当前位置:文档之家› 锅炉汽包水位测量偏差分析

锅炉汽包水位测量偏差分析

锅炉汽包水位测量偏差分析
锅炉汽包水位测量偏差分析

锅炉汽包水位测量偏差分析

计控处石军昌

摘要从理论上分析了锅炉汽包水位测量偏差产生的原因,并提出了相应的解决办法。关键词锅炉汽包液位测量偏差分析

锅炉汽包液位是确保安全生产及提供优质合格蒸汽的重要控制参数。大型锅炉由于蒸发量的提高,汽包容积相对减小,水位的变化速度很快,稍不注意就会造成汽包满水位或烧干锅。水位过低会影响自然循环的正常进行,严重时个别上升管会形成自然水面,产生流动的停滞,致使水冷壁局部过热而爆管。汽包水位过高,蒸汽空间减小,会使蒸汽带水,蒸汽品质恶化,以致过热器管内产生盐垢沉积,管子过热,金属强度降低发生爆破。汽包满水时,蒸汽大量带水,使蒸汽温度降低,引起联锁停车,更严重时则会使汽轮机叶片受到水击,造成设备损坏。因此,锅炉汽包液位的测量十分重要。本文就对我公司锅炉汽包水位测量偏差进行分析。

1汽包水位原始状况

我公司有2台160t/h锅炉,汽包水位的测量有两种类型的仪表,一种为差压式变送器,每台锅炉有3台,用于水位的3冲量控制及2/3联锁;另一种为玻璃板式双色水位计(1台),通过工业电视在中控室显示。

水位测量量程:-335~+335mmH2O

高低报警:±125 mmH2O

高低联锁值:±250 mmH2O

水位正常控制范围:0±50 mmH2O

在同一条件下校验的3台差压表,安装后相差较大,约为0~±60 mmH2O,超过了控制误差。况且该表的测量值在额定工况下(即12.16MPa,324.7℃)为有效,其余工况均为虚假值。在锅炉冷态启动时,水位指示值为满量程(即无效),而由于受上水温度、压力、流量及送出蒸汽压力波动的影响,该表无法准确反映水位,并产生虚假水位,影响工艺操作。

玻璃双色水位计总比差压水位计指示偏低,长期观察发现此偏差是变量,且随外界环境温度变化较大。

这样测量液位的4个表计,相互之间偏差较大,给工艺控制操作带来极大不便,以哪个表计为控制基准难以确定,且液位联锁也不能投用。(联锁投用已误动作停车几次)

2双色水位计偏差分析

2.1环境温度产生的偏差

双色水位计受环境温度影响较大,其水位指示和汽包液位的偏差是环境温度的一个函数。图1是双色水位计测量原理图。

图1 双色水位计测量原理图

H──汽包水位测量量程,670 mmH2O,仪表显示量程为-355~0~+355 mmH2O;

- 45 -

- 46 -

P ──额定工况下的汽包压力,12.16MPa ; T ──额定工况下的汽包内温度,324.7℃; r s ──额定工况下汽包饱和蒸汽密度,0.070; r w ──额定工况下汽包饱和水密度,0.655;

w

r '──双色水位计内不饱和水密度,w r '=f(t); h ──汽包真实水位; h′──双色水位计指示水位。 根据连通器原理,可得

s w

s w )()(r h H r h r h H r h ?'-+'?'=?-+? (1) 设汽包真实水位和双色水位计指示值之差为

h h h '-=? (2)

把(2)代入(1),得

h r r r r h ?-'-'=

?s

w w w

(3) 由于w

r '是一个温度函数,)(w t f r =',故取双色水位计内几组不同温度下的w r '值代入(3),得出

以下几组偏差h ?值:

①T =260℃,='w

r 0.793 88.127670070

.0793.0655

.0793.01=?--=

?h mmH 2O

②T =270℃,='w

r 0.7768 45.115670070

.07768.0655

.07768.02=?--=?h mmH 2O

③T =280℃,='w

r 0.7593 3.101670070

.07593.0655

.07593.03=?--=

?h mmH 2O

④T =300℃,='w

r 0.719 07.66670070

.0719.0655

.0719.04=?--=?h mmH 2O

⑤T =310℃,='w

r 0.696 8.43670070

.0696.0655

.0696.05=?--=

?h mmH 2O

⑥T =320℃,='w

r 0.669 15670070

.0669.0655

.0669.06=?--=

?h mmH 2O

由以上几组数据可知,当双色水位计内温度越接近汽包温度324.7℃时,其指示偏差越小。冬天测量双色水位计外壁上部温度为270℃左右,设内外温度差为10℃,那么双色水位计内部温度为280℃,其指示值比汽包真实液位低101.3mmH 2O 。 2.2 安装产生的偏差

双色水位计安装不当也可产生偏差。在图2a 中,汽包水位中心和双色水位计中心在同一水平线上,此为正确安装;在图2b 中,双色水位计汽相和液相连通管上斜,使双色水位计中心高于汽包水位中心,双色水位计指示偏低;图2cb 相反,使双色水位计指示偏高。

图2 双色水位计安装示意图

3 差压式变送器偏差分析

差压式变送器在非额定工况下产生的测量偏差上文中已分析过,下面着重分析变送器在安装过程中由于汽相导通管安装不当所产生的偏差。

如图3为差压式变送器测量原理图,图中参数说明如下:

- 47 -

w

r ''──冷凝液密度,其值为1; ΔH ──汽相导通管上斜引起变送器负压侧导压管增加的高度。其它参数说明见图1。

正确安装时,汽相导通管为水平状态,即ΔH =0,汽包液位运算如下:

s w )(r h H h r P ?-+?=正

H

r P ?''=w 负

图3 差压式变送器测量原理图

H r r h r

r P P P ?''-+?-=-=?)()(w s s w 负正 .

)(s

w s w

r r P H r r h -?+?-''=

ΔP 为变送器所测差压。

当ΔH >0时,即汽相导压管上斜时,

s w )(r h H h r P P ?-+?=='正正

H

r H r P ??''+?''='w w 负. 负

正P P P '-'='? H r H r r h r r ??''-?''-+?-=w w s s w )()( H r P ??''-?=w

.

s

w s w

)(r r P H r r h -'?+?-''=

'∴

s

w w s w

)(r r H r P H r r -??''-?+?-''=

s

w w

r r H r h -??''-

=.

