材料, 这种复合材料在Pm PV 中形成稳定的悬浮液, 用此方法可以分散纯化碳纳米管。Star 等利用PmPV 对SWNTs 进行了功能化研究, 结果表明, 随着PmPV 含量的增大, 悬浮液中SWNTs 束的平均直径逐渐减小, SWNTs 的表面覆盖度逐渐均一。这些结果证实了PmPV 通过苯基、乙烯基与SWNTs 表面的π-π相互作用缠绕于碳纳米管上。

3、无机纳米颗粒改性碳纳米管

碳纳米管经过有机功能化后, 表面带上多种活性基团, 但为保障其在无机基体介质中良

好的分散性, 往往需要在功能化的碳纳米管表面包覆或填充某些无机纳米颗粒, 改善其与基体的界面结合, 从而最大限度地发挥碳纳米管的优异性能。同时, 这种无机颗粒改性的碳纳米管本身在非均相催化、太阳能电池、发光材料、传感器等方面也具有重要应用。

酸化的碳纳米管由于表面具有一OH, 一C o o H 等活性基团, 可以将金属离子或微粒“拴”在碳管上, 从而实现无机粒子在碳管表面的包覆。Yu 等成功地将Pt 纳米颗粒包裹在酸处理的碳管表面。Huang等利用TiCl4在碳纳米管硝酸溶液中的水解, 原位地将金红石相TiO2颗粒包裹在碳纳米管表面。Liu 等在酸化的碳纳米管与Ni2+ ,Fe 3+的混合物中滴人NaOH 溶液, 经水热处理, 成功地在碳纳米管表面包覆了NiFe204 纳米粒子。

利用共价功能化的碳纳米管与有机化合物保护的无机粒子间的化学反应, 同样可以实现碳管表面的无机改性。Banerjee 首先对单壁碳纳米管(SWNTs )表面进行酸化处理, 在碳纳米管(carbon nanotubes , 简称CNTs )表面产生多个梭基基团, 利用梭基基团与胺化的TI OZ 颗粒间的反应, 得到了Ti02 颗粒包覆的SWNTs 。Ravindran 等用含有琉基和端胺基的有机物稳定ZnS 包覆的CdSe 纳米晶, 在乙烯基碳化二亚胺(E D C) 脱水剂的作用下, 使其胺基与酸处理过的碳管表面的梭基发生偶合反应, 以此使半导体纳米晶附着在碳管末端。这种异质连接可作为纳米电子和光电子器件的组建部件等使用。Haremza 等通过胺基功能化的CdSe 纳米晶与酞卤基团改性的单壁碳纳米管反应的方法实现了CdSe 纳米晶在碳管表面的附着。

结束语

目前碳纳米管的合成和应用已经成为材料学界研究的前沿和热点, 碳纳米管以其独特的结构和优异的性能,将在纳米制造技术、生物技术、能源、催化、电子材料等方面获得重要应用。如何通过表面处理实现碳纳米管的高度分散并改善其与其它功能和结构材料的相容性, 成为推进碳纳米管实用化的关键课题, 开展这方面的研究具有重要的意义。

对于碳纳米管的分散及表面改性研究, 我们认为应着重从以下3 方面考虑:

(l) 选择较为温和的实验条件, 最大限度地保持碳纳米管完整的结构和性能;

(2) 着重研究低成本、大批量简单有效的功能化方法, 在这方面气体处理、无溶剂化反应等手段可发挥重要作用。另外, 应注重碳纳米管化学与超声化学、微波学、光电化学等多学科

的交叉, 借助先进的实验手段, 实现这一目标;

(3) 丰富完整碳纳米管的无机改性的研究体系, 利用碳管与无机物质间功能特性的协同作用, 拓展碳纳米管的应用范围

参考文献

[1] Takizawa M,Bandow S,Tofii T,et a1.,Effect of environment temperature for synthesizing SWCNTs by arC vaporization method,Chem.Phys.Lett.,1999,302(1):146-150。

