当前位置:文档之家› 开闭式反循环钻头的结构设计与工作原理

开闭式反循环钻头的结构设计与工作原理

开闭式反循环钻头的结构设计与工作原理
开闭式反循环钻头的结构设计与工作原理

三牙轮钻头工作原理

第一章三牙轮钻头工作原理 第一节三牙轮钻头在井底的运动 在石油钻井中,牙轮钻头能适应各种地层的钻井,是主要的破岩工具之一。牙轮钻头在井底工作时的运动状态和受力状态是相当复杂的。国内外对牙轮钻头的工作原理,无论在理论研究或实验研究方面都作了大量的工作,这些研究成果为钻头的设计使用提供了依据。 三牙轮钻头在井底的运动,决定牙轮与牙齿的运动,也就直接决定牙齿对地层岩石的破碎作用。因此,在了解钻头破碎岩石的工作原理之前,首先应了解钻头在井底的运动。 一、钻头的公转 钻头牙轮绕钻头轴线作顺时针方向旋转的运动简称为钻头的公转。钻头公转的速度就是转盘或井下动力钻具的旋转速度。钻头公转时,牙轮绕钻头轴线旋转,牙轮上各排牙齿绕钻头轴线旋转的线速度不同,外排齿的线速度最大。 二、钻头的自转 钻头旋转时,沿着从牙轮底平面到牙轮尖部的方向看,牙轮绕自身的轴线作反时针方向的旋转称自转。牙轮的转动是岩石对牙齿的吃入破碎作用产生反作用的结果。牙轮自转转速的影响因素有公转转速、钻头结构、齿面结构、钻井参数和岩石性质等。一般情况下,牙轮自转的转速比钻头公转的转速快。把牙轮自转转速与钻头公转转速之比称为轮头比,轮头比的值一般在1--1.5之间。 三、钻头的纵振(轴向振动) 钻头工作时,对一个牙轮而言,牙齿与井底的接触是单齿、双齿交替进行的。单齿着地时,牙轮的轮心处于最高位置,双齿着地时则轮心下降。牙轮在转动过程中,轮心位置不断上下变换,使钻头沿轴向作上下往复运动,这就是钻头的轴向振动。纵振振幅就是轮心的垂直位移,它与牙齿的齿高、齿距等钻头结构参数及岩性有关。在软地层,牙齿吃入深、振幅小,硬地层则振动加剧。振动的频率与牙轮齿数及牙轮转速成正比。在旋转钻井中,钻头纵振频率一般为100~500次/min。 此外,由于井底不平,钻头产生振幅较大的低频振动。据国外资料介绍,低频振动的振幅就是井底凹凸部分的高差,一般为10mm左右,频率低于50次/min。低频纵振对钻头是不利的因素,在硬地层中会造成跳钻。牙轮钻头的纵振是上述

气举反循环钻井工艺及应用

气举反循环钻井工艺及应用 摘要气举反循环钻井工艺的发展较晚,但由于此工艺实用性强、优点多,近些年来发展迅速。气举反循环在水井、地热井、瓦斯排放井等施工中均取得了非常好的成果。由于受沉没系数的限制,气举反循环工艺不能胜任地表钻进,因此在施工地表钻进时需合理选择其它钻进方法。 关键词气举反循环;瓦斯抽放井;水井;地热井 1 气举反循环的发展史 20世纪60年代初期,我国地质、冶金等部门开始分别研制反循环钻机。煤炭部门20世纪70年代初期成功的采用了气举反循环进行煤矿竖井钻进。20世纪70年代到80年代初期,我国很多部门和单位都成功地利用气举反循环钻进工艺进行各种钻进。目前气举反循环钻探技术己在我国许多个省市推广,并推向国外市场,该技术最大钻井深度达3 002m,洗井井深为3 200m。气举反循环钻井己成为水井、地热井、瓦斯排放井、煤层气井施工的主要技术手段。 2 气举反循环设备及工作原理 2.1 气举反循环的设备 气举反循环设备包括:钻机、钻塔、空压机、双臂主动方钻杆、气水龙头(气盒子)、双臂钻杆(风管)、混合器、单臂钻杆、钻铤或加重钻杆、钻头(通常使用专用的三牙轮钻头)、振动筛、接手等。 2.2 气举反循环的工作原理 气举反循环是用空压机将压缩的空气通过供气管、气盒子、双臂主动方钻杆、双臂钻杆的环状空间送至钻具中的混合室,然后进入双臂钻杆内管内,使其与内管里的冲洗液及岩屑岩粉混合,形成了比重小于冲洗液的混合物,使钻杆内液柱压力降低,在钻杆内外形成压力差;在钻杆柱外侧冲洗液压力的作用下,钻杆内的混合物上升,经排渣管排出孔外送至振动筛,振动筛将岩屑岩粉分离出来,冲洗液重新流至孔内形成循环。 压缩空气由混合室进入钻杆内,与冲洗液混合形成气泡,这种气泡在上升过程中由于外界压力逐渐减小而继续膨胀,其膨胀功转化为动能,提高了混合液上升的速度。气举反循环通常下部钻具为单臂钻杆,上部为双臂钻杆。在混合室以下,钻杆内为固、液混合物,混合室以上为固、液、气混合物。 3 气举反循环的应用及成果 3.1 在瓦斯抽放井中的应用及成果