式中,h ──汽包真实液位;h ′──图3中

变送器指示值。

把本厂额定工况下的参数w

r ''、r w 、r s 代入上式,得

H h H

h h ?-=-??-

='7.1070

.0655.01

由此可以看出,气相连通管上斜越大,即

ΔH 越大,变送器指示越低。

由于连通管一般长度为2m ,假

设上斜20mm ,即ΔH =20mm ,那么变送器指示值偏低1.7×20=34mm.

4 解决办法

对上面几种偏差应采取不同的解决办法: a. 对于双色水位计由于温度产生的偏差,我们对该表加强保温,使之同汽包内温差降低到最低,同时把我们观测的经验值和偏差产生原理告知工艺人员,以便他们操作。

b. 对于安装引起的双色水位计的偏差,我们用乳胶管进行水平标定,找出偏差,进行机械校正,使本偏差降低到最小。

c. 差压变送器的安装偏差(即ΔH 引起的偏差)解决办法同方法b ,使3块变送器的测量值趋于一致。

d. 对变送器的非连续测量(即非额定工况外的测量),对该表的组态加入温压补偿运算,使之满足连续测量的要求。

经过以上改进后,汽包液位的测量已基本满足了锅炉的长周期、安全平稳运行。对于引

汽包水位三冲量给水调节的工作原理

汽包水位三冲量给水调节系统 1、所谓冲量,是指调节器接受的被调量的信号; 2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成; 3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。其中,汽包水位H是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号qm.S是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配合,可消除系统的静态偏差。当给水流量变化时,测量孔板前后的差压变化很快并及时反应给水流量的变化,所以给水流量信号qm.w作为介质反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。 4、在大、中型火力发电厂锅炉汽包水位的变化速度比较快,“虚假水位”现象较为严重,为了达到生产过程中对汽包水位调节的质量要求,因而广泛采用了三冲量汽包水位调节系统。

5、关于测量信号接入调节器的极性说明:当信号值增大时要求开大调节阀,该信号标以“”号;反之,当信号值减小时要求关小调节阀,该信号标以“-”号。在给水调节系统中,当蒸汽流量信号增大时,要求开大调节阀,该信号标以“”号;给水流量信号增大时,要求关小调节阀,该信号标以“-”号;当汽包水位升高时,差压减小,水位测量信号减小,要求关小调节阀,则该信号标以“”号。 直流炉没有三冲量啊,没有汽包,在直流状态下给多少水就产生多少汽的,是通过中间点温度来调整锅炉燃水比的! 单冲量三冲量切换条件:一般用给水流量来划分,小于200t/h(30%,我们300MW机组就是这样)时为单冲量,大于则为三冲量 为啥要到30%负荷时,电泵由单冲量切到三冲量啊?要防止汽包的虚假水位。在低负荷的时候,单冲量主要是给系统上水,在高负荷时,给水的任务就是维持汽包水位。

锅炉汽包水位测量问题分析及技术措施

浙江省火电厂锅炉汽包水位测量问题分析及改进 孙长生1,蒋健1,刘卫国2,丁俊宏1,王蕙1 (1.浙江省电力试验研究院,杭州市,310014;2.国华浙能发电有限公司,浙江省宁波 市,315612) 摘要:汽包水位是表征锅炉安全运行的重要参数。由于配置、安装、运行及维护不当等因素,导致汽包水位测量系统存在测量值与实际值不符的情况,影响机组安全、经济、稳定运行。本文对浙江省火电厂汽包水位测量、水位保护投入状况进行现场调查,总结存在的问题,分析问题产生的原因,探讨并提出消除或减少这些问题的技术改进措施,供同行参考。 关键词:汽包水位测量;偏差分析;技术措施;锅炉;水位保护;水位计 doi:10.3969/j.issn.1000-7229.2010.10.000 Analysis of Running Status and Research of T echnical Proposal to the Drum Water Level Measurement Systems of Zhejiang Fired Power Plant SUN Chang-sheng1,JIANG Jian1,LIU Wei-guo2,WANG Huo (1.Zhejiang Provincial Electric Power Test and Research Institute,Hangzhou 310014,China;2.Zhejiang Guohua Zheneng Power Generation Co. Ltd.,Ningbo 315612,Zhejiang Province, China) ABSTRACT:Because of many reasons during installment, operation and maintenance, the drum water level measurement systems often have been found the difference between the observed value and the actual value, that seriously affectes unit's stable operation.This article has investigated many power plants in the Zhejiang Province closely, surveyed the situation of the drum water level measurement and the water level protection conditions of Zhejiang fired power plant, and has gived useful suggestion.of the reference water column. KEYWORDS:drum water level measurement;warp analysis;technical proposal;boiler;water level protection;water level meter 0 引言 汽包水位是表征锅炉安全运行的重要参数,其测量的准确性与其偏差问题(以下简称“水位测量问题”)的解决,是一直困扰火电机组热工测量与安全、经济运行的难题。针对水位测量问题,在浙江省内火电厂进行了专题调查,就存在的水位测量问题进行了深入的专题探讨,提出了提高汽包水位测量系统运行可靠性的改进意见,供同行参考。 1 存在的主要问题 1.1 模拟量测量信号系统存在的问题 目前浙江省蒸发量为400 t/h及以上的汽包炉共有57台,这些锅炉运行中模拟量测量信号系统存在的主要问题包括以下几方面: (1)测量显示偏差。不同测量变送器显示的示值不一致,两侧显示偏差高的超过100 mm,即使是同侧偏差,有时也高达几十mm,且随着机组负荷的变化而不同,难以找出其变化规律。 (2)逻辑故障判断功能不完善。一些机组不具备《防止电力生产重大事故的二十五项重点要求》(请核实是否修改正确)中的汽包水位信号故障后的逻辑判断自动转换功能、水位和补偿用的汽包压力信号坏信号判别功能。 (3)共用测量孔。由于汽包上给出的取样孔不足,因此存在共用取样孔和平衡容器情况,未能做到全程独立。

