当前位置:文档之家› 双光栅光学特性测试仪

双光栅光学特性测试仪

双光栅光学特性测试仪
双光栅光学特性测试仪

双光栅光学特性测试仪

引言:本实验主要分析了双光栅的Lau’s效应原理,并利用该效应来进行光学特性的测量,并制作了一个简易方便的测试仪,把该测试仪用于如玻璃的折射率、透镜的焦距、光的相干性、温度场的测量等。

虽然双光栅的一些效应,如莫尔效应、Lau’s效应、Talbot效应已在不同领域被广泛的应用,本测试仪利用简单廉价的实验仪器,快速测量材料多种光学特性而且测量方便精确。本实验还可用于大学物理实验中的设计性实验或光学实验,具有一定的启发性。

1.实验原理

Lau’s效应,即用扩展光源照明2个周期相同并相隔一定距离的衍射光栅,在无穷远处得到平行干涉条纹的效应。

图1.实验原理图

图中,G1和G2是开口为h,光栅常数为d的矩形平行光栅,其上各点组成的平面用和表示,为两个光栅的距离,则

,k=1,2,3……,屏上光栅Lau’s效应干涉条件(即各点的光强)

为,为光栅的衍

射像,在满足自成像条件下,,f为透镜焦距。在观察屏上Lau’s效应的间距为

2.实验装置

图2.实验装置图

本实验装置的平行光管和望远镜以及中间的操作台正好和光学仪器分光计的结构相似,用钠光灯作为光源,两个光栅是光栅常数为12条/mm的粗光栅,用CCD来进行图象采集并用计算机来处理图象数据。在进行不同的测量时会对实验装置做小的调整。

3.实际应用

Lau’s效应原理很简单,但是它的应用范围很广,本测试仪主要把它用于玻璃的折射率、透镜的焦距、温度场的测量。

(1)玻璃折射率的测量

当把一平板透明材料放于G 1和G 2之间的操作台上,并绕与光栅刻痕平行轴转动,当入射角为θ时,则出射光线横

向唯一D 与入射角θ关系为???

?

???????? ??---?=2222sin sin 11sin θθn a D (1) (a 为平板玻璃的厚度)相当于把G 1平移D,则平面变为

根据光栅成像原理和Lau ’s 效应解释,认为干涉条纹是第一光栅的像,第二光栅的作用如同透镜,这种作用并不完全和几何光学所描述的相同,所以此时条纹分布变为了

在观察屏上条纹发生移动,平移距离为

D Z f

?0

。当相对于屏上某参照点移动整数m 个条纹S 时,则

将4式带入3式中得到???

?

???????? ??---?=?2222sin sin 11sin θθθn a d m

要测平板玻璃的折射率可以根据上式求。先取一个事先测定好折射率的平板玻璃作为标准,设它的折射率为n,厚度为a 。把标准样品放到载物台上,旋转载物台,让屏上条纹移动m 条,记下转过的角度,则

取下标准样品,然后把待测的平板玻璃放到载物台上,旋转平台,同样移动m条干涉条纹,并记

下相应的入射角,则

为待测平板玻璃的厚度,为待测平板玻璃的折射率,

由5和6式整理可得,

其中,、、、已知,可以求出。

图3.通过平板玻璃产生的干涉图象

当间距满足时, 条纹清晰度最好。分别测量厚度为4. 115mm、

4. 190mm、

5. 791mm、7. 265mm 的平板光学玻璃。其中, 将1块厚度为5.791mm , 已知折射率为1.516 3的平板玻璃作为参考样品, 把2

块光栅分别固定在平行光管和望远镜之间并调整好距离, 光栅平面

与望远镜和平行光管的光轴垂直, 且2块光栅的刻痕分别与狭缝平行。这时, 视场中出现条纹如图3。将参考样品玻璃置于旋转平台上, 旋转平台, 视场中条纹发生移动, 以移动10条为例, 记下偏转角度

i1, 取下参考样品玻璃, 换上待测玻璃重复上述步骤。将各个量代入(7) 式, 由于(7) 式计算起来较为麻烦, 可先对它编程, 把各测得

输入计算机, 由计算机处理算出n 值, 如表1所示。表中, 玻璃厚度d 用螺旋测微器测量, 精度为0.004mm , 分光计精度为1m in, 波长为589.3 nm ,m 为条纹数。从表可见, 它的误差在小数点后第3位上, 精度还是比较高的。

表1 标准玻璃的折射率的测量结果

在折射率测量中的主要误差是由d 1、d 2、n1、i1、i2引起的。对(7) 式进行微分, 可估算出它的误差约为10- 3量级, 其中, 分光

计的测量误差(即i) 与移动条纹的误差是影响折射率测量精度的主

要因素。所以将CCD 摄像头与望远镜目镜对接, 使图象在计算机上输出。这样放大了的图象信号更便于测量, 可减小人为所造成的误差。(2).透镜焦距的测量

图4.测量焦距的原理图

F为毛玻璃衍射屏,在原理图中省略了准直系统和望远镜系统,为待测透镜,O为测微目镜。

为满足几何光学的傍轴条件,使,这个时候光栅上的一个周期T经透镜成像在焦距为f的后焦面上,如果两光栅

之间的距离为k,光栅到待测透镜之间的距离为k+L,则周

期T的垂轴放大率为,同理可得上一个周期T

的垂轴放大率为,光栅和上的一个周期T在待测透镜后焦面上的像上的像分别为

,,而、在透镜后焦面上所形成的拍频为,在在透镜后焦面上的条纹间距为5式的倒数,把上式整理后可以得出透镜后焦面上的条纹间距,则待测透镜焦距

图5.在透镜后用测微目镜看到的图象

做该实验时调节光栅使它们的距离满足,并且平行,让Lau’s效应条纹呈竖直而且是最清晰的。调节两光栅的距离的时候要注意使得到的条纹要较宽,易于数条纹。用测微目镜来测量条纹的间距,调节使测微目镜中的叉丝与某条干涉条纹对齐,记下此时的读数,然后对准第N条干涉条纹的同