水泵工作原理

内蒙古京能电力检修有限公司岱电维护项目部 辅机班01 月份培训课件 京能电力检修岱电维护项目部汽机车间辅机班 二0一二年

水泵工作原理 水泵按其工作原理可以分为三大类:叶片式水泵,容积式水泵,其他类型水泵。在我厂生产中大部分使用的是离心泵,是叶片泵的一种,由于这种泵的工作是靠叶轮高速旋转时叶片拨动液体旋转,使液体获得离心力而完成水泵的输水过程所以这种泵称为离心泵。 离心泵的应用是很广泛的,在国民经济的许多部门要用到它。在给水系统中几乎是不可缺少的一种设备,如若把自来水管网当作人身的血管系统,那么离心泵就是压送血液的心脏。由于离心泵是一种重要的设备,而且它的运转要消耗大量的动力!为了合理,经济的选择和使用水泵,以保证水厂供水,就必须对离心泵的工作原理和基本性能等方面有所了解。 一、离心泵的基本构造 离心泵的基本构造是由六部分组成的,分别是叶轮,泵体,泵轴,轴承,密封环,填料函。 1、叶轮是离心泵的核心部分,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。叶轮上的内外表面要求光滑,以减少水流的摩擦损失。 2、泵体也称泵壳,它是水泵的主体。起到支撑固定作用,并与安装轴承的托架相连接。 3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。

4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 5、密封环又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。 6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。 二、离心泵的过流部件 离心泵的过流部件有:吸入室,叶轮,压出室三个部分。叶轮室是泵的核心,也是流部件的核心。泵通过叶轮对液体的作功,使其能

反循环钻井技术

反循环钻井 【摘 要】 钻井液从井筒环空流入,经钻头、钻具内眼返出为反循环钻井。反循环钻井技术具有减少地层漏失、保护油气层、岩样代表清晰等优点。反循环钻井分为气举反循环、空气反循环、泵吸反循环等。气举反循环钻井技术从装备上需要空气压缩机、储气罐、气盒子、双壁钻具、混气器、反循环钻头等,现场利用原钻机连接上述设备进行作业,应用结束拆走设备后不影响正常钻井作业,利用反循环钻井原理,进行了捞砂工艺的研究及工具的研制。通过试验及现场应用,设备配套实用,漏层连续钻进400余米,效果良好。 1 气举反循环钻井概述 气举反循环钻井,是将压缩空气通过气水龙头 或其它注气接头(气盒子),注入双层钻具内管与外 管的环空,气体流到双层钻杆底部,经混气器处喷 入内管,形成无数小气泡,气泡一面沿内管迅速上 升,一面膨胀,其所产生的膨胀功变为水的位能, 推动液体流动;压缩空气不断进入内管,在混合器 上部形成低比重的气液混合液,钻杆外和混气器下 部是比重大的钻井液。如图1所示,h 1为钻具内混 合钻井液高度,密度为ρ1;h 2为钻具内未混合的钻 井液高度,密度为ρ2;H 为环空钻井液高度,密度 为ρ,由于ρg H >ρ1g h 1+ρ2g h 2,环空钻井液进入钻 具水眼内,形成反循环流动,并把井底岩屑连续不 断的带到地表,排入沉砂池。沉淀后的泥浆再注入 井眼内,如此不断循环形成连续钻进过程。 钻井液循环流程见图2:沉砂池—环空—钻头 —钻具内水眼—混气器(与注入空气混合)—双壁 钻具内水眼—水龙带—排液管线—沉砂池。 优点及用途 (1)能实现地质捞砂目的 气举反循环钻井液流在钻具内直接上返,携带 岩屑能力强,岩样清晰,在漏失地层钻进时能实现 捞砂等地质目的。 (2)提高漏层钻井效率 气举反循环钻井时,钻头处的钻井液对井底产 生抽汲作用,岩屑被及时带走,减少压实效应,在 漏层钻井时,可减少岩屑重复破碎、能提高机械钻 速,增加钻井效率。 (3)可减少或消除钻井液的漏失,保护储层 由于反循环钻井时环空压耗小,作用于地层的压力小,所以在易漏地层钻进时,可减少或消除钻井液的漏失,保护储层,并节约大量钻井液材消耗。 图1 反循环钻井驱动原理 图2 反循环钻井循环示意图

三牙轮钻头

三牙轮钻头是应用最广泛的钻井钻头(https://www.doczj.com/doc/9810878430.html,)之一,具有适应地层广,机械钻速高的特点。三牙轮钻头由切削结构、轴承结构、锁紧元件、储油密封装置、喷嘴装置等二十多种零部件组成。 三牙轮钻头的分类 1、轴承类型:滚动轴承和滑动轴承 2、密封类型:橡胶密封和金属密封 3、按牙齿的固定方式分为:镶齿(硬质合金齿)三牙轮钻头和铣齿(钢齿)三牙轮钻头 三牙轮钻头的工作原理 牙轮钻头在钻压和钻柱旋转的作用下,牙齿压碎并吃入岩石,同时产生一定的滑动而剪切岩石。当牙轮在井底滚动时,牙轮上的牙齿依次冲击、压入地层,这个作用可以将井底岩石压碎一部分,同时靠牙轮滑动带来的剪切作用削掉牙齿间残留的另一部分岩石,使井底岩石全面破碎,井眼得以延伸。[1] 产品优势 石油钻井和地质钻探中应用最多的还是牙轮钻头。牙轮钻头在旋转时具有冲击、压碎和剪切破碎地层岩石的作用,所以,牙轮钻头能够适应软、中、硬的各种地层。特别是在喷射式牙轮钻头和长喷嘴牙轮钻头出现后,牙轮钻头的钻井速度大大提高,是牙轮钻头发展史上的一次重大革命。牙轮钻头按牙齿类型可分为铣齿(钢齿)牙轮钻头、镶齿(牙轮上镶装硬质合金齿)牙轮钻头;按牙轮数目可分为单牙轮、双牙轮、三牙轮和多牙轮钻头。目前,国内外使用最多、最普遍的是三牙轮钻头。 在石油、勘探以及各种钻探行业中牙轮钻头是不可缺少的重要部分,但是牙轮钻头对一些钻探行业来说价格实在太高,这就促使一些钻探行业对 二手牙轮钻头产生了很大兴趣,其价格低,质量可靠(在石油钻探中只使用 了其寿命的1/3),为钻探行业降低了大量成本,所以二手牙轮钻头已经成为一些钻探行业中的一重要部分. FJ517G三牙轮钻头 所属分类 钻井,勘探,石油,钻头,钻井配件 产品名称 215.9mm金属密封江汉镶齿三牙轮钻头