亚临界锅炉汽包水位的测量问题

亚临界锅炉汽包水位的测量问题 一、汽包水位的特性 1.汽包正常水位 汽包正常水位(Normal Water Level, NWL)指的是锅炉正常运行过程中汽包中的水位应该保持的高度,一般称为汽包的零水位。随着汽包内部各个部件加汽水分离器等的结构和布臵方式差异,不同锅炉厂生产的各种亚临界锅炉汽包正常水位的高度有相当大的差别。表1列出了国内外主要锅炉厂生产的亚临界锅炉汽包水位的特性。表中NWL项所列数字为汽包正常水位与汽包机械中心线之间的距离,负值表示汽包正常水位在汽包机械中心线以下。 为了保证锅炉的安全和经济性,在锅炉运行过程中汽包水位必需保持在正常水位(NWL)。它的允许波动范围一般为±50mm。当锅炉运行不稳定,负荷变动较大或自动控制系统失灵时,汽包水位有时会超出上述允许范围。但只要汽包水位没有上升到影响汽水分离器正常工作的程度,或者下降到破坏锅炉水 亚临界锅炉汽包水位特性表1 循环的程度,还是允许锅炉继续运行的。但是水位变动范围过大就应该引起值班人员的重视,采取相应措施恢复水位正常。如果水位继续变动,达到不能允许的范围时就应该立即停止锅炉的运行,以保证设备安全。为此锅炉厂还规定了汽包水位的高、低报警值和跳闸值。如表1所示,表中所列报警值和跳闸值都是以正常水位(NWL)为基准的。即从NWL为0考虑的。

因此,锅炉所配臵水位表的测量范围必须涵盖表中所列跳闸值并留有一定的裕度。 2.质量水位 锅炉运行过程中,汽包水容积中不可避免地存在汽泡,汽包中的水在运行工况下实际上是汽水混合物。使得汽包内的汽水分界面变得不十分明显。在这一情况下,汽包内的实际水位是无法直接准确测量的。为了测量汽包内的水位,引入了质量水位的概念。质量水位是指汽包中的饱和水密度所对应的水位,就是质量水位。而质量水位是可以用各种方法准确测量的。 在中低压锅炉中蒸汽是直接由汽包的水中分离出来的,使得水中含有较多的汽泡,这时汽包的实际水位会远大于质量水位。而对于现代化大容量高压锅炉,由于汽包中都设有汽水分离设备,而上升管来的汽水混合物直接送入汽水分离设备。分离后的水再回到汽包的水容积中。正常情况下,汽包水容积中的汽泡不多,汽包的实际水位就比较接近质量水位。 当锅炉的负荷快速增加时,汽包内的压力下降。由于水的饱和温度降低,比容增大。这时汽包水容积中会出现汽泡,造成实际水位的上升。这种现象称为虚假水位。 3.影响汽包水位的因素 从理论上讲,汽包内的水位是处于同一个水平面上的。随着锅炉负荷的变化和进入汽包给水量的变化,汽包内的水位会上升或下降。这时可以利用自动控制系统调节进入汽包的给水量以维持汽包的水位稳定在正常水位。 但是事实上汽包内的水位并非处于同一个水平面,而存在着高低不等情况。造成这一现象的原因是多方面的。 (1)下降管的影响 锅炉正常运行过程中汽包内的水是以很高的速度连续不断地进入下降管的。对于亚临界锅炉而言,下降管内的水流速度可以达到3m/s以上。这就使得汽包内的水面不再是一个理想的水平面,而会随下降管的布臵位臵而出现高低的差别,位于下降管正上方的水面必然会较低而其他部分则会较高。在自然循环锅炉上,汽包内水面高低分布的情况基本上是固定不变的。而在强制循环锅炉上情况就不同了。由于在下降管中增加了炉水循环泵,当泵的运行方式改变时,汽包内

汽包水位安装要求

汽包水位差压变送器安装要求 1、水位测量装臵安装时,均应以汽包同一端的几何中心线为基准线,采用水准仪精确确定各水位测量装臵的安装位臵,不应以锅炉平台等物作为参比标准。 2、安装差压式水位表安装汽水侧取样管时,应保证管道的倾斜度不小于1:100,对于汽侧取样管应使取样孔侧低,对于水侧取样管应使取样孔侧高。 3、每个水位测量装臵都应具有独立的取样孔。不得在同一取样孔上并联多个水位测量装臵,以避免相互影响,降低水位测量的可靠性。为确保冗余功能真正发挥作用,三套汽包水位测量系统应有各自的测孔、取样管、水位测量表计(或变送器)、输入/输出通道、I/O模件并引入DCS的冗余控制器,以满足三重冗余信号独立性原则。 4、三套汽包水位测量系统的一次取样管路水平管段正压侧/负压侧长度一致;平衡容器至差压仪表的正、负压管应水平引出400mm以上(最佳为800 mm)后再向下并列敷设。 5、安装水位测量装臵取样阀门时,应使阀门阀杆处于水平位臵。 6、三取二或三取中的三个汽包水位测量装臵的取样孔不应设臵在汽包的同一端头,同一端头的两个取样口应保持400mm以上距离。三个变送器安装时应保持适当距离。 7、汽水侧取样管和取样阀门均应良好保温。平衡容器及容器下部形成参比水柱的管道不得保温。引到差压变送器的两根管道应平行敷设共同保温,并根据需要采取防冻措施,但任何情况下,拌热措施不应引起正负压侧取样管介质产生温差。三取二或三取中的三个汽包水位测量装臵的取样管间应保持一定距离,且不应将它们保温在一起。 8、对于进入DCS的汽包水位测量信号应设臵包括量程范围、变化速率等坏信号检查手段。 9、要求汽包小间必须封闭完好,不允许出现对流通风现象。 10、后附安装示意图

锅炉汽包水位计标定的方法

锅炉汽包水位计标定的方法 一、锅炉水位测量原理: 差压式水位计的水位------差压转换原理如图一所示: 图一、差压转换原理 我们在不考虑温度变化而造成水的密度的变化和汽包压力的变化导致水密度的变化等情况,及不考虑补偿的情况下,公式(2)可以简化为: g H L g H g L P P P 水水水ρρρ)(-=-=-=?-+ (3) 式中:L 为平衡容器中参比水柱的高度;H 为汽包实际水位高度;水ρ水的密度, g 为重力加速度;(由式中可知:L 、水ρ、g 是固定的常数,只有H 是瞬时值, 在变化中)。 从公式和图一我们知道(当找零位和满位时,要关闭与汽包的链接的两个阀门): (1)、当H=L 时,△P=0时;证明锅炉汽包处于满水状态,此时变送器输出为20mA;(可以这样理解,当冷凝罐和水侧引压管灌满水后,打开变送器中间阀时,H=L,L=L,P_=P + ,则说明汽包水位处于满水状态)

