当前位置:文档之家› 电源的电路模型及其等效变换知识-完整版

电源的电路模型及其等效变换知识-完整版

等效电路模型参数在线辨识

第四章 等效电路模型参数在线辨识 通过第三章函数拟合的方法可以确定钒电池等效电路模型中的参数,但是在实际运行过程中模型参数随着工作环境温度、充放电循环次数、SOC 等因素发生变化,根据离线试验数据计算得到的参数值估算电池SOC 可能会造成较大的估计误差。因此,在实际运行时,应对钒电池等效电路模型参数进行在线辨识,做出实时修正,提高基于模型估算SOC 的精度。 4.1 基于遗忘因子的最小二乘算法 参数辨识是根据被测系统的输入输出来,通过一定的算法,获得让模型输出值尽量接近系统实际输出值的模型参数估计值。根据能否实时辨识系统的模型参数,可以将常用的参数辨识方法分为离线和在线两类,离线辨识只能在数据采集完成后进行,不能对系统模型实时地在线调整参数,对于具有非线性特性的电池系统往往不能得到满意的辨识结果;在线辨识方法一般能够根据实时采集到的数据对系统模型进行辨识,在线调整系统模型参数。常用的辨识方法有最小二乘法、极大似然估计法和Kalman 滤波法等。因最小二乘法原理简明、收敛较快、容易理解和掌握、方便编程实现等特点,在进行电池模型参数辨识时采用了效果较好的含遗忘因子的递推最小二乘法。 4.1.1 批处理最小二乘法简介 假设被辨识的系统模型: 12121212()()()1n n n n b z b z b z y z G z u z a z a z a z ------+++==++++L L (4-1) 其相应的差分方程为: 1 1 ()()()n n i i i i y k a y k i b u k i ===--+-∑∑(4-2) 若考虑被辨识系统或观测信息中含有噪声,则被辨识模型式(4-2)可改写为: 1 1 ()()()()n n i i i i z k a y k i b u k i v k ===--+-+∑∑(4-3) 式中, ()z k 为系统输出量的第k 次观测值;()y k 为系统输出量的第k 次真值,()y k i -为系统输出量的第k i -次真值;()u k 为系统的第k 个输入值,()u k i -为 系统的第k i -个输入值;()v k 为均值为0的随机噪声。

太阳能电池等效电路分析

?太阳能电池等效电路分析 ?引言 太阳能电池是利用光伏效应直接将光能转换为电能的器件。其理想等效电路模型是一个电流源和一个理想二极管的并联电路,其输出特性可以用J-V曲线图表示。如图1(略)。 在实际器件中,由于表面效应、势垒区载流子的产生及复合、电阻效应等因素的影响,其电流电压特性与理想特性有很大差异,这是因为理想模型不能正确反映实际器件的特点。实际模型采用串联电阻及并联电阻来等效模拟实际器件中的各种非理想效应的影响。本文针对太阳电池的等效电路模型,利用Matlab软件建立了仿真模块,模拟了太阳电池各输出参数受其内部电阻影响的程度。 太阳能电池等效电路分析 实际太阳电池等效电路如图2所示,由一个电流密度为JL的理想电流源、一个理想二极管D和并联电阻Rsh,串联电阻Rs组合而成。Rsh为考虑载流子产生与复合以及沿电池边缘的表面漏电流而设计的一个等效并联电阻,Rs 为扩散顶区的表面电阻、电池体电阻及上下电极之间的欧姆电阻等复合得到的等效串联电阻。太阳电池两端的电压为V,流过太阳电池单位面积的电流为J。由图2可以得出其电流电压关系(公式略): 式中,Js——二极管反向饱和电流密度。当太阳电池两端开路时,即负载阻抗为无穷大时,通过太阳电池的净电流J 为零,此时的电压为太阳电池的开路电压VOC。在(1)式中令J=0,则有(公式略) (2)式表明,开路电压不受串联电阻Rs,的影响,但与并联电阻Rsh有关。可以看出,Rsh减小时,开路电压VOC 会随之减小。 太阳电池两端短路即负载阻抗为零时,电压V为零,此时的电流为短路电流密度Jsc。在(1)式中令V=0,并且考虑到一般情况下R<

太阳能电池等效电路

太阳能电池等效电路 图1.1是利用P/N 结光生伏特效应做成的理想光电池的等效电路图,图中把光照下的p-n 结看作一个理想二极管和恒流源并联,恒流源的电流即为光生电流I L ,R L 为外负载。I L 的能力通过p-n 结的结电流I j 用二极管表示。这个等效电路的物理意义是:太阳能电池光照后产生一定的光电流I L ,其中一部分用来抵消结电流I j ,另一部分即为供给负载的电流I R 。其端电压V 、结电流I 以及工作电流I 的大小都与负载电阻R 有关,但负载电阻并不是唯一的决定因素。如上所述,I 的大小为 j L I I I -= (1-1) 根据扩散理论,二极管结电流I j 可以表示为 )1(0-=kT qV j j e I I (1-2) 将式(2-2)代入(2-1),得 )1(0--=kT qV L j e I I I (2-3) 实际的太阳能电池,由于前面和背面的电极和接触,以及材料本身具有一定的电阻率,基区和顶层都不可避免的要引入附加电阻。流经负载的电流,经过它们时,必然引起损耗。在等效电路中,可将它们的总效果用一个串联电阻R S 来表示。由于电池边沿的漏电和制作金属化电极时,在电池的微裂纹、划痕等处形成的金属桥漏电等,使一部分本应通过负载的电流短路,这种作用的大小可用一并联电阻R SH 来等效。则实际的光电池的等效电路如图1.2所示[17-20] 。p-n 结光生伏特效应最主要的应用是作为太阳能电池。太阳辐射的光能有一个光谱分布,禁带宽度越窄的半导体,可以利用的光谱越广。但是,禁带宽度E g 太小的话相应能产生的光电动势又会比较小。反之,E g 大的半导体,虽然V OC 可以提高,但可以利用的太阳光谱范围就会比较小[35]。也就是说,开路电压V oc 随E g 的增大而增大,但另一方面,短路电流密度J SC 随E g 的增大而减小。结果是可期望在某一个确定的E g 处出现太阳能电池效率的峰值。因此如何充分合理的利用太阳能资源,是一个太阳能电池生产商面临的关键技术问 图 1.2 太阳能电池的实际等效电路 Fig.1.2 Equivalent circuit of the actual solar cell

电路的等效变换.