气举反循环的简介

气举反循环简介 一、气举反循环的力学原理 1.正、反循环 反循环指的是泥浆在桩孔和导管中循环的一种方式,与之对应的是泥浆正循环。如下图所示,泥浆由孔口补给,由导管排出的方式属于反循环,反之为正循环。 两者的区别在于:1.当泥浆循环流量相同时,通过导管(桩孔)返上浆液的速度不同,携带钻渣的能力差别很大。2.反循环对浆液的抽吸作用产生负压,对孔壁稳定性有不良影响。而正循环对孔壁产生正压。 由于反循环在导管中排浆速度大,携渣能力强,常被用作孔底清渣或者塌孔清渣。目前常见的是气举反循环清渣,该工艺在采矿、采油等行业应用广泛,对气举反循环压力、流量、风管布置等内容都有

深入的研究。 2.力学分析 高压气体喷出风管后与泥浆混合,分散在导管内形成许多(密度小)气泡,这些气泡受到泥浆向上的浮力并带动泥浆(粘滞力)向上运动,并且在上升过程中压力降低,体积增大。因此在气液混合段下方形成负压,由该段下部的泥浆不断补充,孔底沉渣在泥浆运动的带动下进入导管,随泥浆排出孔外,形成一个连续稳定的运动过程。 3.参数设置 1)导管底部距孔底距离L4保持在0.5~1.5米。当孔底泥浆密度、粘 度较大,循环启动可先适当增大L4,等循环顺畅时再下放至正常距离。

2)气体压力基本与风管出口端的泥浆压力相等,即A,但是由于气 体具有一定的初速度,因此L3距离不能小于3~4米,防止部分气体冲出导管。 3)L2的长度决定了风管气体压力的大小(原因:不带储气罐的空压 机提供的气体压力与外部荷载压力相等),为保证气体的压力和流量,L2的长度宜大于(L2+L3)的2/3,同时小于空压机最大额定压力水柱深度。(在郑州埋钻事故中发现,当L2大于某一深度后,泥浆循环量与L2无关) 4)尽量减小L1高度,减小泥浆输送距离和损耗。 5)孔深80米以上,空压机额定压力宜大于等于0.8MPa,孔深50~ 80米,额定压力宜大于0.5 MPa;额定流量8m3/min。 二、气举反循环设备配置清单 1.空气压缩机: 空气压力0.5~0.8MP,进气量8~20m3/h,气举反循环所需要进气管最大深度约为40米,因此空气压力一般在0.5 MP。对于导管直径较大的工程,进气量需要12 m3/h较为适宜。如图1所示。

气举反循环清孔工艺

钻孔灌注桩气举反循环清孔工艺 [摘要]:钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的 影响。 [关键词]:钻孔灌注桩气举反循环二次清孔 一、钻孔灌注桩工艺: 传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。钻孔应采用泥浆护壁措施,防止塌孔。现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。 钻孔施工至设计标高时,立即进行第一次清孔。第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。清渣完成后,安 装钢筋笼,在浇筑砼前须进行第二次清孔。 第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。 二、正、反循环清孔工艺介绍: 1、正循环清孔工艺 第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10KN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11.5~12.5KN/M3)。注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。简单的说,正循化清孔的定义就是沉渣从导管外 溢出的清渣工艺。 2、反循环清孔工艺 从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管内排出的清渣工艺。反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。近年来出现的气举反循环法相对工艺更为简单,清孔效果明显,推广较快。 气举反循环清孔是利用空压机的压缩空气,通过安装在导管内的风管送至桩孔内,高压气与泥浆混合,在导管内形成一种密度小于泥浆的浆气混合物,浆气混合物因其比重小而上升,在导管内混合器底端形成负压,下面的泥浆在负压的作用下上升,并在气压动量的联合作用下,不断补浆,上升至混合器的泥浆与气体形成气浆混合物后继续上升,从而形成流动,因为导管的内断面积大大小于导管外壁与桩壁间的环状断面积,

潜孔锤钻进在复杂地层中应用解读

潜孔锤钻进在复杂地层中应用 蒋荣庆殷琨辜华良 摘要:在潜孔锤的结构形式、钻具匹配、钻头类型、钻凿工艺等方面研究的基础上,对潜孔锤套管隔离护孔法钻进;贯通式潜孔锤用于复杂地层钻进;大直径潜孔锤在孤石、漂石地层中钻进等实际应用方法和效果作了简明介绍。 关键词:贯通式潜孔锤同步跟管复杂地层 DOWNHOLE HAMMER DRILLING IN COMPLEX FORMATION Jiang Rongqing,Yin Kun,Gu Hualiang Abstract:On the basis of studying downhole drills' structure,bit type and drilling technology,such technology as casing drilling with downhole drills',hollow-through downhole drills in complex formation,large diameter downhole drill in isolated big pepple formation are presented in this paper. Key words:hollow-through downhole drill,casing drilling ,complex formation▲ 所谓复杂地层是指因受成因、构造运动及风化作用和地下水作用等影响,使地层岩石节理、片理、裂隙发育;软硬互层、破碎,胶结性、稳定性、强度等极差,或是遇水膨胀。在这类地层中施工,一旦被钻孔钻穿后,其原来的相对稳定或平衡状态被破坏,使钻孔孔壁失去约束而产生不稳定。常见现象是孔壁坍塌、掉块、漏失、涌水、缩径、超径等。在上列地层中钻孔时孔壁不稳定产生护壁困难;地质岩心钻探时岩心被破碎、冲蚀、溶解,岩矿心采取又成为一个难题;在砂砾石层中含有孤石、漂石,风化层含有风化球、风化核,或岩石软硬不均,钻进时不仅效率低,而且很难按设计轨迹成孔,即防斜或提高钻速又成为一突出问题。 实践表明,空气潜孔锤钻进具有下列优点: 1)钻进效率高。它比钻探常用的水力冲击器效率高2~5倍;比金刚石回转钻进高3~10倍。提高效率原因是单次冲击功大,无液柱压力;排渣风速高,孔底干净,无二次破碎;改善了孔底碎岩条件; 2)配用的柱齿硬质合金钻头在坚硬破碎岩石中钻进,既有利于破岩,又比金刚石钻头寿命高; 3)钻进转速低,离心力小,钻具对孔壁的撞击机会小,又兼这种钻进方法是以高频对孔底冲击,减小了对破碎或倾斜地层产生孔斜的影响,从而可提高钻孔的垂直度,同时也可减少孔壁岩石坍塌; 4)钻进比回转钻进所需要钻压和扭矩要小得多,这样可减轻配套钻机设备重量和能力,为边坡抗滑加固钻进在高空排架上作业创造了有利施工条件;