时;证明锅炉汽包处于缺水状态,此时变送(2)、当H=0时,△P=g L 水 器输出为4mA。(可以这样理解,当冷凝罐和水侧引压管灌满水后,关闭变送器中间阀时,H=0,L=L,则说明汽包水位处于缺水状态) 注:从满位和零位标定看,变化的只有H,且H的变化范围为0~L;L是一直处于满水状态,没有变化。 二、广西四合工贸锅炉水位计结构和变送器安装形式: 图二、锅炉水位计内部结构和变送器安装图 其中:A、B为水位计一次阀;C、D为入变送器的控制阀;E、F为引压管排污阀;P1、P2、P3为压差变送器自带阀门,P1为变送器正端入口切断阀;P2为变送器负端入口切断阀;P3为变送器正负端连通阀。 三、锅炉水位计标定步骤: 1、A、B两个一次阀首先关闭,切断与汽包之间的联系;然后关闭E、F、P3阀,打开C、D、P1、P2阀,准备好灌水工作; 2、把排气孔堵头打开,往单室平衡器内灌水,直到水从排气孔溢流;

DRZT01-2004火力发电厂锅炉汽包水位测量系统技术规定

DRZT 01-2004 火力发电厂锅炉汽包水位测 量 系统技术规定 1适用范畴本标准规定了火力发电厂锅炉汽包水位测量系统的配置、补偿、安装和运行爱护的技术要求。 本标准适用于火力发电厂高压、超高压及亚临界压力的汽包锅炉。 2汽包水位测量系统的配置 2.1锅炉汽包水位测量系统的配置必须采纳两种或以上工作原理共存的配置方式。锅炉汽包至少应配置1 套就地水位计、3 套差压式水位测量装置和2 套电极式水位测量装置。 新建锅炉汽包应配置1 套就地水位计、3 套差压式水位测量装置和3 套电极式水位测量装置或1 套就地水位计、1套电极式水位测量装置和6套差压式水位测量装置。 2.2锅炉汽包水位操纵和爱护应分别设置独立的操纵器。在操纵室,除借助DCS 监视汽包水位外,至少还应当设置一个独立于DCS 及其电源的汽包水位后备显示外表(或装置)。 2.3锅炉汽包水位操纵应分别取自3 个独立的差压变送器进行逻辑判定后 的信号。3个独立的差压变送器信号应分别通过3个独立的输入/输出(I/O) 模件或3条独立的现场总线,引入分散操纵系统(DCS)的冗余操纵器。 2.4锅炉汽包水位爱护应分别取自3 个独立的电极式测量装置或差压式水位测量装置(当采纳6 套配置时)进行逻辑判定后的信号。当锅炉只配置2个电极式测量装置时,汽包水位爱护应取自2 个独立的电极式测量装置以及差压式水位测量装置进行逻辑判定后的信号。 3个独立的测量装置输出的信号应分别通过3 个独立的I/O 模件引入DCS 的冗余操纵器。 2.5每个汽包水位信号补偿用的汽包压力变送器应分别独立配置。 2.6水位测量的差压变送器信号间、电极式测量装置信号间,以及差压变送器和电

锅炉汽包水位测量误差分析

式中: h——汽包正常水位距水侧取样的距离,mm △h——水位计中的水位与汽包中水位的差值,mm Ps——饱和蒸汽密度,kg/m3 Pw——饱和水密度,kg/m3 Pa——水位计中水的平均密度,kg/m3 Ps'——水位计中蒸汽的密度,kg/m3 对就地水位计来说,汽包内的水温是对应压力下的饱和温度,饱和蒸汽通过汽侧取样孔进入水位计,水位计的环境温度远低于蒸汽温度,使蒸汽不断凝结成水,并迫使水位计中多余的水通过水侧取样管流回汽包。 从水和蒸汽的特性表可看出:在常温常压下,汽包和水位计中的水密度是相等的,从式(1)可见,水位计中的水位与汽包内的水位也是相同的,且与h值无关;随着汽压的升高,汽包中的水密度变小,蒸汽密度变大;而就地水位计因散热的影响,水位计中的水密度也变小,但变化幅度不如汽包内水的大;蒸汽密度虽也有增大,但变化幅度没汽包内的大,即Ps是不应等于Ps'的,但其影响只要保温处理的好,可忽略不计,下面的计算均是按Ps=Ps,来进行的;致使水位计中水位和汽包内水位的差值也随之增大,这一差值始终是就地水位计中水位低于汽包水位的主要因素;并且当h值改变时,水位差值也会改变。 为了给电厂提供参考,有的锅炉厂给出了就地水位计和汽包正常水位差值的参考数据见表1。 从表1所列数据,对于亚临界锅炉来说,在额定汽压下,就地水位计的水位比汽包内的水位要低100~150mm。下面以我厂(东方锅炉厂)在汽包额定压力18.2MPa下时汽包水位偏离正常水位的情况进行分析,根据式(1),取汽包水位为零时h=400mm,计算水位变化

±1OOmm时水位计显示情况。Pw、Ps为定值,假设Pa也为定值,取平均温度为300℃时的值。h'=h—△h,为就地水位计中的水柱高度,计算结果如表2所示。 从表中计算结果来看,汽包水位变化±100mm时,就地水位计的显示值只变化±68m m,还是假定水位计中水的温度不变,即Pa是定值的情况下计算的。实际上,当汽包内水位变化时,水位计中水的平均温度和密度均会随着变化的,汽包水位升高时,由于水的散热面增加,平均温度会下降,密度增大,水位计的指示也比表中计算的要低;而当汽包水位降低时,水的散热面减小,其平均温度升高,密度减小,水位计的指示应比表中计算的要高。当汽包水位变化±100mm时,就地水位计的变化还达不到±68mm,只是±50mm左右,并且就地水位计的误差并非是恒定值,在不同条件下有所变化,同一锅炉,在不同工况下,在不同的季节里,误差的变化还相当显著。所以依靠就地水位计来监视汽包水位是不安全、不准确的。必须改变运行中认为就地水位计的指示是准确的,并要求其它水位计的指示要与其一致。就地水位计可作为额定压力下核对其它水位计正常水位值(零位)的参考。 2 电接点水位计 电接点水位计的工作原理与就地水位计的完全相同,属于连通管式,利用与受压容器相连通的测量筒上的电接点浸没在水中与裸露在蒸汽中的导电率的差异,通过显示仪表显示水位。一般只配有一套,安装在汽包的一端,通过信号线传到集控室监视,也有的将接点信号引入停炉保护系统。 电接点水位计的工作原理与就地水位计相同,所以就地水位计存在的问题,它同样存在,即电接点水位计显示的水位与汽包实际水位存在偏差,且不是固定的,汽包水位波动时其显示不能与之对应。电接点水位计与就地水位计因结构、材料、形状、安装、散热情况的不同,它们之间的显示值也必然存在偏差;电接点水位计还存在电接点因挂水而误发信号的问题。所以在亚临界的锅炉上采用电接点水位计测量水位是不安全的、不准确的,作为保护用信号是更不可取的。 3 差压式水位计 差压式水位计的工作原理是在汽包水位取样管上安装平衡容器,利用液体静力学原理使水位转换成差压,用引压管将差压信号送至差压计,由差压计显示汽包不位。经过发展现在采用智能式差压变送器来测量汽包水位,特别计算机控制技术的引入,从技术性能、安全性、可靠性都有了极大的提高,现在亚临界锅炉均采用差压式水位计作为汽包水位测量的主要手段,并作为汽包水位控制、保护信号用。