一侧,记下读数,则。

把上表的结果输入我们自己编制的计算程序就可以得出结果,Wf=0.154mm,k=14.11mm,f=43.89mm 。

(3).温度场的测量

温度场的引入导致了气体密度的变化,从而使折射率n发生变化,干涉条纹发生偏移,气体折射率与密度的关系为,以沿光轴方向为z轴,被测温度场引起的位相差为

当、远小于试验区沿轴长时,上式可用泰勒公式展开为

引起条纹偏移

再由热力学方程算出,为气体平均分子量,P为大气压,R 为摩尔气体常数。

温度改变在干涉条纹上的体现是干涉条纹的弯曲,条纹的相对偏移量正比于X和Y方向上折射率的梯度,我们选择实边界层某一横截面,测量条纹偏移量对横向位移的离散关系,然后用计算机计模拟△S/S的曲线,再根据公式计算折射率,从而得到密度,然后由热力学方程T=μp/Rρ得出温度场T

4.结论

本实验制作的双光栅光学特性测试仪结构简单,价格低廉,测量精度高,可以达到10-3,只要把要测量的物品放到载物台

上,连接的计算机就可以显示要测量的量,可以快速测量多种

材料光学特性,而且测量方便。可作为大学物理实验中的设计

性实验或光学实验。

5.展望

本实验装置结构简单,但是在最后怎么把条纹的图象信息处理变的更简单还要不断的优化。要解决好这个问题就需要编

辑一段程序来对最后的图象处理和数据的计算进行快速的处

理,所以技术难点就成为了怎么编辑一段简单可行的处理程序,这是我们还在继续努力的方向。

参考文献

[1].刘立人.平面物理的Lau效应理论.光学学报,1986(9):807

[2].刘立人. 反向脉冲传递法——扩展白光干涉现象研究. 光学学

报, 1985 (6) : 481

[3].Swanson G J,Leith E N.Analysis of the Lau effect and generalized grating imaging [J].Opt Soc Am A,1985,2(6):789~793 [4].Gatt I,Livnat A.Determination of refractive index of a lens usingMoire

Deflectometry[J].Appl.Opt,1984,23(14):2241~2243

[5].Nakano Y,Murata K.Measurements of phase objects using the Talbot effect and Moire techniques[J].Appl.Opt. ,1984,23

(14):2296~2299

[6] .Keren E,Kreske K M,Kafri O.Universal method for determing the focal length of optical ,systems by Moire deflectometry[J].Appl.Opt. 1988,27(8):1383~1385 [7] .Bhattachary J C.Refractive index measurement.Optics anTechnology, 1987(1):29

[8].王成,武晓东. 一种测量透镜焦距的方法[J ] . 物理实

验,1996 ,16 (6) :258~259.

自主光栅光谱仪实验

自组式光栅光谱仪 一、实验目的 1、了解光栅的分光原理及主要特性; 2、了解光栅光谱仪的工作原理; 3、掌握利用光栅光谱仪进行测量的实验方法。 二、实验仪器 1低压汞灯及电源:2狭缝及固定调节架1个:0~2mm;3一维光栅及干板调节架1个;4、透镜及固定调节架3个(焦距f=60mm、焦距f=60mm、焦距f=200mm); 5、白板1个; 6、读数显微镜及固定调节架1个。 三、实验原理 本实验用的是透射光栅,是用光学玻璃片刻制而成的(如图5-11-1)。当光照射到光栅表面时,刻痕处不透光。只有在两刻痕之间的光滑部分,光才能通过,相当于一条狭缝,因此,光栅实际上是一密排、均匀而又平行的狭缝。设a为缝宽,b为刻痕宽度,d=a+b称为光栅常数。 由夫琅和费衍射理论,当波长为λ的平行光束垂直照射到光栅平面时,在每一狭缝处都产生衍射,但由于各缝发出的衍射波都是相干光,彼此又产生干涉。这样就会在光栅后面的屏上形成一系列被相当宽的暗区隔开的亮度大、宽度窄的明条纹,成为谱线(如图5-11-2)。 如图5-11-3所示,设S为位于透镜L1第一焦平面上的细长狭缝,G为光栅,光栅的常数为d,L1射出的平行光垂直地照射在光栅G上。透镜L2将与光栅法线成θ角的衍射光会聚于其第二焦平面上的Pθ点。由夫琅和费衍射理论知,相邻两缝对应点出射的光束之光程差为:? = (a + b)sinθ = d sinθ 当衍射角符合下列条件: d sinθ = kλ k = ±1, ± 2, ± 3, ..., ± n (5-11-1)

该衍射角方向的光将会得到加强,叫做主极大,形成明纹;其他方向的衍射光线或者完全抵消,或者强度很弱,几乎成暗背景。(5-11-1)式称为光栅方程,其中:λ为单色光波长,k称为光谱线的级数。在k=0的方向上可观察到中央极强,称为零级谱线,其它谱线则对称地分布在零级谱线的两侧,如图5-11-2所示。 图5-11-3 平行光通过光栅 当k=0时,任何波长的光均满足(5-11-1)式,亦即在θ = 0 的方向上,各种波长的光谱线重叠在一起,形成明亮的零级光谱;对于k 的其它数值,不同波长的光谱线出现在不同的方向上(θ的值不同),从而在不同的位置上形成谱线,称为光栅谱线。而与k的正负两组相对应的两组光谱,则对称地分布在零的光谱两侧。 若光栅常数d 已知,在实验中测定了某谱线的衍射角θ和对应的光谱级k ,则可由(5-11-1)式求出该谱线的波长λ;反之,如果波长λ是已知的,则可求出光栅常数d 。 四、实验内容 1、自组装置光栅光谱实验仪,实验装置图见图2所示。 光源发出的光经过60mm透镜会聚到狭缝上,光线经过狭缝(狭缝放置在200mm 透镜的前焦面上),从200mm透镜出来的光为平行光,再入射到光栅上。通过光栅衍射的光成像于60mm透镜的后焦平面上(实为无穷远处可调狭缝的像)。