[2] Zhang Y Gu H,Iijima S,Single—wall carbon nanotubes synthesized by laser

ablation in a N2 atomsphere,Appl.Phys.Lett.199873(23827-3829)。

[3] Yacaman M J,Yoshide M M,Catalytic growth of carbon microtubes with。

fullerene structure,Appl.Phys.Lett.,1 993,62(2):202-204

[4] Cho W S,Hamada E,Kondo Y et a1.,Synthesis of carbon nanotubes from bulk。polymer,Appl.Phys.Lett.,1 996,69(2):278-279。

[5] Richter H,Hernadi K,Caudano R,et a1.,Formation of nanotubes in low。

pressure hydrocarbon flames,Carbon,1 996,34(1 1):427—428

[6] Kroto H W ,Heath J R,O ’Brien S C et al . C 60 :Buckm in 2sterfullerene. Nature, 1985, 318: 162

[7] KrastschmerW ,Lamb L D, Fortiropoulos Ketal . SolidC 60 :A new form of carbon. Nature, 1990, 347: 354

[8] Iijima S. Helical m icrotubules of graphitic carbon. Nature, 1991, 354: 56

[9] Ebbesen T W ,A jayan P M. Large 2 scale sythesis of car 2bon nanotube. Nature, 1 992, 358: 220

[10] Hausslein R W. Commercial manufacture and uses of carbon nanotubules . 187th Meeting Program,No. 790,The electro chemical Society, Inc. , Reno, 1995,Nevada,May 21~26Dresselhaus M S. Down the straight and narrow. Nature, 1992, 358: 195

[11]朱艳秋. 博士学位论文, 巴基管及其工程材料的研究, 北京: 清华大学机械工程系, 1996

[12]碳纳米管在铝基体上原位合成及其复合材料的组织与性能天津大学李海鹏2008

16-17。

[13]多壁碳纳米管载体的改性及应用中国科学院成都有机化学研究所,成都610041 ;2

中国科学院研究生院,北京100049

[14]拉曼光谱在碳纳米管聚合物复合材料中的应用高云国家纳米科学中心, 北京100190;

[15]羟基化碳纳米管/聚己内酯复合材料的结构和力学性能.武汉三江航天固德生物科技有限公司,湖北武汉430040;2.武汉理工大学化学工程学院,湖北武汉430070

碳纳米管的分散及表面改性中国科学院上海硅酸盐研究所高性能陶瓷与超微结构国家重点实验室, 上海20050

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

材料导论碳纳米管综述

姓名:欧阳一鸣学号:2013012532 班级:高材 1313

潜在的碳纳米管场效应晶体管的模拟电路 介绍 在集成电路晶体管的指数增长摩尔定律所描述的内容持续了近一个半世纪 里。然而,2010年的国际半导体技术发展路线图预测增长将减缓到2013年底。 这主要是因为互补金属氧化物半导体(CMOS的比例正迅速接近其物理限制带来了许多障碍,如更高的亚阈值传导,栅氧化层和结泄漏增加,低输出电阻和跨导,增加热量生产。这使得半导体行业探索不同的材料和设备更加超越摩尔定律(如通过创造ITRS)。在这些材料和器件研究,碳纳米管场效应晶体管(CNFET) 已经获得了,因为它们规模小,流动性高,近弹道输运,大电流密度和较低的固有电容。自推出CNFETs该研究已主要重点对他们的数字电路使用。甚至中等规模薄流明碳纳米管(CNT的集成电路已报告了灵活塑料基板。然而,开/关比(也称为噪声余量)通常很小对于目前制造CNFETs因为存在金属碳纳米管[, 因此需要更多的调查,他们用于数字电路。与此相反,CNFETs具有更多潜在用 于高性能模拟电路,其中所述晶体管不需要充分关闭。此外,特性perform-ANCE 度量类似物或RF晶体管是更适合材料和碳纳米管的设备性能和制造tol-era nces ,也可以更轻松得的。 CNFETS础知识 场效应管的结构和MOSFE样的CNFETs 在传统的MOSFET源区和漏区是由两个重掺杂区中的硅衬底形成,并且栅极由多晶硅材料,其是绝缘的形成从基板由薄的二氧化硅层。如果电压被施加到 栅极端,下方的连续信道栅极形成用于电流流动的源极和漏极之间。 另一方面为CNFETs栅极,源极和漏极接触由像铬或钨金属与 4.5电子伏特的功函数。H是金属接触的高度,L是长度。值得一提的是,出两种类型CNFETs 即肖特基势垒和MOSFE等的,选择后者,因为它具有较高的离子/IOFF比率,过渡频率f 低的,更低的寄生电容,更好的AC性能和更高的制造可行性。在MOSTFE样的CNFE■之间的电流源和漏接触使用碳纳米管。根据贝壳的数量形成管状结构这些碳纳米管可以作为折叠见石墨烯成管状结构,可以单壁和多壁。单壁碳