热泵的循环工作原理

热泵的工作原理 作为自然界的现象,正如水由高处流向低处那样,热量也总是从高温区流向低温区。但人们可以创造机器,如同把水从低处提升到高处而采用水泵那样,采用热泵可以把热量从低温抽吸到高温。所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体),其工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范围不一样。 热泵在工作时,它本身消耗一部分能量,把环境介质中贮存的能量加以挖掘,通过传热工质循环系统提高温度进行利用,而整个热泵装置所消耗的功仅为输出功中的一小部分,因此,采用热泵技术可以节约大量高品位能源。 在运行中,蒸发器从周围环境中吸取热量以蒸发传热工质,工质蒸汽经压缩机压缩后温度和压力上升,高温蒸气通过冷凝器冷凝成液体时,释放出的热量传递给了储水箱中的水。冷凝后的传热工质通过膨胀阀返回到蒸发器,然后再被蒸发,如此循环往复。 余热利用的强力工具--热泵 水从高处流向低处,热由高温物全传递到低温物体,这是自然规律。然而,在现实生活中,为了农业灌溉、生活用水等的需要,人们利用水泵将水从低处送到高处。同样,在能源日益紧张的今天,为了回收通常排到大气中的低温热气、排到河川中的低温热水等中的热量,热泵被用来将低温物体中的热能传送高温物体中,然后高温物体来加热水或采暖,使热量得到充分利用。 热泵的工作原理和家用空调、电冰箱等的工作原理基本相同,通过流动媒体(以前一般为氟利昂,现天上由替代氟利昂所代替)在蒸发器、压缩机,冷凝器和膨胀阀等部品中的气相变化(沸腾和凝结)的循环来将低温物体的热量传递到高温 物体中去。 具体工作过程如下:①过热液体媒体在蒸发器内吸收低温物体的热量,蒸发成气体媒体。②蒸发器出来的气体媒体液压缩机的压缩,变为高温高压的气体媒体。 ③高温高压的气体媒体在冷凝器中将热能释放给给高温物体、同时自身变为高压液体媒体。④高压液体媒体在膨胀阀中减压,再变为过热液体媒体,进入蒸发器,循环最初的过程。 基本原理 热泵热水器的基本原理:它主要是由压缩机、热交换器、轴流风扇、保温水箱、水泵、储液罐、过滤器、电子膨胀阀和电子自动控制器等组成。接通电源后,轴流风扇开始运转,室外空气通过蒸发器进行热交换,温度降低后的空气被风扇排出系统,同时,蒸发器内部的工质吸热汽化被吸入压缩机,压缩机将这种低压工质气体压缩成高温、高压气体送入冷凝器,被水泵强制循环的水也通过冷凝器,被工质加热后送去供用户使用,而工质被冷却成液体,该液体经膨胀阀节流降温后再次流入蒸发器,如此反复循环工作,空气中的热能被不断“泵”送到水中,使保温水箱里的水温逐渐升高,最后达到55℃左右,正好适合人们洗浴,这就是空气源热泵热水器的基本工作原理

气举反循环施工工艺

气举反循环施工工艺 气举反循环钻进工艺 气举反循环钻进,是将压缩空气通过气水龙头、经双壁主动钻杆、双壁钻杆的内管与外管之间的环状间隙送到气水混合器后进入内管,这时压气膨胀,液气混合,形成一种密度小于液体密度的液气混合物,由于气体不断进入钻井液,产生气举作用,使得管内的液气混合物同井内的钻井液之间产生压差,从而将气、液、固三相流以较高的速度带出孔外,流经震动筛,排入沉淀池。经过沉淀的钻井液再流回井内,经井底进入钻杆内,补充钻井液消耗的空间,这样不断循环形成了连续钻进的过程。 气举反循环钻进具有排屑能力强、钻进效率高、钻头寿命长、成井质量好、辅助时间少和劳动强度低等优点,所以在地热井钻探施工中采用优势很大。 气举反循环的输水管路,一般均没有断面收缩,排渣条件比较有利,由于钻杆内的冲洗液上升流速与钻杆内外液柱的密度差有关,因此当井深增大后,只要相应增加供气压力和供气量,钻进仍能保持较高的效率。一般钻进深度大的孔以及大直径的孔均采用气举反循环钻进工艺。钻进工作原理如图1所示。 气举反循环钻进工艺特点: 1、沉渣厚度大大减小,提高孔壁质量,优化孔壁结构。 地热井成孔质量,取决于孔壁泥浆和岩屑挂壁程度,气举反循环与常规钻进相比,钻进过程中形成的泥皮较薄,孔底沉渣清除较为彻底,其钻进过程也就是洗井过程,防止了泥浆对孔壁及裂隙的堵塞, 从而大大提高了地热井的成孔质量。 2、清渣速度快,缩短工期。