汽包水位测量系统应合理配置

高维信1,荆予华 2 (1.淮安维信仪器仪表有限公司,江苏淮安 223001; 2.焦 作电厂,河南焦作 454001) 摘要:分析汽包水位监控保护测量系统按2套就地水位表、3套差压水位计配置(简称“5套配置”)的缺陷及采用“5套配置”的客观原因。介绍“多测孔接管”技术不需在汽包上开孔而增加独立取样测孔,解决了汽包原有水位测孔过少影响合理配置的难题,以及新型电接点水位测量筒高精度取样、高可靠性传感,使电接点水位计可靠地用于监视主表和保护。简介汽包水位测量系统优化配置原则与效果,建议尽早修订有关“5套配置”的规定。 关键词:电厂锅炉;汽包水位;监控保护;测量系统;优化配置 中图分类号:TK316 文献标识码:B 文章编号:1004-9649(2004)04-0000-00 0 引言 大型锅炉汽包内各局部汽流、水流及汽水混合物的流速分布往往不均匀,导致水位高 低不平,水位测量易受各种干扰。这是准确、稳定测量水位的困难之处及要实施多点测 量的原因所在。 汽包水位监控的任务是:将水位准确控制在0线附近,使饱和蒸汽品质最佳;事故水 位时手动或自动停炉;特殊操作监控,如停炉后汽包满水快冷的上水操作和满水状态的 监视,缺水停炉后及时判断可否补水,尽快恢复运行等。 满足汽包水位安全监控和事故处理的需求是水位测量技术进步的动力。仪表行业采取 化难为易的策略,针对监视、自动调节、保护的不同功能系统要求,研制了各种水位计,其性能又各有长短,形成在用水位计多样化。显然,监控保护系统设计应针对水位计的 现状,扬长避短,按不同功能需求优选、冗余配置水位计[1]。 长期以来,水位计测量与配置问题导致运行人员误判断、误操作,水位预警失灵,停 炉保护拒动,造成锅炉多起重大水位事故,而保护误动事故更多。因此要求尽快解决水 位测量问题的呼声很高。借助于分散控制系统(DCS)技术,差压水位计在一定程度上提 高了性能,所以2001年《国家电力公司电站锅炉汽包水位测量系统配置、安装和使用若 干规定(试行)》正式出台。尽管这一规定中的“安装和使用”等条款对防止重大水位事 故有重要作用,但由于受到汽包水位测孔少、普通电接点水位计不足以用于监视主表(基 准表)和保护仪表等客观技术条件的限制,对于至关重要的测量系统配置问题,采取了 简化处理(按“5套配置”),遗留问题较多,难以收到预期效果。 汽包水位测量技术的进步必然促进监控保护测量系统配置的更新。先进的测量技术 与装置如多测孔接管技术和新一代电接点水位计的成功应用,使得原本认为相对合理的 配置有了新的认识。目前来看,“5套配置”及相应的原则性条款已限制了汽包水位测量 系统更合理的配置改进,影响监控保护系统设计进一步满足运行需求,这一问题已引起 电厂和热控专家的密切关注。 收稿日期:2003-09-19;修回日期:2004-02-05 作者简介:高维信(1942-),男,江苏睢宁人,高级工程师(教授级),从事火电厂热工自动化工作。 E-mail:webmaster@https://www.doczj.com/doc/981185167.html,

关于汽包水位测量问题

就地水位计 有:玻璃板式水位计、就地双色水位计、电接点式水位计几种。原理都是通过连通器原理,即在液体密度相同的条件下,连通管中各个支管的液位均处于同一高度。见下图。只不过看的方式不同而已 对于就地水位计来讲,存在着散热误差,导致读数不准。