碳纳米管的结构_制备及修饰

科 ● 自Iijima [1]首次用高分辨透射电镜发现碳纳米管(CNTs)后,碳纳米管及其相关材料以其独特的性质、新颖的结构及许多潜在的应用前景引起了人们极大的兴趣和关注,而用纳米材料来修饰和填充碳纳米管成为人们研究的热点之一[2-4]。探索碳纳米管的物理、化学性能及其在各个领域中的应用也成为众多科研工作者研究的目标。碳纳米管的结构比较特殊是由类似于石墨的六边形网络所组成的管状物,独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构等使其具有大量特殊的优异性能,如导电性好,耐热,机械强度比较高,耐腐蚀,有自润滑性和生物相容性等。这些优异特性使得碳纳米管在复合材料、储氢材料、催化剂材料等方面有着巨大的应用潜力。纳米中空结构使得它有可能作为一种纳米反应器[5]。作为碳家族的新成员,它有合适的孔径分布,便于金属组分更好地分散[6]。它独特而又稳定的结构及形貌,尤其是表面性质,能依据人们的需要进行不同方法的修饰,使其适合作为新型催化剂载体[7-8]。 1 碳纳米管的性质 1.1 碳纳米管的结构 碳纳米管可分为单壁碳纳米管(SWNTs )和多璧碳纳米管(MWNTs )。碳纳米管可看作是由石墨烯层片卷成、直径为纳米尺度的圆桶,其两端由富勒烯半球封帽而成。多壁碳纳米管则是由若干个单层管同心套迭而成的,石墨碳原子中的4个价电子只有3个成键,形成六边形的平面网状结构。这种排列使石墨中的每个碳原子有一个未成对电子,这个未成对电子围绕着这个碳环平面高速运转,因而使石墨具有较好的导电性,碳纳米管中存在大量的六边形结构,当六边形往外逐渐延伸成为五边形时,会造成碳纳米管突出;而形成七边形时碳纳米管则凹进。这样就形成了碳纳米管独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构。而碳纳米管也由于如此的特殊结构具有了一系列卓越的性质。1.2碳纳米管的制备 电弧法制备碳管的基本原理是在两个相距很近的石墨电极间加上高电压以至放电,放电电弧产生的高温使得阳极石墨棒上的碳物质迅速蒸发,随后蒸发物质中的碳原子以团簇为单元组成多种碳物质形态,沉积于阴极和反应腔壁上,碳纳米管是其中的沉积产物之一。电弧法多用来制备多璧碳纳米管(MWNTs )但制备的碳纳米管缺陷多,且与其他的副产物如无定形碳、纳米微粒等杂质烧结于一体,对以后的分离和提纯会有不利的影响。 催化裂解法(CVD 法)是目前应用最广泛的方法之一,该方法所用的关键设备就是可加热反应腔。反应腔可以分为立式固定床和卧式磁舟两种。其基本原理是:在中等温度下(800-1200K 左右),含碳化合物如烃、金属有机化合物、CO 等在金属催化剂的作用下分解为碳原子,沉积在金属颗粒的表面,然后溶解、扩散进入金属体相,最后析出生长成为碳纳米管。可以认为实现可控制技术的一个可能的途径是通过控制催化剂颗粒的大小和分布间接控制碳管的生长,因此有关CVD 技术的催化剂问题受到广泛关注。可以用于合成碳管的催化剂一般为过渡金属元素:Fe 、Co 、Ni 、Cr 、Mo 、Mg 和Si 等。同电弧法相比,催化裂解法制得的CNTs 缺陷较多,但是此法制得的碳纳米管产量大且易提纯,还可通过催化剂颗粒的大小控制碳纳米管的粗细。 激光蒸发法是制备碳纳米管的重要方法之一。它是利用激光对石墨进行蒸发并利用专门设计的收集器来收集合成的碳管。其基本原理是:在惰性气体流中用激光蒸发含有金属催化剂的石墨靶表面,在石墨上生长碳纳米管,随后收集于铜水冷器。激光束的宽度为6至7个毫米,经过计算机的精确引导,激光束持续而定量地蒸发含有金属催化 剂的石墨靶,再由流动的Ar 气将碳物质送到蒸发炉外的水冷铜收集器处,在那里就能找到碳管,该方法首次得到相对较大数量的单壁碳纳米管。