光栅光谱仪的使用(北科大实验报告)

光栅光谱仪的使用实验报告 学院高等工程 师学院 班级自E152学号41518170姓名郑子亮 一、实验目的与实验仪器 【实验目的】 1.了解平面反射式闪耀光栅的分光原理及主要特性 2.了解光栅光谱仪的结构,学习使用光栅光谱仪 3.测量钨灯和汞灯在可见光范围的光谱 4.测定光栅光谱仪的色分辨能力 5.测定干涉滤光片的光谱透射率曲线 【实验仪器】 WDS-3平面光栅光谱仪(200~800nm)。汞灯,钨灯氘灯组件,干涉滤光片等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) (1)平面反射式光栅与光栅方程 规定衍射角Θ恒为正,i与Θ在光栅平面法线的同侧为正,异侧为负。K是光谱级 对于常用的平面光栅光谱仪,谱板中心到光栅中心的连线与入射光线在同一平面内,因此,衍射角Θ可当做入射角i,光谱方程为: (2)闪耀问题 闪耀波长: 2平面光栅光谱仪结构组成 (1)光学系统 (2)电子系统 (3)光栅光谱仪操作

3.色分辨率 光栅光谱仪的色分辨率是分开两条邻近谱线能力的量度 4.滤光片光谱特性 光谱透射率为: 三、实验步骤 (要求与提示:限400字以内) 1.准备工作 开机前,需要缓慢旋转入射狭缝宽度调节旋钮,设置参数 2.校准光谱仪的波长指示值 利用氘灯波长值为486.0nm的谱线校准光谱仪,利用“数据处理”菜单的功能读出测量的氘灯光谱谱线波长,如果有偏差,用“系统操作”菜单中的“波长校正”功能进行校正3.汞灯光谱和光谱仪分辨率的测量 (1)入射缝宽和出射缝宽设定在0.15~0.20nm之间,负压-300~-600之间 (2)移去钨灯&氘灯组件,将汞灯置于入射狭缝前,进行快速全谱扫描,根据光谱测量结果进一步调节狭缝宽度、负高压等参数,使得记录的谱线高度适当,再进行一次慢速全谱扫描,保存实验数据。 4.滤色片光谱特性的测量 5.退出系统与关机 四、数据处理 (要求与提示:对于必要的数据处理过程要贴手算照片) 1. (1)汞灯光谱

(完整版)《大学物理》习题册题目及答案第19单元波动光学

第19单元 波动光学(二) 学号 姓名 专业、班级 课程班序号 一 选择题 [C]1. 在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕E 上的中央衍射条纹将 (A) 变宽,同时向上移动 (B) 变宽,同时向下移动 (C) 变宽,不移动 (D) 变窄,同时向上移动 (E) 变窄,不移动 [ D ]2. 在双缝衍射实验中,若保持双缝S1和S2的中心之间的距离d 不变,而把两条缝的宽度a 稍微加宽,则 (A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少 (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多 (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变 (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少 (E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多 [ C ]3. 在如图所示的单缝夫琅和费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大 (B) 间距变小 (C) 不发生变化 (D) 间距不变,但明暗条纹的位置交替变化 [ B ]4. 一衍射光柵对某一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该 (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大的光栅 (C) 将光栅向靠近屏幕的方向移动 (D) 将光栅向远离屏幕的方向移动 λ L 屏幕 单缝 f 单缝 λa L E f O x y

[ B ]5. 波长λ =5500 ?的单色光垂直入射于光柵常数d = 2?10-4cm 的平面衍射光柵上,可能观察到的光谱线的最大级次为 (A) 2 (B) 3 (C) 4 (D) 5 二 填空题 1. 用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第二个暗条纹中心相对应的半波带的数目是_____4_________。 2. 如图所示,在单缝夫琅和费衍射中波长λ的单色光垂 直入射在单缝上。若对应于汇聚在P 点的衍射光线在缝 宽a 处的波阵面恰好分成3个半波带,图中 ____________CD BC AB ==,则光线1和光线2在P 点的相差为 π 。 3. 一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹,若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第__一___级和第___三_级谱线。 4 用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440nm 的第3级光谱线,将与波长为λ2 = 660 nm 的第2级光谱线重叠。 5. 用波长为λ的单色平行光垂直入射在一块多缝光柵上,其光柵常数d=3μm ,缝宽a =1μm ,则在单缝衍射的中央明条纹中共有 5 条谱线(主极大)。 三 计算题 1. 波长λ=600nm 的单色光垂直入射到一光柵上,测得第二级主极大的衍射角为30o ,且第三级是缺级。则 (1) 光栅常数(a +b )等于多少? (2) 透光缝可能的最小宽度a 等于多少 (3) 在选定了上述(a +b )和a 之后,求在屏幕上可能呈现的全部主极大的级次。 解:(1) 由光栅公式:λ?k d =sin ,由题意k = 2,得 P λ5.1λA B C D a 1234