上面公式推导过程:(假定饱和蒸汽密度与水H*ρ’=H 位计中蒸汽的密度相同) 管向周围空间散热,其水柱温度实际上低于容器内水的温度,直接影响水位计误差值|△h |与水位值H 成正比,即水位值H 越高(以水侧连通高,ρ'减少, ρ"增大,即在同样的散热条件下 (ρ1-ρ')变大,(ρ1-ρ上讲,当ρ1=ρ'时,(1)式可以简化为H1=H ,也就是说水位计水位值等于容器内水MW 机组)在高水位运行时,汽包水位计的“散热”误差值达100~150取样孔及连通管): 方向倾斜,水侧取样管应向下向容器方向倾斜,一般的上部不用保温: 一、个凸面安装法与高压容器上所对应的安装法兰相连接,组成一个高压二、1*ρ1+(H-H 1) *ρ ’’ H*ρ’=H 1*ρ1+H*ρ’’-H 1* ρ’’H*ρ’- H*ρ’’=H 1*ρ1 -H 1*ρ’’ H*(ρ’- ρ’’)=H 1*(ρ1-ρ’’) H 1=[(ρ’- ρ’’)/ (ρ1-ρ’’)]*H (1)直接“散热”误差 由于测量筒及其引位计测量筒内水的密度ρ1,即测量筒内水的密度ρ1大于容器内水的密度ρ',由(1)式可知水位计显示的水位H ,比容器内水位H 低。由(2)式可以看出,水位计测量筒散热越多,ρ1也就越大,因而测量误差|△h |越大,这种误差我们称为直接“散热”误差。为了减少直接“散热”误差|△h |,一般在水位计测量筒的下部至水侧连通管应加以保温,以减少测量筒水柱温度与容器内水的温度之差:同时水位计的汽侧连通管及水位计测量筒的上部不用保温,并让汽侧连通管保持一定的倾斜度,使更多的凝结水流入测量筒,以提高水位计测量筒内水的密度ρ1。 (2)取样“散热”误差 由式(2)可以看出,水管作零点),水位计误差值|△h |就越大,可以说存在取样“散热”误差。由图1可以看出,若容器内实际水位不变,当水位计水侧取样孔及连通管向上移时(相当于零水位线上移),容器水位示值H 减少,则由式(2)可以看出,水位计取样“散热”误差|△h |可减少。为了能测量到水位下限,水位计水侧取样向上移是有限的,因此图1中取样“散热”误差是无法完全消除的。 (3)工况“散热”误差 随着容器压力的增")变小,由式(2)可以看出测量误差|△h |增大,这种误差我们称为工况“散热”误差。在图1的水位计中,容器的工作压力是由运行工况决定的,因此工况“散热”误差是无法消除的。 从理论位值(实际水位):同时(2)式可以简化为△h=0,也就是说水位计的三种”散热”误差均为0(无“散热”误差)。 一般高压锅炉(如300mm ,有可能造成各种联锁及保护失效,因此对减少甚至消除“散热”误差最为关键。减少水位计的“散热”误差应注意如下: (1)每一种水位计应单独取样(有单独的 (2)容器与测量筒的连通管不宜长; (3)水位计的汽侧取样管应向上向容器至少应有1:100的斜度: (4)水位计汽侧取样管及测量筒 (5)水位计水侧取样管及测量筒下部的保温应良好:玻璃板式水位计 以仪表上、下端两连通器,通过该液位计可直接观察到高压容器内介质液位的实际高度。 就地双色水位计:

火力发电厂锅炉汽包水位测量系统技术规定

火力发电厂锅炉汽包水位测量系统技术规定 A 01 备案号:0401-2004 DRZ 电力行业热工自动化标准化技术委员会标准 DRZ/T 01-2004 火力发电厂锅炉汽包水位测量系统技术规定 Code for level Measuremet System of Boiler drum in Fossil Fuel Power Plant 2004-10-20发布2004-12-20实施 电力行业热工自动化标准化技术委员会发布 前言 本标准根据电力行业热工自动化标准化委员会的安排进行编制。 本标准为电力行业热工自动化标准化技术委员会颁发的新编标准。 本标准由电力行业热工自动化标准化技术委员会提出并归口。 本标准主要起草单位:电力行业热工自动化标准化技术委员会标准起草工作组。 本标准主要起草人:侯子良。 本标准由电力行业热工自动化标准化委员会解释。 目次 1 适用范围 2 汽包水位测量系统的配置 3 汽包水位测量信号的补偿 4 汽包水位测量装置的安装 5 汽包水位测量和保护的运行维护 编制说明

1 适用范围 本标准规定了火力发电厂锅炉汽包水位测量系统的配置、补偿、安装和运行维护的技术要求。 本标准适用于火力发电厂高压、超高压及亚临界压力的汽包锅炉。 2 汽包水位测量系统的配置 2.1 锅炉汽包水位测量系统的配置必须采用两种或以上工作原理共存的配置方式。 锅炉汽包至少应配置1套就地水位计、3套差压式水位测量装置和2套电极式水位测量装置。新建锅炉汽包应配置1套就地水位计、3套差压式水位测量装置和3套电极式水位测量装置或1套就地水位计、1套电极式水位测量装置和6套差压式水位测量装置。 2.2 锅炉汽包水位控制和保护应分别设置独立的控制器。在控制室,除借助DCS监视汽包水位外,至少还应设置一个独立于DCS及其电源的汽包水位后备显示仪表(或装置)。 2.3 锅炉汽包水位控制应分别取自3个独立的差压变送器进行逻辑判断后的信号。3个独立的差压变送器信号应分别通过3个独立的输入/输出(I/O)模件或3条独立的现场总线,引入分散控制系统(DCS)的冗余控制器。 2.4 锅炉汽包水位保护应分别取自3个独立的电极式测量装置或差压式水位测量装置(当采用6套配置时)进行逻辑判断后的信号。当锅炉只配置2个电极式测量装置时,汽包水位保护应取自2个独立的电极式测量装置以及差压式水位测量装置进行逻辑判断后的信号。3个独立的测量装置输出的信号应分别通过3个独立的I/O模件引入DCS的冗余控制器。 2.5 每个汽包水位信号补偿用的汽包压力变送器应分别独立配置。 2.6水位测量的差压变送器信号间、电极式测量装置信号间,以及差压变送器和电极式测量装置的信号间应在DCS中设置偏差报警。 2.7 对于进入DCS的汽包水位测量信号应设置包括量程范围、变化速率等坏信号检查手段。 2.8 本标准要求配置的电极式水位测量装置应是经实践证明安全可靠,能消除汽包压力影响,全程测量水位精确度高,能确保从锅炉点火起就能投入保护的产品,不允许将达不到上述要求或没有成功应用业绩的不成熟产品在锅炉上应用。汽包水位测量系统的其它产品和技术也应是先进的、且有成功应用业绩和成熟的。 3 汽包水位测量信号的补偿 3 .1 差压式水位测量系统中应设计汽包压力对水位-差压转换关系影响的补偿。应精心配置补偿函数以确保在尽可能大的范围内均能保证补偿精度。 3.2 差压式水位表应充分考虑平衡容器下取样管参比水柱温度对水位测量的影响。 应采用参比水柱温度稳定、接近设定温度的平衡容器,或采用经实践证明有成功应用经验的参比水柱温度接近饱和温度的平衡容器。

锅炉汽包水位控制系统的设计

/ 过程控制系统实验报告( 专业 xxxxxx 班级 xxxxxxxxx 学生姓名 xxxxxx < 学号 xxxxxxxx

锅炉汽包水位控制系统设计 < 一、控制要求 设计一个汽包水位控制系统,使汽包水位维持在90CM,稳态误差±0,5CM,以满足生产要求。 二、完成的主要任务 1.掌控锅炉生产蒸汽工及其工作流程 2.对被控对象进行特性分析,画出汽包水位控制系统方框图和流程图 3.选择被控参数和被控变量,说明其选择依据 4.】 5.设计控制系统方案,如何选择检测仪表,说明其选择原则和仪表性能指标 6.说明单回路控制系统4个环节的工作形式对控制过程 7.对控制进行PID控制说明其参数整定理论 8.对锅炉汽包水位进行simulink仿真,对参数进行整定,其仿真图要满足动态性能 指标 9.总结实验课程设计的经验和收获 (