激光蒸发(烧蚀)法的主要缺点是单壁碳纳米管的纯度较低、易缠结。 1.3碳纳米管的修饰 碳纳米管的修饰共分为两类,分别为共价修饰和有机化学修饰。其中碳纳米管的共价修饰共有三种途径:自由基加成法、电化学氧化法、化学试剂氧化法这三种。 自由基加成法是一种碳纳米管共价修饰的方法,CNTs 管壁上存在很大的自由基加成的可能性。在碳纳米管璧原位上的重氮化可以是碳纳米管有效地溶解在水中,增大碳纳米管的溶解度。Sinnott [15]采用经典分子动力学模拟方法构建了碳自由基与碳纳米管的加成模型,通过模型的建立发现带羧基的烷基自由基可以有效地加成到碳纳米管管壁上,得到功能化的碳纳米管。 通过电化学氧化法可以制得大量的碳纳米管修饰电极,将CNTs 固定于电极材料上,加压条件下用NaOH 溶液处理。万谦等[16]碳纳米管经过纯化、浓酸回流处理后与DMF 分散物质形成悬浮液,然后通过微量滴管等直接滴涂或溅射等方法修饰到各种基质电极上,即可制成碳纳米管修饰电极。 化学试剂氧化法是一种较为普遍的方法,以浓硝酸或者硝酸和硫酸的混酸作为强氧化剂,经过处理后使得碳纳米管表面具有大量的羧基和羟基基团,这种方法简单易行,很多文献对碳纳米管修饰都是采用此方法,但是表面羧基化后的CNTs 其表面羧基之间存在氢键作用,碳纳米管分散性和溶解性还是仍然较差,还需要进一步对CNTs 表面的COOH 进行反应,破坏羧基之间的氢键作用。 CNTs 的化学修饰共分为三类,包括酸碱中和反应、酰化反应、胺化反应,其中酸碱中和反应是认为羧基化后的CNTs 可以与带碱性基团的聚合物发生类似于酸碱中和反应的反应,在上个世纪90年代,Chen 等以羧基化后的碳纳米管与带碱性基团的聚合物十八胺发生中和反应,第一次得到了可溶性CNTs 为SWNTs 在各种生物及超分子领域的应用提供了依据。Banerjee 等用Wilkinson 催化剂[RhCl(PPh 3)3]与羧基化SWNTs 反应,发现修饰后的SWNTs 溶解度显著增大在二甲基甲酰胺(DMF)、四氢呋喃(THF)、二甲基亚砜(DMSO)等有机溶剂中,从而证明金属离子可通过离子作用与羧基化CNTs 反应。 酰化反应如酰胺化反应和酰氯化反应等,酰氯化反应是碳纳米管在加热条件下在硝酸中回流后,以亚硫酰二氯(SOCl 2)作酰化剂,得到含有酰基氯的碳纳米管。由于含有酰基氯的碳纳米管具有更高的活性,可以与苯胺发生酰胺化反应进一步得到含有酰基苯胺的碳纳米管。 2结论 多壁碳纳米管是一类新奇碳素纳米材料。典型的CNTs 具有纳米级管状结构。鉴于这类新奇管状纳米碳材料具有独特的结构和物化性质,作为一种新型碳素催化剂载体或促进剂,较之一些常规载体材料更具特色,近年来引起国际催化学界的日益注意,所涉及用CNTs 作为新型催化剂载体或促进剂的研究领域包括:选择加氢、氢甲酞化、选择脱氢、氨合成、FT 合成、甲醇/低碳醇合成等。【参考文献】 [1]Iijima S.Helical microtubules of graphitic carbon .Nature ,1991,354:56-58.[2]Kogak,Gao G T ,Tanaka H ,et al.Formation of ordered ice nanotubes inside carbon nanotubes[J].Nature ,2001,412:802-805.(下转第38页) 碳纳米管的结构、制备及修饰 赵健勇(山东师范大学化学化工与材料科学学院 山东济南250014) 【摘要】本文详细介绍了碳纳米管的特殊结构,各种不同的制备方法,以及在共价修饰和化学修饰的各种方法,对碳纳米管应用作出展 望。 【关键词】碳纳米管;结构;制备;修饰