W光栅光谱仪实验

光栅光谱仪实验 一 实验目的 1、了解光栅光谱仪的工作原理 2、掌握利用光栅光谱仪进行测量的技术 二 实验仪器 WDS8A 型组合式多功能光栅光谱仪,计算机, 氘灯、钠灯、汞灯等各种光源 三 实验原理 光谱仪是指利用折射或衍射产生色散的一类光谱测量仪器。光栅光谱仪是光谱测量中最常用的仪器,基本结构如图1所示。它由入射狭缝S1、准直球面反射镜M1、光栅G 、聚焦球面反射镜M2以及输出狭缝S2构成。 衍射光栅是光栅光谱仪的核心色散 器件。它是在一块平整的玻璃或金属材 料表面(可以是平面或凹面)刻画出一 系列平行、等距的刻线,然后在整个表 面镀上高反射的金属膜或介质膜,就构 成一块反射试验射光栅。相邻刻线的间 距d 称为光栅常数,通常刻线密度为每 毫米数百至数十万条,刻线方向与光谱 仪狭缝平行。入射光经光栅衍射后,相 邻刻线产生的光程差 (sin sin )s d αβ?=±,α为入射角, β为衍射角,则可导出光栅方程: (sin sin )d m αβλ±= (0.1) 光栅方程将某波长的衍射角和入射角通过光栅常数d 联系起来,λ为入射光波长,m 为衍射级次,取0,1,2,±±等整数。式中的“±”号选取规则为:入射角和衍射角在光栅法线的同侧时取正号,在法线两侧时取负号。如果入射光为正入射0α=,光栅方程变为sin d m βλ=。衍射角度随波长的变化关系,称为光栅的角色散特性,当入射角给定时,可以由光栅方程导出 cos d m d d βλβ=, (0.2) 复色入射光进入狭缝S1后,经M2变成复色平行光照射到光栅G 上,经光栅色散后,形成不同波长的平行光束并以不同的衍射角度出射,M2将照射到它上面的某一波长的光聚焦在出射狭缝S2上,再由S2后面的电光探测器记录该波长的光强度。光栅G 安装在一个转台上,当光栅旋转时,就将不同波长的光信号依次聚焦到出射狭缝上,光电探测器记录不同光栅旋转角度(不同的角度代表不同的波长)时的输出光信号强度,即记录了光谱。这种光谱仪通过输出狭缝选择特定的波长进行记录,称为光栅单色仪。 在使用单色仪时,对波长进行扫描是通过旋转光栅来实现的。通过光栅方程可以给出出射波长和光栅角度之间的关系(如图2所示) 2cos sin d m λψη=, (0.3) 图1光栅光谱仪示意图

玻璃折射率的测量方法

课程论文 题目:对玻璃折射率测定方法的探究 班级:2010级物理学本科班 姓名: 学号: 指导老师: 对玻璃折射率测定方法的探究

摘要:通过不同的方法测定玻璃的折射率,在对实验现象观察的同时,比较不同的方法之间的区别,并将实验结果与真实值比较。 关键词:玻璃,分光计,顶角,偏向角,折射率。 引言:运用钠灯灯光或激光照射玻璃,通过观察折射或反射光的性质来确定玻璃的折射率。 实验方法: (一) 最小偏向角法: 1. 实验仪器与用具:分光计,玻璃三棱镜,钠灯。 2. 实验原理: (1)将待测的光学玻璃制成三棱镜,可用最小偏向角法测其折射率n .测量原理见图1,光线α代表一束单色平行光,以入射角i 1投射到棱镜的AB 面上,经棱镜两次折射后以i 4角从另一面AC 射出来,成为光线t .经棱镜两次折射,光线传播方向总的变化可用入射光线α和出射光线t 延长线的夹角δ来表示,δ称为偏向角.由图1可知δ=(i 1-i 2)+(i 4-i 3)=i 1+i 4-A .此式表明,对于给定棱镜,其顶角 A 和折射率n 已定,则偏向角δ随入射角i 1而变,δ是i 1的函数. (2)用微商计算可以证明,当i 1=i 4或i 2=i 3时,即入射光线a 和出射光线t 对称地“站在”棱镜两旁时,偏向角有最小值,称为最小偏向角,用δm 表 示.此时,有i 2=A /2, i 1=(A +δm )/2,故2 2m A A n sin sin δ+=。用分光计测出棱 镜的顶角A 和最小偏向角δm ,由上式可求得棱镜的折射率n . 3.实验内容: 3.1棱镜角的测定 图1

置光源于准直管的狭缝前,将待测棱镜的折射棱对准准直管,由准直管射出的平行光束被棱镜的两个折射面分成两部分。在棱镜的另外两侧分别找到狭缝像与竖直叉丝重合,分别记录此时分光计的读数''1212,,,V V V V ,望远镜的两位置所对应的游标读数之差为棱镜角A 的两倍。 3.2最小偏向角的测定 (1)将待测棱镜放置在棱镜台上,转动望远镜使能清楚地看见钠光经棱镜折射后形成的黄色谱线。 (2)刻度内盘固定。缓慢转动载物台,改变入射角,使谱线往偏向角减小的方向移动,用望远镜跟踪谱线观察。 (3)当载物台转到某一位置,该谱线不再移动,如继续按原方向转动载物台,可看到谱线反而往相反的方向移动,即偏向角变大。该谱线偏向角减小的极限位置即为最小偏向角位置。 (4)反复实验,找出谱线反向移动的确切位置。固定载物台,微动望远镜,使叉丝中间竖线对准谱线中心,记录此时分光计的读数12,V V 。 (5)转动载物台,使光线从待测棱镜的另一光学面入射,转动望远镜至对称位置,使光线向另一侧偏转,同上找出对应谱线的极限位置,相应的游标读数为 ' ' 12V V 和。同一游标左右两次数值之差是最小偏向角的2 倍,即 '' 1122()/4m V V V V δ=-+- 4.实验数据记录 表2:最小偏向角

光栅光谱仪的应用 复旦介绍

光栅光谱仪的应用 摘要:本实验通过光栅光谱仪,测量并分析不同光源的发射光谱、溶液的吸收光谱、滤光片的透射光谱以及实验条件对光谱的影响。 关键词:光栅光谱仪、光电倍增管、发射光谱、吸收光谱、透射光谱 Abstract:In this experiment, the emission spectra of different light source, the absorption spectra of the solution, the transmission spectra of optical filters with several colours, and the effects caused by experimental conditions are measured and analyzed with the help of the grating spectrometer. Keywords: grating spectrometer, photomultiplier, emission spectrum, absorption spectrum, transmission spectrum.