* 过程控制系统实验报告............................... - 0 -第一章锅炉汽包水位控制系统的组成原理............ - 3 -概述............................................ - 3 -! 锅炉生产蒸汽工艺简述 ............................ - 3 - 锅炉生产蒸汽工作流程 ............................ - 4 - ............... - 5 -对被控对象进行特性分析 ............................... - 5 -汽包水位控制系统方框图和流程图......................... - 5 -液位控制系统的方框图.................................. - 5 - 液位控制系统的方案图.................................. - 6 -选择被控参数和被控变量 ................................ - 6 -; 选择检测仪表,说明其选择原则和仪表性能指标............. - 7 -传感器、变送器选择........................................... - 7 -执行器的选择................................................. - 8 -关于给水调节阀的气开气关的选择。............................. - 8 - 关于给水调节阀型号的选择。.................................. - 8 -

汽包水位调试分析

第二章锅炉汽包水位测量系统试验 第一节简介 1.1汽包水位测量的重要性 锅炉汽包水位是锅炉运行的一项重要安全性指标。水位过高或急剧波动会引起蒸汽品质的恶化和带水,造成受热面结盐,严重时会导致汽轮机水冲击、损坏汽轮机叶片;水位过低会引起排污失效,炉内加药进入蒸汽,甚至引起下降管带汽,影响炉水循环工况,造成锅炉水冷壁爆管。由于汽包水位测量和控制问题而造成的上述恶性事故时有发生,严重威胁火电厂机组的正常运行和安全。 锅炉运行中,我们主要通过水位测量系统监视和控制汽包水位。当汽包水位超出正常运行范围时,通过报警系统发出报警信号,同时保护系统动作采取必要的保护措施,以确保锅炉和汽轮机的安全。 1.2汽包水位测量的基本方法 目前,从锅炉汽包水位测量的基本原理看,广泛使用的主要是联通管式和差压式两种原理的汽包水位计。由于锅炉汽包水位计对象的复杂性,以及联通管式和差压式测量原理的固有特性,决定了汽包水位测量的复杂性以及实际运行中存在的不确定因素,一致多个汽包水位计常常存在较大偏差,容易酿成事故。根据新版《火力发电厂锅炉汽包水位测量系统技术规定》DRZ/T 01-2004规定: 1)锅炉汽包水位测量系统的配置必须采用两种或以上工作原理共存的配置方式,以防 止系统性故障。锅炉汽包至少应配置 1 套就地水位计、3 套差压式水位测量装置 和 2 套电极式水位测量装置。 2)应严格遵循锅炉汽包水位控制和保护独立性的原则,最大限度地减少故障风险,并 降低故障停机几率。 3)汽包水位保护和控制的测量系统至少应按三重冗余的原则设计。 4)汽包水位至少配置两种相互独立的监视仪表。 5)锅炉汽包水位控制应分别取自 3 个独立的差压变送器进行逻辑判断后的信号。 6)锅炉汽包水位保护应分别取自 3 个独立的电极式测量装置或差压式水位测量装置 ( 当采用 6 套配置时 ) 进行逻辑判断后的信号。当锅炉只配置 2 个电极式测量 装置时 , 汽包水位保护应取自 2 个独立的电极式测量装置以及差压式水位测量 装置进行逻辑判断后的信号。3 个独立的测量装置输出的信号应分别通过 3 个独 立的I/O模件引入 DCS 的元余控制器。 7)汽包水位测量信号应采取完善的信号判断手段,以便及时地报警和保护。 只有深刻理解上述两种锅炉汽包水位的测量原理及其误差的成因,才能清醒的指导锅炉汽包水位测量系统的设计、安装、调试和运行维护。下面就对联通管式和差压式水位计的测量原理进行分别介绍。 1.3联通管式汽包水位计测量原理 联通管式水位计结构简单 , 显示直观 , 如图 1 所示 , 它可以做成仅仅在就地显示的云母水位计 ( 包括便于观察的双色水位计 ) , 也可以采取一些远传措施 , 如在水位计中加电接点或用摄像头等构成电极式水位计或工业电视水位计等。但就其原理来说 , 都是属于联通管式测量原理。。其中云母水位计常用于连接水位电视;电接点

双室平衡容器汽包水位测量

双室平衡容器汽包水位测量及其补偿系统的应用来源:中国论文下载中心 [ 06-02-27 13:38:00 ] 作者:吴业飞时敏编辑:studa9ngns 摘要:本文以实践为基础,剖析了双室平衡容器的工作原理与特性。重点论述了补偿系统的建立方法与步骤,同时指出了应用中的常见错误并提出了解决方案。 关键词:水位测量汽包水位双室平衡容器补偿 1.摘要 本文以实践为基础,剖析了双室平衡容器的工作原理与特性。重点论述了补偿系统的建立方法与步骤,同时指出了应用中的常见错误并提出了解决方案。 2.前言 汽包水位是锅炉及其控制系统中最重要的参数之一,双室平衡容器在其中充当着不可或缺的重要角色。但是由于一些用户对于双室平衡容器及其测量补等方面缺少全面的必要的了解或者疏漏,致使应用中时有错误发生,甚至形成安全隐患。例如胜利油田胜利发电厂一期工程,该工程投入运行早期其汽包水位测量系统的误差竟达70~90mm,特殊情况下误差将会更大(曾因此造成汽包满水停机事故)。迄今为止,据不完全了解,目前仍有个别用户存在一些类似的问题或者其它问题。汽包水位是涉及机组安全与和运行的重要参数和指标,因此不允许任何人为的误差。为使用户能够更好地掌握双室平衡容器在汽包水位测量中的应用,谨撰此文。不足之处,请不吝指正。 3.双室平衡容器的工作原理 3.1.简介 双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。它的主要结构如图1所示。在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。