采用气举反循环法施工时,能提高了劳动生产率,加快设备周转周期,直接缩短了施工工期。 3、清渣速度快,泥浆排放量减少,减少环境污染。 图1 气举反循环钻进工艺工作原理 在我院长期的施工过程中,气举反循环钻进工艺一直得到很好的应用。 2009年在临沂市汤头镇前期打出十几个废井的前提下,我院应用气举反循环施工工艺成功打出一眼高质量地热井,水温52?,水 3量480m/d,本次施工为该地区地热资源的开发利用打开了先河,临 沂市电视台对该项目进行了专门的报道。 2008,2010年我院受山东黄金置业有限公司淄博分公司委托,于淄博市九级塔附近运用气举反循环施工工艺施工地热井三眼,并 3取得圆满成功。HR1地热井水量经抽水试验确定为1538.64m/d,水温60?,水质达到医疗用水标准,H2SiO、Li、F等的含量达到了矿3 水浓度,成井井深1800.18m;HR2地热井出水量经抽水试验确定为

空气潜孔锤钻进技术在河南的应用发展与成效

空气潜孔锤钻进技术在河南的应用发展与成效 靳双喜 摘要:“十二五”开局之年,作者概要回顾了自上世纪八十年代以来河南地质勘探行业引进、推广应用空气潜孔锤钻进技术并不断发展的历程及其成效,旨在进一步推动河南地质科技进步,着力提升河南地质工程科技水平,促进工程技术高层次人才发展,带动专业技术队伍整体水平提升,在当前实现深部找矿工程突破战略中,为河南地质找矿突破和跨越式发展做出更大贡献。 关键词:空气潜孔锤地质勘探应用发展 0、概述 空气潜孔锤钻进以其高效、优质、低耗等显著特点倍受国际钻探界的青睐,自六十年代以来已先后在一些工业发达国家得到广泛应用。我国地矿部门于1978年开始进行该项新技术应用在水文水井钻探的研究,八十年代初,原地矿部水文方法队和山西水文一队相继开展了水文水井钻探气动潜孔锤钻进技术的研究与应用工作,在河北保定、山西太原等地缺水山区的水井施工中成效显著。河南最早于1986年由省地矿厅水文一队开始研究、引进空气潜孔锤钻进技术并应用于缺水山区的水文水井钻探施工,随着对该项技术研究的深入和设备发展的日趋成熟,目前在河南已发展到地质工程施工的各个领域,工艺技术方法实现了多样化,各项技术经济指标先进,取得了十分显著的社会和经济效益,极大推动了河南地质工程施工技术进步,为河南地勘行业经济发展作出了重要贡献。 1、发展状况

1.1、水文水井钻探工程 河南省地矿厅水文一队最早于1986年开始进行气动潜孔锤钻进试验的调研、立项和设备配套,1987年7月进行水文水井钻进生产性试验研究,先后完成了《气动潜孔锤钻进试验》、《多工艺空气钻进试验》、《气动贯通式潜孔锤反循环钻进工艺研究》等多项研究项目。 1.2、金矿勘探工程 为解决河南嵩县大张乡范疙瘩金矿区复杂地层取芯困难问题,1990年长春地质学院和河南地矿厅地质二队联合开展GQ—100/44型贯通式潜孔锤反循环取芯(样)钻进试验,解决了该矿区取芯难、效率极低等问题,满足了地质技术要求,取得了良好的技术经济效果。目前吉林大学将该项技术在河南栾川县南泥湖钼矿勘探中推广应用,每年完成数千米工作量。 1.3、煤层气井工程 2003年以来,河南豫中地质勘察工程公司将气动潜孔锤钻进技术应用于煤层气抽采井施工,配备了数台套大功率、高风压、大风量空压机、增压机和先进的进口全液压动力头多功能车载钻机,在河南安阳、焦作,沁水盆地(山西省的晋城、高平、长治、阳泉、沁水、阳城、安泽等市县),陕西榆林,安徽淮南等多处煤碳基地和煤层气富集区,已完成1100余眼煤层气井施工,其中230余眼采用气动潜孔锤钻进技术,累计进尺愈11万余米。 1.4、抗旱救灾工程 1992年在豫西三门峡地区的抗旱打井工程中,采用气动潜孔锤钻进技术高效、优质的完成抗旱井3眼,解决了当地部分群众的人畜用水问题,

气举反循环施工工艺

气举反循环钻进工艺 气举反循环钻进,是将压缩空气通过气水龙头、经双壁主动钻杆、双壁钻杆的内管与外管之间的环状间隙送到气水混合器后进入内管,这时压气膨胀,液气混合,形成一种密度小于液体密度的液气混合物,由于气体不断进入钻井液,产生气举作用,使得管内的液气混合物同井内的钻井液之间产生压差,从而将气、液、固三相流以较高的速度带出孔外,流经震动筛,排入沉淀池。经过沉淀的钻井液再流回井内,经井底进入钻杆内,补充钻井液消耗的空间,这样不断循环形成了连续钻进的过程。 气举反循环钻进具有排屑能力强、钻进效率高、钻头寿命长、成井质量好、辅助时间少和劳动强度低等优点,所以在地热井钻探施工中采用优势很大。 气举反循环的输水管路,一般均没有断面收缩,排渣条件比较有利,由于钻杆内的冲洗液上升流速与钻杆内外液柱的密度差有关,因此当井深增大后,只要相应增加供气压力和供气量,钻进仍能保持较高的效率。一般钻进深度大的孔以及大直径的孔均采用气举反循环钻进工艺。钻进工作原理如图1所示。 气举反循环钻进工艺特点: 1、沉渣厚度大大减小,提高孔壁质量,优化孔壁结构。 地热井成孔质量,取决于孔壁泥浆和岩屑挂壁程度,气举反循环与常规钻进相比,钻进过程中形成的泥皮较薄,孔底沉渣清除较为彻底,其钻进过程也就是洗井过程,防止了泥浆对孔壁及裂隙的堵塞,

从而大大提高了地热井的成孔质量。 2、清渣速度快,缩短工期。 采用气举反循环法施工时,能提高了劳动生产率,加快设备周转周期,直接缩短了施工工期。 3、清渣速度快,泥浆排放量减少,减少环境污染。 图1 气举反循环钻进工艺工作原理 在我院长期的施工过程中,气举反循环钻进工艺一直得到很好的应用。 2009年在临沂市汤头镇前期打出十几个废井的前提下,我院应用气举反循环施工工艺成功打出一眼高质量地热井,水温52℃,水量480m3/d,本次施工为该地区地热资源的开发利用打开了先河,临