一、引言 光栅光谱仪,是将成分复杂的光分解为光谱线的科学仪器。本实验利用定标后的光栅光谱仪,测量不同光源的发射光谱、物质吸收光谱以及透射光谱,并研究分析实验条件对光谱的影响,了解光谱特性。 二、实验原理 1.发射光谱: 物体发光直接产生的光谱叫做发射光谱1。处于高能级的原子或分子在向较低能级跃迁时产生辐射,将多余的能量发射出去形成的光谱。 由于产生的情况不同,发射光谱又可分为连续光谱和明线光谱。 稀薄气体发光是由不连续的亮线组成(实际由于光线通过时会产生吸收光谱,特定频率的光被吸收后形成暗线或暗带,剩下的就是光谱中的明线),这种发射光谱又叫做明线光谱,原子产生的明线光谱也叫做原子光谱。 固体或液体及高压气体的发射光谱,是由连续分布的波长的光组成的,这种光谱叫做连续光谱。 白炽灯与汞灯的发射光谱区别就在于,前者是连续光谱而后者是明线光谱。 2.吸收光谱: 物质吸收电磁辐射后,以吸收波长或波长的其他函数所描绘出来的曲线即吸收光谱。是物质分子对不同波长的光选择吸收的结果,是对物质进行分光光度研究的主要依据2。 吸光度是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的以10为底的对数(即lg(Iin/Iout))3。 吸光度与物质的浓度、温度、本身性质等有关。 在多组分体系中,如果各组分的吸光质点彼此不发生作用,那么吸光度便等于各组分吸光度之和,这一规律称吸光度的加和性。 [I0为入射光强,I为出射光强] (1) 吸光度公式:Aλ=log I0 I 对较稀溶液,有比尔—朗伯定律: A=αlc [α是吸收系数,l是光在样本中经过距离,c是浓度] (2) 3.光栅单色仪: 1引自《百度百科·发射光谱》; 2引自《百度百科·吸收光谱》; 3

光栅光谱仪实验报告

光栅光谱仪的使用 学号 2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学) 所在系(院)理学院 2017 年 3 月 14 日

光栅光谱仪的使用 张家梁 1 实验目的 1.了解光栅光谱仪的工作原理。 2.学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和CCD 来接收出射光。 2. 光探测器 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。

CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的CCD 常用作图象传感和光学测量。由于CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角Φ=90°时,衍射强度公式为 光栅衍射强度仍然由单缝衍射因子和多缝衍射因子共同决定,只不过此时 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号。单缝衍射中央主极大的条件是u=0,即sinΦ=-sinθ或Φ=θ。将此条件代入到多缝干涉因子中,恰好满足v=0,即0 级干涉大条件。这表明单缝衍射中央极大与多缝衍射0 级大位置是重合的(图9.1a),光栅衍射强度大的峰是个波长均不发生散射的0 级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿型的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”。与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状

光学石英玻璃的折射率

表7 光学石英玻璃的折射率(之一)波长(毫微米)水晶熔制石英玻璃合成石英玻璃185.41 1.57464 - 193.53 1.56071 - 202.54 1.54729 1.54717 206.20 1.54269 1.54266 213.85 - 1.53434 214.45 1.53385 - 226.50 1.52318 1.52299 23 2.94 1.51834 - 237.83 - 1.51473 248.20 - 1.50841 250.20 1.50762 - 257.62 1.50397 1.50351 265.36 - 1.49994 274.87 1.49634 - 280.35 - 1.49403 289.36 - 1.49098 298.06 1.48859 1.48837 307.59 - 1.48575 313.17 - 1.48433 328.36 1.48183 - 334.15 - 1.47976 340.36 1.47877 1.47860 346.69 1.47766 1.47748 361.17 1.47513 1.47503 365.48 - 1.47448 398.84 1.47028 - 404.65 - 1.46961 435.83 1.46679 1.46669 486.13 1.46324 1.46314 546.07 1.46021 1.46007 587.56 1.45857 1.45847 656.27 1.45646 1.45637 注:测量误差:±3×10-5 表7 光学石英玻璃的折射率(之二)波长λ(微米) 折射率波长λ(微米) 折射率0.67 1.456066 1.30 1.446980 0.68 1.455818 1.40 1.445845 0.69 1.455579 1.50 1.444687 0.70 1.455347 1.60 1.443492 0.80 1.453371 1.70 1.442250 0.90 1.451808 1.80 1.440954 1.00 1.450473 1.90 1.439957 1.10 1.440261 2.00 1.438174 1.20 1.448110 2.10 1.436680 2.20 1.435111 2.90 1.421684 2.30 1.433462 3.00 1.41937 2.40 1.431730 3.10 1.41694

折射率测量

实验十一 折射率测量 折射率是物质的重要特性参数之一,使人们了解光学玻璃、光纤、光学晶体、液晶、薄膜等材料的光学性能。折射率也是矿物鉴定的重要依据,也是光纤通信、工程塑料新物质和新介质判断依据。测量折射率的方法很多,这里介绍几种主要的实验方法。 练习一 用最小偏向角法测棱镜玻璃折射率 【实验目的】 1.进一步熟悉分光计调节方法; 2.掌握三棱镜顶角,最小偏向角的测量方法。 【实验仪器】 JJY 型分光计、低压钠灯、平面反射镜、等边三棱镜。 【实验原理】 一束平行的单色光,从三棱镜的一个光学面(AB 面)入射,经折射后由另一光学面(AC 面)射出,如图5.11.1所示。入射光和AB 面法线的夹角i 称为入射角,出射光和AC 面法线的夹角i '称为出射角,入射光和出射光的夹角δ称为偏向角。可以证明,当入射角i 等于出射角i '时,入射光和反射光之间的夹角δ最小,称为最小偏向角m in δ。 由图5.11.1可知)''()(r i r i -+-=δ,当 'i i =时,由折射定律有'r r =,得 )(2min r i -=δ (5.11.1) 又因 A A G r r r =-π-π=-π==+)(2' 所以 = r 2 A (5.11.2) 由式(5.11.1)和式(5.11.2)得 2 min δ+= A i 由折射定律有 ① ② 图5.11.1