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

羧基化多壁碳纳米管修饰电极循环伏安法测定过氧化氢

羧基化多壁碳纳米管修饰电极循环伏安法测 定过氧化氢 【摘要】目的:研究用羧基化多壁碳纳米管修饰电极伏安法测定过氧化氢的浓度。方法:采用涂布法制成羧基化多壁碳纳米管修饰电极;在pH=7.0 KH2PO4-Na2HPO4缓冲溶液中,采用该修饰电极伏安法测定H2O2。结果:该修饰电极对H2O2有着显著的电催化作用,与裸玻碳电极相比,其灵敏度大大提高,在 1.2×10-6~1.0×10-3 mol/L 浓度范围内,过氧化氢的氧化峰电流与其浓度呈良好的线性关系,检测限为3.1×10-7 mol/L,将该修饰电极用于医用过氧化氢的测定,相对平均偏差为1.2%,平均回收率为97.6%,结果满意。结论:该修饰电极响应快,灵敏度高,稳定性好,寿命长,适合于具有电活性生物分子的测定。 【关键词】碳纳米管学修饰电极伏安法过氧化氢 Abstract: Objective: To study a quantitative method for determination of hydrogen peroxide (H2O2) by voltammetry with multi-wall carbon nanotubes functionalized with carboxylic group modified electrode (CME). Method: The CME was fabricated, which based on the immobilization of multi-wall carbon nanotubes functionalized with carboxylic group. In a medium of KH2PO4-Na2HPO4 buffer solution with pH=7.0,the CME was