泵的分类及工作原理

泵的分类及工作原理 一、泵的分类 1.按工作原理分 2.按产生的压力分 泵按产生的压力分为:低压泵:压力在2MPa 以下;中压泵:压力在2~6MPa;高压泵:压力在6MPa 以上。 二、泵的工作原理 1.离心式泵工作原理 离心式泵的工作原理是,叶轮内的液体受到叶片的推动而与叶片共同旋转。由旋转而产生的离心力﹐使液体由中心向外运动﹐并获得动能增量。在叶轮外周﹐液体被甩出至蜗卷形流道中。由于液体速度的减低﹐部分动能被转换成压力能﹐从而克服排出管道的阻力不断外流。叶轮吸入口处的液体因向外甩出而使吸入口处形成低压(或真空)﹐与吸入池液面形成压差,因而吸入池中的液体在液面压力(通常为大气压力)作用下源源不断地压入叶轮的吸入口﹐形成连续的抽送作用。

离心泵的结构:

双吸泵结构图:

2.轴流式泵工作原理. 轴流式泵的工作原理是,旋转叶片的挤压推进力使流体获得能量,升高其压能和动能,其结构如图所示。叶轮1 安装在圆筒形泵壳3 内,当叶轮旋转时,流体轴向流人,在叶片叶道内获得能量后,沿轴向流出。轴流式泵适用于大流量、低压力,电厂中常用作循环水泵。 3.往复泵工作原理 现以活塞式为例来说明其工作原理,如图所示。 活塞泵主要由活塞1在泵缸2内作往复运动来吸人和排除液体。当活塞l 开始自极左端位置向右移动时,工作室3 的容积逐渐扩大,室内压力降低,流体顶开吸水阀4,进入活塞1 所让出的空间,直至活塞1 移动到极右端为止,此过程为泵的吸水过程。当活塞1 从右端开始向左端移动时,充满泵的流体受挤压,将吸水阀4 关闭,并打开压水阀5 而排出,此过程称为泵的压水过程。活塞不断往复运动,泵的吸水与压水过程就连续不断地交替进行。此泵适用于小流量、高压力,工厂中常用作加药泵。 4.齿轮泵工作原理 齿轮泵具有一对互相啮合的齿轮,主动齿轮固定在主动轴上,轴的一端伸出壳外由原动机驱动,另一个齿轮(从动轮)装在另一个轴上,齿轮旋转时,液体沿吸油管进入到吸人空间,沿上下壳壁被两个齿轮分别挤压到排出空间汇合(齿与齿啮合前),然后进入压油管排出。

循环水泵的变频控制方案

循环水泵的变频控制方案在中央空调系统中,冷冻水泵和冷却水泵的容量是根据建筑物最大设计热负荷选定的,且留有一定的设计余量。在没有使用调速的系统中,水泵一年四季在工频状态下全速运行,只好采用节流或回流的方式来调节流量,产生大量的节流或回流损失,且对水泵电机而言,由于它是在工频下全速运行,因此造成了能量的大大浪费。 由于四季的变化,阴晴雨雪及白天与黑夜时,外界温度不同,使得中央空调的热负荷在绝大部分时间里远比设计负荷低。也就是说,中央空调实际大部分时间运行在低负荷状态下。据统计,67%的工程设计热负荷值为94-165W/m2,而实际上83%的工程热负荷只有58-93 W/m2,满负荷运行时间每天不超过10-20小时。 经验证明,在中央空调的循环系统(冷却泵和冷冻泵)中接入变频系统,利用变频技术改变电机转速来调节流量和压力的变化用来取代阀门控制流量,能取得明显的节能效果。 二、节能原理 由流体传输设备水泵、风机的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)根据上述原理可知:降低水泵、风机的转速就,水泵、风机的功率可以下降得更多。例如:将供电频率由50Hz降为45Hz,则P45/P50=(45/50)3=0.729,即P45=0.729P50(P 为电机轴功率);将供电频率由50Hz降为40Hz,则P40/P50=(40/50)3=0.512,即P40=0.512P50(P为电机轴功率)。 三、节能方案 1、整体说明 我公司中央空调系统目前有2台11KW循环泵。我们可对循环泵进行节能改造。

气举反循环

气举反循环清孔工艺 摘要]:钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的影响。 [关键词]:钻孔灌注桩气举反循环二次清孔 一、钻孔灌注桩工艺: 传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。钻孔应采用泥浆护壁措施,防止塌孔。现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。 钻孔施工至设计标高时,立即进行第一次清孔。第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。 第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。 二、正、反循环清孔工艺介绍: 1、正循环清孔工艺 第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10kN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11.5~12.5kN/M3)。注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。 2、反循环清孔工艺 从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管内排出的清渣工艺。反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。近年来出现的气举反循环法相对工艺更为简单,清孔效果明显,推广较快。 气举反循环清孔是利用空压机的压缩空气,通过安装在导管内的风管送至桩孔内,高压气与泥浆混合,在导管内形成一种密度小于泥浆的浆气混合物,浆气混合物因其比重小而上升,在导管内混合器底端形成负压,下面的泥浆在负压的作用下上升,并在气压动量的联合作用下,不断补浆,上升至混合器的泥浆与气体形成气浆混合物后继续上升,从而形成流动,因为导管的内断面积大大小于导管外壁与桩壁间的环状断面积,便形成了流速、流量极大的反循环,携带沉渣从导管内反出,排出导管以外。 3、气举反循环清孔工艺设备比较 反循环工艺较正循环工艺而言,增加空压机一台、风管一套。该风管在二次清孔时安装在导管内,故导管上部相应增加连接阀门,风管下部是气浆混合器。反循环工艺导致沉渣从导管内反出,导管上部增加三通一套,排至接渣篮。 相对其它反循环清孔工艺,气举反循环工艺的送风管安装在导管内,不像其它反循环清孔工艺在导管外安装风管,减少拔出风管时与钢筋笼牵挂的危险、更保护泥浆护壁,且气浆混合器制作简单,操作更为方便,故更适用于小孔径(直径500-800)钻孔灌注桩。 因气举反循环工艺特点,钻孔灌注桩第一次清孔时并不适用气举反循环清孔工艺了。否则,须逐节拔出导管,再安装风管,待第一次清空完成后,再次拔出、拆除导管与风管,