2 sin 2sin sin sin min A A r i n δ+== (5.11.3) 由式(5.11.3)可知,只要测出最小偏向角min δ(顶角已知),就可以计算出棱镜玻璃对该波长的折射率。 【实验内容与步骤】 1.正确调整分光计,使其满足实验要求(参阅§3.9) 2.测定玻璃三棱镜对钠光黄光的最小偏向角 如图 5.11.2所示,旋载物台,使一光学面AC 与平行光管入射方向基本上垂直。当一束钠黄单色光从平行光管发出平行光射向三棱镜AB 光学面,经过三棱镜AC 光学面折射出来,望远镜从毛面BC 底边出发,沿着逆时针旋转,会看到清晰的狭缝像,说明找到折射光路。此时转动小平台连同棱镜,观察狭缝像运动 状态,如果向右移动,偏向角δ变小。再转小平台狭缝像会走到一定位置转折,使δ偏大,此转折点即为该光谱线的最小偏向角位置,把望远镜对准这个转折点,记录下来,为m in T 、min 'T 。然后使望远镜对准入射光(平行光管位置),读取方位为0T 与0'T ,则最小偏向角 ]''[2 1 0min 0min min T T T T -+-=δ 3.计算棱镜折射率 光的颜色_______ 波长_______nm ]''[2 1 0min 0min min T T T T -+-=δ 图5.11.2 测最小偏向角示意图

物理光学期末试题

1.波动方程,光程、光程差、相位差 2.杨氏干涉、薄膜干涉(等倾、等厚) (重点) 3.单缝衍射、圆孔衍射(半波带、分辨本领)、光栅 4.马吕斯定律、布儒斯特定律、偏振光之间转换 1.)](ex p[0kz t i E E --=ω与)](ex p[0kz t i E E +-=ω描述的是 传播的光波。 A .沿正方向 B .沿负方向 C .分别沿正和负方向 D .分别沿负和 正方向 2.牛奶在自然光照射时呈白色,由此可以肯定牛奶对光的散射主要是 A .瑞利散射 B .分子散射 C .Mie 散射 D .拉曼散射 3.在白炽光入射的牛顿环中,同级圆环中相应于颜色蓝到红的空间位置是 A .由外到里 B .由里到外 C .不变 D .随机变化 5. F-P 腔两内腔面距离h 增加时,其自由光谱范围λ? A .恒定不变 B .增加 C .下降 D .=0 6.光波的能流密度正比于 A . E 或H B .2E 或2H C .2E ,与H 无关 D . 2H ,与 E 无关 7.光在介质中传播时,将分为o 光和e 光的介质属 A .单轴晶体 B .双轴晶体 C .各向同性晶体 D .均匀媒质 8.两相干光的光强度分别为I 1和I 2,当他们的光强都增加一倍时,干涉条纹的可见度 A .增加一倍 B . 减小一半 C .不变 D . 增加1/2 倍 9.线偏振光可以看成是振动方向互相垂直的两个偏振光的叠加,这两个偏振光是 A .振幅相等,没有固定相位关系 B .振幅相等,有固定相位关系 C .振幅可以不相等,但相位差等于0度或180度 D .振幅可以不相等,但相位差等于90度或270度 10.等倾干涉图样中心圆环 。(区分迈克尔孙和牛顿环) A .级次最高,色散最弱 B .级次最高,色散最强 C .级次最低 色散最弱 D .级次最低,色散最强 11.在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为λ4=a 的单 缝上,对应于衍射角为30o的方向,单缝处波阵面可分成的半波带数目为 A .2 个 B .4 个 C .6 个 D .8 个 14.闪耀光栅中,使刻槽面与光栅面成角,目的是使

光栅光谱仪的使用

光栅光谱仪的使用实验报告 一、实验目的与实验仪器 1.实验目的 (1)了解平面反射式闪耀光栅的分光原理及主要特性; (2)了解光栅光谱仪的结构,学习使用光栅光谱仪; (3)测量钨灯和汞灯在可见光范围的光谱; (4)测定光栅光谱仪的色分辨能力; (5)测定干涉滤光片的光谱透射率曲线。 2.实验仪器 WDS-3平面光栅光谱仪(200~800nm),汞灯,钨灯&氘灯组件,干涉滤光片。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.平面反射式闪耀光栅原理 (1)θ方向的光强:I θ=(sinα α )2(sinNβ sinβ )2 (2)光栅方程:d(sinθ+sin i)= kλ (3)闪耀光栅:光强最大的方向就是槽面反射定律所规定的方向,0级谱线出现在光栅平面反射的方向,闪耀光栅能够把能量集中在需要的光谱级里。 (4)闪耀波长的计算:λ=2dsinγ k 2.平面光栅光谱仪的结构与组成 (1)光学系统结构:

光栅:1200/mm;闪 耀波长250nm;M1 和M2凹面镜焦距 为300mm;狭缝0- 2mm连续可调。 电子系统:电源系统、光接收系统、步进电动机系统组成。 光学接收系统:光电倍增管及其放大电路组成。 光电倍增管:光信号转变成电信号。是测光仪器和光电自动化设备中的主要探测元件。 目前测量光信号最灵敏的器件之一。 结构: 3.色分辨率 光栅光谱仪的色分辨率是分开两条邻近谱线能力的量度。 以汞灯的两条黄谱线(波长为 577.0nm和579.1nm)为例测出谱 线λ1和λ2峰间的间隔a以及峰 的半宽度b,则色分辨能力为: Δλ =b α δλ δλ=λ 2-λ 1 =2.10nm 4.滤光片光谱特性