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

碳纳米管(CNTs)及其制备技术综述

碳纳米管(CNTs)及其制备技术 1.概述 1991年,Iijima在石墨电弧放电产物中发现了碳纳米管(CNTs),从此碳纳米管成为碳家族的一个新成员。CNTs是纳米科学的一颗耀眼明珠,其独特的结构、优良的物理和化学性能、巨大的应用前景吸引了大批的物理学家、化学家和材料学家的兴趣,成为科学领域的研究热点。尤其是单壁碳纳米管的发现和研究被科学界权威杂志《Science》评为1997年世界十大科技成果之一。 2.碳纳米管的结构和性能 2.1碳纳米管的结构 碳纳米管是由多个碳原子六方点阵的同轴圆柱面套构而成的空心小管,相临的同轴圆柱面之间的距离与石墨的层间距相当,约为0.34nm,管壁由六边形排列的碳原子组成,每个碳与周围的三个碳原子相邻,碳/碳间通过sp2杂化键结合。管的直径为零点几纳米到几十纳米,管的长度为微米级。管的直径和长度随不同的制备方法及条件的变化而不同。管的端部由五边形排列的碳原子封顶。碳纳米管绝大多数两端是封闭的,并且这种封闭与碳纳米管圆管平滑连接,较小直径的碳纳米管的封闭形式一般呈半圆状,这对应于半个富勒烯(Fullerence)笼。 依据组成碳纳米管的石墨片层数的不同,碳纳米管可分为单壁碳纳米管即含一层石墨片的碳纳米管以及由一层以上石墨片组成的多壁碳纳米管。碳纳米管结构示意图如图1所示。 图1 碳纳米管结构示意图(a)四层碳纳米管结构(b)单层碳纳米管结构 2.2碳纳米管的性能 碳纳米管具有独特的电子结构和物理化学性质,可以在许多方面得到广泛的应用。碳纳米管的直径-长度比很大,一般情况下,长度都是直径的几千倍,远远大于普通的纤维材料;它的强度比钢高约100倍,而重量仅仅为钢材料的六分之一,有可能成为一种新型的高强度碳纤维材料。这种“超级碳纤维”材料既具有碳素材料的固有本性,又具有金属材料的导电性、导热性,陶瓷材料的耐热和耐腐蚀性,纺织纤维的可编织性以及高分子材料的轻质、易于加工性,因而具有极大的应用潜力。 由于碳纳米管具有纳米尺度的尖端曲率半径,在相对比较低的电压下就能够发射大量的电子,因此,碳纳米管材料能够呈现出良好的场致发射特性,非常适