常见泵的分类及工作原理

常见泵的分类及工作原理 泵的分类及在电厂中的应用 一、泵的分类 (一)按照泵的工作原理来分类,泵可分为以下几类 1、容积式泵容积式泵是指靠工作部件的运动造成工作容积周 期性地增大和缩小而吸排液体,并靠工作部件的挤压而直接使液体的压力能增加。容积泵根据运动部件运动方式的不同又分为:往复泵和回转泵两类。按运动部件结构不同有:活塞泵和柱塞泵,有齿轮泵、螺杆泵、叶片泵和水环泵。 2、叶轮式泵叶轮式泵是靠叶轮带动液体高速回转而把机械能 传递给所输送的液体。根据泵的叶轮和流道结构特点的不同,叶轮式泵又可分为:离心泵(centrifugal pump)轴流泵(axial pump) 混流泵(mixed-flow pump) 旋涡泵(peripheral pump) 喷射式泵(jet pump) (二)其它分类 1、泵还可以按泵轴位置分为:(1)立式泵(vertical pump) (2)卧式泵(horizontal pump) 2、按吸口数目分为:(1)单吸泵(single suction pump) (2)双吸泵(double suction pump) 3、按驱动泵的原动机来分:(1)电动泵(motor pump ) (2)汽轮机泵(steain turbine pump) (3)柴油机泵(diesel pump)(4)

气动隔膜泵(diaphi'^m pump如图16—1为泵的分类图16-1泵的分类 二、各种类型泵在电厂中的典型应用离心泵凝结水泵、给水泵、闭式水泵、凝补水泵、定子冷却水泵、定排水泵、炉水循环泵轴流泵循环水泵往复泵EII油泵齿轮泵送风机液压油泵、磨煤机液压油泵、引风机电机润滑油泵螺杆泵空预器导向轴承油泵、空预器支撑轴承油泵、空侧交流密封油泵喷射泵主机润滑油系统射油器、射水抽气器水环式真空泵水环式真空泵第二节离心泵的理论基础知识离心泵主要包括两个部分: 1、旋转的叶轮和泵轴(旋转部件)。 2、由泵壳、填料函和轴承组成的静止部件。正常运行时,叶 轮高速旋转,在惯性力的作用下,位于叶轮中心的流体被甩向外周并获得了能量,使流向叶轮外周的液体的静压强提高,流速增大。液体离开叶轮进入蜗壳内,在蜗壳内液体的部分动能会转换成静压能。于是较高压强的液体从泵的排出口进入排出管路,被输送到所需的管路系统。同时,叶轮中心由于液体的离开而形成真空,如果管路系统合适,则外界的液体会源源不断地吸入叶轮中心,以满足水泵连续运行的要求。如图16-2所示。图16-2 离心泵的工作原理 一、离心泵的性能参数 (一)流量指泵在单位时间内能抽出多少体积或质量的水。体积流量一般用m3/min. m3/h等来表示。 (二)扬程又称水头,是指被抽送的单位质量液体从水泵进

气举反循环钻机成孔原理

钻孔灌注桩施工时钻机的选择 (刘培良讲稿,王同民整理于武汉长江二桥工地) 一九九0~一九九七年 (一)刮刀钻头破岩原理: 刮刀钻头适用于在覆盖层、强风化岩层和软岩中钻孔。刮刀布置不宜过密,覆盖系数应在1.2~1.5之间。注意改善泥浆冲洗条件,以免形成泥包钻头。注意切入地层不宜过深,钻压适当不能过大。刮刀的材质应着重考虑岩石的机械强度、抗压入强度、抗剪强度和研磨性。现将刮刀钻头破岩机理分述如下: 1.P为使刮刀压入岩石的力,Tm为刮刀随钻头旋转的扭力,刮刀随钻头下放(给进)接近孔底工作面时:P=0,Tm=0。 2.在钻头自重的作用(包括配重)刮刀获得钻压值,得到Po的力,使刀锋压入岩层。此时:P=Po,Tm=0。 3.在钻头扭矩Tm的作有用下,刮刀获得扭力Tm,这时刮刀有了充分的工作条件使刮刀前的岩层产生挤压变形,并沿剪切面形成破岩切力τ,P=Po ,Tm=Tm。 4.刮刀随着钻头的旋转和给进,进行工作,在刮刀的推移下,岩屑不断加长而自折,被循环泥携带到孔外。 5.钻进过程示意图: 根据刮刀钻头破岩的工作原理,在钻进过程中必须考虑和满足的基本条件是:①加在孔底工作面上的钻压;②驱动钻头旋转的转盘扭矩和功率;③钻机转数;④泥浆循环量;⑤钻头型式。这五个基本条件是钻机必不可少的五个重要因素。它们和各种地层的关系与计算方法,在以下各节中进行介绍。 (二)钻压: 1.定义:钻孔时为使刀具压入岩石,所施加给刀具的力称为钻压。钻压是对钻进效率、钻头刀具寿命影响最大的一个钻孔参数。 2.钻压P与钻进速度V的关系:随着钻压P的增加,钻进速度V的变化可分为以下三个阶段:

a.岩石被挤压阶段:当P从零增加到Pa时,岩石由于刀刃的压力面被压密,刀具压入岩石的深度与钻压成正比,亦即V与P成直线关系,这时刀具只是以研磨作用使岩石呈表面破坏,钻孔速度低,刀具磨损量大。 b.岩石开始变形阶段:即Pa→Pb阶段,岩石在刀刃压力作用下开始变形,刀具压在岩石深度的增加大于钻压的增加,这时V与Pm成正比,M是决定刀具本身的参数(加齿尖角、齿距、刀具的排列方式等),当孔底无岩层时,M=1.25~3.0(硬岩取小值、软岩取大值)孔底有岩时M≤1.0。 c.Pb-Pd阶段:为岩石有效破碎阶段,这时刀具压入岩的深度迅速增加,钻速的增加远大于钻压的增加,当钻压大于Pb时刀具磨损量降低。Pd是钻压的临界值,它是牙轮齿全部压入岩石时的钻压值,因此钻压超过Pd时,不仅钻速会降低,还将缩短刀具和轴承的寿命,引起孔斜和泥包钻头等一系列事故。因此掌握各种地层的Pd值是很重要的,钻进时应将钻压控制在Pb-Pd范围内。 3.线压强度:在钻孔钻进过程中,加到孔底工作面上的钻压,是通过刮刀上的刀锋压入岩层内一定深度h,刀锋与孔底的接触为一条线,故称为线压强度。线压强度既要满足钻孔的临界钻压值,又不能过大。但对钻孔桩来讲总是先通过表层较松、较软的地层,钻到较硬的持力层(磨擦桩)或者岩层内(柱桩),选择钻机时。钻压必须能克服钻孔桩将要通过的最硬最难钻的地层,因此目前国内外在安排钻机线压强度时,一般按规范的要求为:在覆盖层中钻孔N值>5MP时,取线压强度 q=40kg/cm,在风化岩层或软岩中钻孔时,取线压强度q=80kg/cm,在岩石强度大于40MP时取g=160~320kg/cm。岩石强度大于g=80MP时,g=400kg/cm。 南昌公路大桥泥砂岩很软,岩石池和极限抗压强度仅10MP稍多一些,取40kg/cm。4.钻压计算: P=∑L*q P=加在孔底的有效钻压(Kg)。 ∑L:刮刀与孔底接触的总刀长(cm)。 q:线压强度。 例:①直径1.8m钻孔,当∑L=1.5*90=135 cm时(覆盖系数K=1.2~1.5)加到孔底的有效钻压值是: P=135 cm*40=5400 Kg=5.4tf=54KN.(40为适宜的线压强度,根据地质选用). ②.直径2.5m的孔:当线压强度∑L=1.5*1.25=187.5 cm时,加到孔底的有效钻压值: P=187.5*40=7500 Kg=7.5tf=75KN. *注:有效钻压不等于空气中的钻头加配重. 5.钻头加配重后在空气中的重量,为了减压钻进的要求,钻头加配重在泥浆中重量的一部分成为加在孔底的有效钻压,另一部分重量使钻机始终在拉力状态下进行工作,促而达到重锤导向的目的,保证钻孔的垂直度:

水泵的工作原理及用途

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/9810878430.html,) 水泵的工作原理及用途 水泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等。 一、水泵的工作原理 1、容积式泵:利用工作腔容积周期变化来输送液体。 2、叶片泵:利用叶片和液体相互作用来输送液体。 二、水泵的分类 1、按行业分类 石油泵、冶金泵、化工泵、渔业泵、矿业泵、电力泵、水利泵、水处理泵、食品泵、酿造泵、制药泵、饮料泵、炼油泵、调料泵、造纸泵、纺织泵、印染泵、制陶泵、油漆泵、农药泵、化肥泵、制糖泵、酒精泵、环保泵、制盐泵、啤酒泵、淀粉泵、供水泵、供暖泵、农用泵、园林泵、水族泵、锅炉泵、医用泵、船舶泵、航空泵、汽车泵、消防泵、水泥泵、空调泵、核电泵、机械泵、燃气泵、油气混输泵 2、按原理分类 往复泵、柱塞泵、活塞泵、隔膜泵、转子泵、螺杆泵、液环泵、齿轮泵、滑片泵、罗茨泵、滚柱泵、凸轮泵、蠕动泵、扰性泵、叶片泵、离心泵、轴流泵、混流泵、漩涡泵、射流泵、喷射泵、水锤泵、真空泵、旋壳泵、软管泵、蜗杆泵

3、按介质分类 清水泵、污水泵、海水泵、热水泵、热油泵、稠油泵、机油泵、重油泵、渣油泵、沥青泵、杂质泵、渣浆泵、沙浆泵、灰浆泵、灰渣泵、泥浆泵、水泥泵、混凝土泵、粉末泵、酸碱泵、空气泵、蒸汽泵、氧气泵、氨气泵、煤气泵、血液泵、泡沫泵、乳液泵、涂料泵、硫酸泵、盐酸泵、胶体泵、酒精泵、啤酒泵、葡萄酒泵、巧克力泵、奶泵、淀粉泵、麦汁泵、牙膏泵、盐卤泵、卤水泵、碱液泵、熔盐泵、油脂泵、农药泵、化肥泵、药剂泵、气液泵、油剂泵、化纤泵、纺丝泵、剂量泵、油漆泵、果浆泵、纸浆泵、胰岛素泵、浓浆泵、气泵、水泵、油泵 4、按用途分类 输送泵、循环泵、消防泵、试压泵、排污泵、计量泵、卫生泵、加药泵、糊化泵、输液泵、消泡泵、流程泵、输油泵、给水泵、排水泵、疏水泵、挖泥泵、喷灌泵、增压泵、高压泵、保温泵、高温泵、低温泵、冷凝泵、热网泵、冷却泵、暖通泵、深井泵、止痛泵、化疗泵、抽气泵、血液泵、抽料泵、除硫泵、剪切泵、研磨泵、燃油泵、吸鱼泵、浴缸泵、源热泵、过滤泵、增氧泵、洗发泵、注射泵、充气泵、燃气泵、美工泵、加臭泵、切碎泵

相关主题
文本预览
相关文档 最新文档