锅炉汽包水位控制系统

1.汽包水位的动态特性描述 (1) 1.1.汽包在给水流量作用下的动态特性 (1) 1.2.汽包水位在蒸汽流量扰动下的动态特性 (2) 2.汽包水位控制方案的选择及其原理 (4) 2.1.三冲量控制原理及各部分的作用 (4) 2.1.1.控制原理 (4) 2.1.2.各部分的作用 (5) 3.前馈-串级控制系统的特点和调节器作用方式判断 (7) 3.1.控制系统的特点 (7) 3.1.1.前馈控制系统的特点 (7) 3.1.2.串级控制系统特点 (7) 3.2.调节器作用方式判断 (7) 3.2.1.判断副调节器的作用方式 (7) 3.2.2.判断主调节的作用方式 (7) 4.控制仪表及技术参数 (8) 4.1.控制仪表的选定 (8) 4.2.各元器件的型号及参数 (8) 5.总结与体会 (10) 参考文献 (11)

在锅炉运行中,水位是一个很重要的参数。若水位过高,则会影响汽水分离的效果,使用气设备发生故障;而水位过低,则会破坏汽水循环,严重时导致锅炉爆炸。同时高性能的锅炉发生的蒸汽流量很大,而汽包的体积相对来说较小,所以锅炉水位控制显得非常重要。锅炉水位自动控制的任务,就是控制给水流量,使其与蒸发量保持平衡,维持汽包内水位在允许的范围内变化。 锅炉汽包水位是一种非线性、时变大、强耦合的多变量系统,讨论了目前通常采用的控制方法,分析了水位对象模型的动静特性。首先从锅炉汽包内水的热平衡、物质平衡原理出发,推导出了用来描述锅炉水位对象的通用机理控制模型,通过对几种控制方案的分析、研究与比较,选三冲量系统作为最佳控制方案,并着力研究三冲量系统的特点。 关键词:锅炉汽包水位控制三冲量控制系统

DRZT01-2004火力发电厂锅炉汽包水位测量系统技术规定

火力发电厂锅炉汽包水位测量系统技术规定 火力发电厂锅炉汽包水位测量系统技术规定(DRZ/T 01-2004) 1 适用范围 本标准规定了火力发电厂锅炉汽包水位测量系统的配置、补偿、安装和运行维护的技术要求。 本标准适用于火力发电厂高压、超高压及亚临界压力的汽包锅炉。 2 汽包水位测量系统的配置 2.1 锅炉汽包水位测量系统的配置必须采用两种或以上工作原理共存的配置方式。 锅炉汽包至少应配置1套就地水位计、3套差压式水位测量装置和2套电极式水位测量装置新建锅炉汽包应配置1套就地水位计、3套差压式水位测量装置和3套电极式水位测量装置或1套就地水位计、1套电极式水位测量装置和6套差压式水位测量装置。 2.2 锅炉汽包水位的控制和保护应分别设置独立的控制器。在控制室,除借助DCS监视汽包水位外,至少还应设置一个独立于DCS及其电源的汽包水位后备显示仪表(或装置)。 2.3 锅炉汽包水位控制应分别取自3个独立的差压变送器进行逻辑判断后的信号。3个独立的差压变送器信号应分别通过3个独立的输入/输出(I/O)模件或3条独立的现场所总线,引入分散控制系统(DCS)的冗余控制器。 2.4 锅炉汽包水位保护应分别取自3个独立的电极式测量装置或差压式水位测量装置(当采用6套配置时)进行逻辑判断后的信号。当锅炉只配置2个电极式测量装置时,汽包水位保护应取自2个独立的电极式测量装置以及差压式水位测量装置进行逻辑判断后的信号。 3个独立的测量装置输出的信号应分别通过3个独立的I/O模件引入DCS的冗余控制器。 2.5 每个汽包水位信号补偿用的汽包压力变送器应分别独立配置。 2.6 水位测量的差压变送器信号间、电极式测量装置信号间,以及差压变送器和电极式测量装置的信号间应在DCS中设置偏差报警。 2.7 对于进入DCS的汽包水位测量信号应设置包括量程范围、变化速率等坏信号检查手段 2.8 本标准要求配置的电极式水位测量装置应是经实践证明安全可靠,能消除汽包压力影响,全程测量水位精确度高,能确保从锅炉点火起就能投入保护的产品,不允许将达不到上述要求或没有成功应用业绩的不成熟产品在锅炉上应用。 汽包水位测量系统的其他产品和技术也应是先进的、且有成功应用业绩和成熟的。 3 汽包水位测量信号的补偿 3.1 差压式水位测量系统中应设计汽包压力对水位—差压转换关系影响的补偿。应精心配置补偿函数以确保在尽可能大的范围内均能保证补偿精度。 3.2 差压式水位表应充分考虑平衡容器下取样管参比水柱温度对水位测量的影响。 应采用参比水柱温度稳定、接近设定温度的平衡容器,或采用经实践证明有成功应用经验的参比水柱温度接近饱和温度的平衡容器。 必要时也可装设能反映参比水柱温度的温度计,监视与设计修正温度的的偏差,及由此产生的水位测量的附加误差。 4 汽包水位测量装置的安装 4.1 每个水位测量装置都应具有独立的取样孔。不得在同一取样孔上并联多个水位测量装置,以避免相互

(完整版)基于PLC的锅炉汽包水位控制系统设计毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编辑。 摘要 汽包水位是影响锅炉安全运行的一个重要参数,汽包水位过高或者过低的后果都非常严重,因此对汽包水位必须进行严格控制。PLC技术的快速发展使得PLC广泛应用于过程控制领域并极大地提高了控制系统性能,PLC已经成为当今自动控制领域不可缺少的重要设备。 本文从分析影响汽包水位的各种因素出发,重点分析了锅炉汽包水位的“假水位现象”,提出了锅炉汽包水位控制系统的三冲量控制方案。按照工程整定的方法进行了PID参数整定,并进行了仿真研究。根据控制要求和所设计的控制方案进行硬件选型以及系统的硬件设计,利用PLC编程实现控制算法进行系统的软件设计,最终完成PLC在锅炉汽包水位控制系统中应用。 关键词:汽包水位三冲量控制PLC PID控制

ABSTRACT The steam drum water level is a very important parameter for the boiler safe operation, both widely be applied to the process control domain and enhances the performance of control system enormously. PLC automatic control domain. Based on the analysis of all kinds of factors which influence steam drum water level, “unreal water level phenomenon”is analyzed specially, and three impulses control plan for steam drum water level control system is proposed. PID parameters are regulated by engineering regulation method, and simulation study is done. According to the needs of control, the selection of control requirements as well as system software design are carried out. Finally the application of PLC in boiler steam drum water control system is completed. Key words: Steam drum water level Three impulses control PLC PID control

相关主题
文本预览
相关文档 最新文档