壳聚糖对碳纳米管的表面修饰

许爱民等:堇青石陶瓷表面Ca0.6Mg0.4Zr4(PO4)6涂层的显微结构及耐碱性· 163 ·第36卷第2期 壳聚糖对碳纳米管的表面修饰 刘爱红1,2,孙康宁1,2,王菲1,2,俞中平1,2 (1. 山东大学,液态结构及其遗传性教育部重点实验室;2. 山东省工程陶瓷重点实验室,济南 250061) 摘要:采用表面沉积交联法实现了壳聚糖对碳纳米管的表面修饰,并对所得的复合材料进行了相应的检测。结果表明:得到的复合材料中碳纳米管表面完全被壳聚糖所覆盖,管径变粗,并且由于壳聚糖覆盖层的静电排斥作用,使壳聚糖修饰后碳纳米管的团聚减少。 关键词:碳纳米管;壳聚糖;表面修饰 中图分类号:R318.08 文献标识码:A 文章编号:0454–5648(2008)02–0163–03 SURFACE MODIFICATION OF CARBON NANOTUBES WITH CHITOSAN LIU Aihong1,2,SUN Kangning1,2,WANG Fei1,2,YU Zhongping1,2 (1. Key Laboratory for Liquid Structure and Heredity of Materials of Education Ministry; 2. Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061, China) Abstract: Surface modification of carbon nanotubes (CNTs) with biopolymer chitosan was performed via a controlled surface depo-sition and crosslinking process. The characteristic of modified CNTs was measured The results show that the diameter of CNTs be-comes thicker because the surface of CNTs is covered with chitosan, and the glomeration of the CNTs decreases to improve the dis-persion of CNTs due to static electric repulsive action of chitosan coating. Key words: carbon nanotubes; chitosan; surface modification 近年来,碳纳米管(carbon nanotubes, CNTs)的研究热点转向生物医用材料方面,已在生物医学方面得到广泛应用。用CNTs可制备各种生物传感器,生物医学微电子器件的导线、开关、记忆元件等。[1–4] 由于CNTs的生物相容性较差,常需要对CNTs 进行表面修饰改性。用生物相容性好的天然高分子修饰碳纳米管,制备成CNTs/天然高分子复合材料,是改善碳纳米管生物相容性的一种重要方法。 壳聚糖(chitosan, CS)是甲壳素(chitin)脱去部分乙酰基后的产物,是一种常见的天然高分子,在生物材料的研究中得到了广泛的应用,其良好的生物相容性已经得到认可。[5] 通过壳聚糖对CNTs的表面修饰,有望改善CNTs的生物相容性,更有可能赋予CNTs某些生物学的性质,为扩大CNTs在生物医学领域的应用提供了一种途径。据此,采用表面沉积交联法,由壳聚糖修饰CNTs的表面,并对所得复合材料进行了检测。 1 实验 1.1 CNTs的纯化氧化预处理 实验所用原料为:多壁CNTs,深圳纳米港有限公司产,纯度95%(质量分数)以上;壳聚糖(食品级,脱乙酰度为95%),济南海得贝海洋生物工程有限公司产;其他试剂均为分析纯试剂。 采用混酸液相氧化法对CNTs原料进行纯化氧化预处理。将2g CNTs加入120mL混酸溶液中(浓H2SO4与浓HNO3体积比为3:1),超声分散2~3h,然后在室温磁力搅拌120h,进行氧化。通过0.22μm 的聚碳酸酯滤纸真空抽滤混合物,再由去离子水洗涤至pH值为7。处理后的CNTs在80℃真空干燥 收稿日期:2007–07–27。修改稿收到日期:2007–10–21。 基金项目:国家自然科学基金(50672051,30540061);山东大学大学生科技创新基金资助项目。 第一作者:刘爱红(1981—),女,博士研究生。 通讯作者:孙康宁(1955—),男,教授。Received date:2007–07–27. Approved date: 2007–10–21. First author: LIU Aihong (1981–), female, postgraduate student for doctor degree. E-mail: aihong1981@https://www.doczj.com/doc/9815710597.html, Correspondent author: SUN Kangning (1955–), male, professor. E-mail: sunkangning@https://www.doczj.com/doc/9815710597.html, 第36卷第2期2008年2月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 36,No. 2 February,2008

碳纳米管在电化学中的应用

碳纳米管在电化学中的应用 【摘要】对碳纳米管修饰电极的制备方法、应用以及碳纳米管修饰电极的发展趋势作比较全面的综述。 【关键词】碳纳米管;化学修饰电极 Application of the Carbon nanotube in electrochemistry Abstract The methods of preparation, applications and developing trends of carbon nanotube modified electrodes in the field of electrochemistry were reviewed. Key words Electrochemistry Carbon nanotube modified electrodes 碳纳米管,又名巴基管(buckytube),是1991年由日本科学家饭岛澄男(Sumio Iijima)在高分辨透射电镜(HRTEM)下发现的一种针状的管形碳单质。它以特有的力学、电学和化学性质,以及独特的准一维管状分子结构和在未来高科技领域中所具有的潜在应用价值,迅速成为化学、物理及材料科学等领域的研究热点。目前,碳纳米管在理论计算、制备和纯化生长机理、光谱表征、物理化学性质以及在力学电学、化学和材料学等领域的应用研究方兴未艾,在一些方面已取得重大突破。碳纳米管(CNT)的发现,开辟碳家族的又一同素异形体和纳米材料研究的新领域。 由于CNT具有良好的导电性、催化活性和较大的比表面积,可使过电位大大降低及对部分氧化还原蛋白质能产生直接电子转移现象,因此被广泛用于修饰电极的研究。碳纳米管在作为电极用于化学反应时能促进电子转移。碳纳米管的电化学和电催化行为研究已有不少报道。 1碳纳米管的分类 CNT属于富勒碳系,管状无缝中空,具有完整的分子结构,由碳六元环构成的类石墨平面卷曲而成,其中每个碳原子通过sp2杂化与周围3个碳原子发生完全键合,各单层管的顶端有五边形或七边形参与封闭。CNT的径向尺寸为纳米量级,轴向尺寸为微米量级,具有较大的长径比。由单层石墨片卷积而成的称为单壁碳纳米管(SWNT),制备时管径可控,一般在1~6 nm之间,当管径>6 nm后CNT 结构不稳定,易塌陷。SWNT轴向长度可达几百纳米甚至几个微米。由两层以上柱状碳管同轴卷积而成的称为多壁碳纳米管(MWNT),层间距约为0.34 nm。