大学物理光学实验报告

实验十:光栅衍射 一、实验目的 1.观察光线通过光栅后的衍射光谱。 2.学会用光栅衍射测定光波波长的方法。 3.学会用光栅衍射原理测定光栅常数。 4.进一步熟悉分光计的调整和使用方法。 二、实验仪器 分光计 光栅 钠光灯 平面反射镜 三、实验原理 光栅是有大量的等间隔、等宽度的狭缝平行放置组成的一种光学元件。设狭缝宽度(透光部分)为a ,不透光部分为b ,则a b +为光栅常数。 设单色光垂直照射到光栅上,光透过各个狭缝后,向各个方向发生衍射,衍射光经过透镜后会聚后相互干涉,在焦平面上形成一系列的被相当宽的暗区分开的明亮条纹。 衍射光线与光栅平面的夹角称为衍射角。设衍射角为θ的一束衍射光经透镜会聚到观察屏的点。在P 点出现明条纹还是暗条纹决定于这束衍射光的光程差。 由于光栅是等宽、等间距,任意两个相邻缝的衍射光的光程差是相等的,两个相邻狭缝的衍射光的光程差为()sin a b θ+,如果光程差为波长的整数倍,在P 点就出现明条纹,即 ()sin a b k θλ+=± (0,1,2,)k =L 这就是光栅方程。 从上式可知,只要测出某一级的衍射角,就可计算出波 长。 四、实验步骤 1、调整分光计。 使望远镜、平行光管和载物台都处于水平状态,平行光 管发出平行光。 2、安置光栅 将光栅放在载物台上,让钠光垂直照射到光栅 上。 可以看到一条明亮而且很细的零级光谱,左右转动望远 镜观察第一、二级衍射条纹。 3.测定光栅衍射的第一、二级衍射条纹的衍射角θ,并记录。 五、数据记录 S 2 S 1 S 3 ()3 ()2 () 1()1()2 ()3 G 2 φ12 φ22φ3

光栅光谱仪的使用实验报告-董芊宇

实验报告 题目: 光栅光谱仪的使用 姓名董芊宇 学院理学院 专业应用物理学 班级2013214103 学号2013212835 班内序号22 2015年9 月

一. 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 二. 实验原理 1.闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(φ=90?)光栅衍射的一般特性。当入射角φ=90?时,衍射强度公式为 22 2 sin sin sin I u Nv A u v = ???? ? ????? (9.1) 光栅衍射强度仍然由单缝衍射因子和多缝干涉因子共同决定。只不过此时 ()sin sin a u π φθλ= + (9.2) ()sin sin d v πφθλ =+ (9.3) 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号,单缝衍射中央主 极大的条件是0u =,即sin sin φθ=-或?θ=-。将此条件代入到多缝干涉因子中,恰好满足0v =,即0级干涉最大条件。这表明单缝衍射中央极大与多缝衍射0级最大位置是重合的,光栅衍射强度最大的峰是个波长均不发生散射的0级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿形的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”,与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状无关。所以当光栅常数及入射角与平面光栅一样时,两者0级极大的角度也一样。闪耀光栅的沟槽斜面相当于单缝,衍射条件与锯齿面法线有关。中央极大的衍射方向与入射线对称于齿面法线N ,于是造成衍射极大与0级干涉极大方向不一致。适当调整光栅参数,可以使光栅衍射的某一波长最强峰发生在1级或其他高级干涉极大的位置。 2.非平衡光辐射(发光) 处于激发态上的电子处于非平衡态。它向低能级跃迁时就会发光。设电子跃迁1 E 和0E ,发 射光子的能量为 10hc hv E E E λ ==-=? (9.4) 电子受光辐射激发到高能态上导致的发光成为光致发光。光致发光时,电子在不同能级间跃迁常见如下情况。 (1) 电子受光辐射激发,然后以无辐射情况跃迁到低能级。(无发射跃迁释放的能量转化成热能

光栅光谱仪实验报告

光栅光谱仪的使用 学号2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学)所在系(院)理学院 2017 年3 月14 日

光栅光谱仪的使用 张家梁 1 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和CCD 来接收出射光。

2. 光探测器 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。 CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的CCD 常用作图象传感和光学测量。由于CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角

工程光学物理光学参考答案

物理光学作业参考答案 [13-1] 波长nm 500=λ的单色光垂直入射到边长3cm 的方孔,在光轴(它通过孔中心并垂直孔平面)附近离孔z 处观察衍射,试求出夫琅和费衍射区的大致范围。 解:夫琅和费衍射条件为: π<<+z y x k 2)(max 2121 即: m nm y x z 900109.0500 )1015()1015()(122626max 2121=?=?+?=+>> λ [13-3]平行光斜入射到单缝上,证明:(1)单缝夫琅和费衍射强度公式为 2 0)s i n (s i n )]sin (sin sin[??? ???? ???????--=i a i a I I θλπθλπ 式中,0I 是中央亮纹中心强度;a 是缝宽;θ是衍射角,i 是入射角(见图)。 证明:(1 缝上任意点Q 的位矢: 单逢上光场的复振幅为: 因此,观察面上的夫琅和费衍射场为: (其中: ) ) cos ,0,(sin i i k k = )0,,(11y x r = 1sin 1)(~x i ik r k i Ae Ae x E ??== ) sin (sin )]sin (sin sin[)(~1)(~)2(1 1 22)sin (sin )2(11sin 22 sin )2(11221)2(1121 12 11 112111 121i a i a ae z A dx e e z i A dx e e e z i A dx e x E e z i x E z x z ik a a x i ik z x z ik x ik a a x i ik z x z ik x z x ik a a z x z ik --====+---+?--?+--+? ?? θλ πθλπλλλλθθθsin 1≈z x

20140224光栅光谱仪实验要求

光栅光谱仪 实验仪器 WGD-5型组合式多功能光栅光谱仪,滤色片一组(红绿蓝),汞灯,溴钨灯,水,玻璃片。 预习思考题 1.简述工作原理(不可照抄课本),在此基础上画出光栅光谱仪的光路图,。 2.改变光谱仪入射或出射狭缝的大小会对测量结果有什么影响? 3.测量透过率曲线对光源有什么要求?汞灯是合适的光源吗? 4.水和玻璃是什么颜色的?为什么? 实验内容 一. 测量前的准备(自带U 盘) (1) 记录螺旋尺旋转方向与缝宽变化的关系。 (2) 打开单色仪的电源开关,打开汞灯、溴钨灯电源,预热5min。 (3) 将倍增管的高压调至400V(不得超过600V)。 (4) 打开计算机,进入win98 后,双击“WGD-5 倍增管”图标进入工作界面。待系统和波长初始化完成后便可以工作。 二. 单色仪波长校准 探测器选用光电倍增管,高压加到400伏。在能量模式下测量汞灯光谱。扫描范围300-750nm,扫描步长选1nm。用“自动寻峰”测量谱线波长,与标准值比较,如果波长差大于1nm,进行波长修正。 说明:光源:汞灯 参数设置:工作方式:模式“能量”,间隔“1nm”;工作范围:300—750nm。 狭缝宽度调节,使入射缝与出射缝相匹配。 点击“单程”,单色仪开始扫描。 扫描完成根据谱线强度重新调整入射和出射狭缝,使谱线尽量增高,并使黄线 576.9nm、579.0nm 分开 (以划线谱线作为参照) (汞灯谱线:波长(nm)365.02、404.66、407.78、435.83、546.07、576.96、579.07、623.4) 三. 测量滤色片透过率曲线 光源:取下高压汞灯,换上溴钨灯 1. 扫描基线 工作方式:模式“基线”。 点击“单程”,单色仪开始扫描。调节入射缝的缝宽使基线的峰值达到900以上; 扫描结束后,点击“当前寄存器”列表框右侧“---”,在弹出的“环境信息”填入信息,然后关闭。保存该寄存器的数据,选用“txt”的文本格式。 2. 扫描透过率曲线 打开样品池顶盖,将一个滤色片放在入射狭缝的前面,盖上顶盖。

浙江大学物理光学实验报告

本科实验报告 课程名称:姓名:系:专业:学号:指导教师: 物理光学实验郭天翱 光电信息工程学系信息工程(光电系) 3100101228 蒋凌颖 2012年1 月7日 实验报告 实验名称:夫琅和弗衍射光强分布记录实验类型:_________ 课程名称:__物理光学实验_指导老师:_蒋凌颖__成绩: 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得 一、实验目的和要求 1.掌握单缝和多缝的夫琅和费衍射光路的布置和光强分布特点。 2.掌握一种测量单缝宽度的方法。 3.了解光强分布自动记录的方法。 二、实验内容 一束单色平面光波垂直入射到单狭缝平面上,在其后透镜焦平面上得到单狭缝的夫琅禾费衍射花样,其光强分布为: i?i0( 装 式中 sin? ? ) 2 (1) 订 ?? 线 ??sin?? (2) ?为单缝宽度,?为入射光波长,?为考察点相应的衍射角。i0为衍射场中心点(??0处)的光强。如图一所示。 由(1)式可见,随着?的增大,i有一系列极大值和极小值。极小值条件 asin??n?(n?1,n?2) (3) 是: 如果测得某一级极值的位置,即可求得单缝的宽度。 如果将上述单缝换成若干宽度相等,等距平行排列的单缝组合——多缝,则透镜焦面上得到的多缝夫琅禾费衍射花样,其光强分布: n? sin?2 )2 i?i0()( ?

2 (4) sin 式中 ?? sin??2???dsin? ? ?? (5) ?为单缝宽度,d为相邻单缝间的间距,n为被照明的单缝数,?为考察点相应的衍射角;i0为衍射中心点(??0处)的光强。 n? )2 (sin?2() 2称?为单缝衍射因子,为多缝干涉因子。前者决定了衍射花 sin (干涉)极大的条件是dsin??m?(m?0,?1,?2......)。 dsin??(m? m )?(m?0,?1,?2......;m?1,2,.......,n?1)n 样主极大的相对强度,后者决定了主极大的位置。 (干涉)极小的条件是 当某一考虑点的衍射角满足干涉主极大条件而同时又满足单缝衍射极小值条件,该点的光强度实际为0/,主极大并不出现,称该机主极大缺级。显然当d/??m/n为整数时,相应的m 级主极大为缺级。 不难理解,在每个相邻干涉主极大之间有n-1个干涉极小;两个相邻干涉极小之间有一个干涉次级大,而两个相邻干涉主级之间共有n-2个次级大。 三、主要仪器设备 激光器、扩束镜、准直镜、衍射屏、会聚镜、光电接收扫描器、自动平衡记录仪。 四、操作方法和实验步骤 1.调整实验系统 (1)按上图所示安排系统。 (2)开启激光器电源,调整光学元件等高同轴,光斑均匀,亮度合适。(3)选择衍射板中的任一图形,使产生衍射花样,在白屏上清晰显示。 (4)将ccd的输出视频电缆接入电脑主机视频输出端,将白屏更换为焦距为100mm的透镜。 (5)调整透镜位置,使衍射光强能完全进入ccd。 (6)开启电脑电源,点击“光强分布测定仪分析系统”便进入本软件的主界面,进入系统的主界面后,点击“视频卡”下的“连接视频卡”项,打开一个实时采集窗口,调整透镜与ccd的距离,使电脑显示屏能清晰显示衍射图样,并调整起偏/检偏器件组,使光强达到适当的强度,将采集的图像保存为bmp、jpg两种格式的图片。 2.测量单缝夫琅和费衍射的光强分布(1)选定一条单狭缝作为衍射元件(2)运用光强分布智能分析软件在屏幕上显示衍射图像,并绘制出光强分布曲线。 (3)对实验曲线进行测量,计算狭缝的宽度。 3.观察衍射图样 将衍射板上的图形一次移入光路,观察光强分布的水平、垂直坐标图或三维图形。

光栅光谱仪实验报告

光栅光谱仪实验报告公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

光栅光谱仪的使用 学号 22 学生姓名张家梁 专业名称应用物理学(通信基础科学)所在系(院)理学院 2017 年 3 月 14 日

光栅光谱仪的使用 张家梁 1 实验目的 1. 了解光栅光谱仪的工作原理。 2. 学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和 CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和 CCD 来接收出射光。 2. 光探测器

光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于 1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。 CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的 CCD 常用作图象传感和光学测量。由于 CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角Φ=90°时,衍射强度公式为 光栅衍射强度仍然由单缝衍射因子和多缝衍射因子共同决定,只不过此时

相关主题
文本预览
相关文档 最新文档