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

碳纳米管

碳纳米管“太空天梯” 未来的“太空天梯” 碳纳米管是由石墨分子单层绕同轴缠绕而成或由单层石墨圆筒沿同轴层层套构而成的管状物。其直径一般在一到几十个纳米之间,长度则远大于其直径。1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了这一特别的分子结构。 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。作为人类发现的力学性能最好的材料,碳纳米管有着极高的拉伸强度、杨氏模量和断裂伸长率。例如,碳纳米管的单位质量上的拉伸强度是钢铁的276倍,远远超过其他任何材料。 目前碳纳米管的研究现状 自从1991年碳纳米管被正式报道以来,为了提高其长度,全世界的碳纳米管研究者进行了大量艰辛的探索。然而一直到2009年,碳纳米管的最大长度只有18.5厘米,直到目前成功制备出单根长度达到半米以上的碳纳米管。这种有限的长度极大地限制了碳纳米管的实际应用。 碳纳米管的优点。 (1)界面层的存在和界面层厚度的增大均降低

碳纳米管和界面层的应力传递效率随长径比的变化了应力传递效率和纤维的饱和应力, 但同时增大了碳纳米管纤维的有效长度。所以界面层比较明显地承担了应力载荷, 则在碳纳米管复合材料中应该考虑界面层存在和界面层厚度的影响。 (2)碳纳米管的长径比只在较小时影响有效长度和应力传递效率。 长径比所影响的具体范围不同, 对碳纳米管有效长度为小于50 , 而对于应力传递效率则小于10 。 (3)碳纳米管的应力传递效率要远比界面层的应力传递效率大。 在碳纳米管复合材料中虽应要考虑界面层的影响, 但应力载荷的最主要承担者仍是碳纳米管纤维。对碳纳米管复合材料的应力场、纤维的饱和应力和应力传递效率以及有效长度的分析, 为碳纳米管复合材料力学性能的分析、结构优化和功能化设计以及寿命预测等做好必要的准备。 碳纳米管的缺点 (1)如何实现高质量碳纳米管的连续批量工业化生产。 碳纳米管的制备现状大致是:MWNTs能较大量生产,SWNTs多数处于实验室研制阶段,某些制备方法得到的碳纳米管生长机理还不明确,对碳纳米管的结构(管径、管长、螺旋度、壁厚等)还不能做到任意调节和控制,影响碳纳米管的产量、质量及产率的因素太多。 (2)有限的长度极大地限制了碳纳米管的实际应用。 提高了碳纳米管的长度,唯一的途径就是尽可能地提高其催化剂活性概率。对于碳纳米管的生长而言,在其生长过程中催化剂失活从而使其停止生长是一个不可逆转的规律,从而造成了超长碳纳米管很难达到很长的长度,并且也使其单位宽度上的生长密度急剧下降。 (3) 对人体的毒害作用 碳纳米管对人体存在一定的毒性作用,目前研究主要集中在肺脏毒性和细胞毒性,表现为可引起肺脏炎症、肉芽肿和细胞凋亡、活力下降、细胞周期改变等。其毒力大小与碳纳米管的特性有关,如结构、长度、表面积、制备方法、浓度、

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

相关主题
文本预览
相关文档 最新文档