电路的等效变换 执教:金陵中学:范世民 一、教学目标 1、知识与技能:通过对比较复杂的组合电路的简化,了解电路等效变换的方法,学会看懂电路。 2、过程与方法:列举法、感受假设、理想化方法、归纳法、等效法等科学方法在电路分析中的应用,体验科学方法对解决实际问题的重要性。 3、价值观与情愿态度:生活中离不开用电器,用电器工作状态是受电路控制的,电路的设计,离不开对电路的分析与计算。明白电路的基本规律已经成为现代生活和科技的基础,增强创新意识。 二、学情分析:看懂电路——能确定电路中各用电器间的串、并联关系是正确分析和计算简单电路的前提,是关键。对电路进行等效变换就是在不改变电路中各用电器上的电压和电流的前提下对电路进行改画,以使用电器间的串、并联 关系一目了然。 由于学生已了解了串、并联电路的特点和基本规律,所以,可充分利用学生已有的知识与技能引导学生对实际电路进行分析和设计,感受列举法、假设、理想化方法、归纳法、等效法等科学方法在电路分析中的应用,感悟电路等效变换的方法。 三、教学重、难点 重点:学会用电路等效变换的方法看懂电路。难点:节点电流法。 四、教学过程设计 1、导入 展示电吹风和电冰箱电路图,说明生活中离不开用电 R I 器,用电器工作状态是受电路控制的,电路的设计,离不开 对电路的分析与计算。 引例1、请同学们用学过的串联和并联电路的特点, 求如图所示电路中电压表和电流表的示数。 已知ab 间的电压为24V,R2=R3=2R I=20Q, R4=30Q。 引例2:P.47示例。 请学生对 其中一个电路作计算。与引例1 比较,谈体会。

对电路进行分析与计算,关键是要看得懂用电器的连接方式,才好利用串、并联的基规律解析。本节课我们就来探索看得懂电路的方法一一电路的等效变换。 对电路进行等效变换就是在不改变电路中各用电器上的电压和电流的前提下对电路进行改画,以使用电器间的串、并联关系一目了然。 试一试:请说一说上图中各电阻间的连接方式。 2、等效电路的方法: 方法一、按电路层次逐步等效,化繁为简。 (前提:每一部分电阻间的关系一目了然。)试一试:如 图所示的电路中,R仁100Q,ac 间电压为10V。be间电压 为40V。虚线框内电路结构及电阻均不知道,则a、b间的 总电阻为_ Q o(500Q) 引例3:如图所示电路中,R I=R2=R3=8Q, 电压恒为2.4V,则电流表的示数为 ______ A,电压表 的示数为______ V o若将电压表与电流表的位置互换,则电 流表的示数为_ A, 电压表的示数为_____ V o 是谁的电流、电压呢? 2、如果将电路中的电压表拿掉,电流表用导线替代,会引起各电阻上的电流和电 设问:1、你能看懂该电路中各电阻间的关系吗?电流表、电压表分别测的 压较大变化吗?(理想化方法)这样做有什么好处呢? 方法二、在简化电路时,将理想电压表拿掉,而理想电流表用导线替代,可 使电路中各电阻间的关系变得一目了然。引例4、如图所示电路中,R i=2Q,R2=3Q, R3=6Q, U=2.4V,求两只电流表的示数。 设问:1、用导线替代理想电流表后各电阻间的关系

太阳能电池基本原理-光生伏特原理-PN结-内建电场-等效电路

太阳能电池基本原理 基本原理——光生伏特效应 太阳能光伏发电是利用太阳电池的光伏效应原理,直接把太阳辐射能转变为电能的发电方式。典型太阳电池是一个p-n结半导体二极管。 光子把电子从价带(束缚)激发到导带(自由),并在价带内留下一个空穴(自由)——产生了自由电子-空穴对(光生载流子),p型材料中的电子与n型材料中的空穴将在与少子寿命相当的时间内,以相对稳定的状态存在,直到复合。当载流子复合后,光生电子空穴对将消失,没有电流和功率产生。光生电子-空穴对在耗尽层中产生后,立即被内建电场分离,光生电子被送进n区,光生空穴则被送进p区。光能就以产生电子-空穴对的形式转变为电能。 内建电场 当把N型和P型材料放在一起的时候,在N型材料中,费米能级靠近导带底,在P型材料中,费米能级靠近价带顶,当P型材料和N型材料连接在一起时,费米能级在热平衡时必定恒等,由于在P型材料中有多得多的空穴,它们将向N型一边扩散。与此同时,在N型一边的电子将沿着相反的方向向P型区扩散。由于电子和空穴的扩散,在p-n结区产生了耗尽层,即空间电荷区电场,又称为内建电场。 (1)光子吸收:在大部分有机太阳能电池中,因为材料的带隙过高,只有一小部分入射光被吸收,吸收只能达到30%左右。 (2)激子扩散:激子的扩散长度应该至少等于薄膜的厚度,否则激子就会发生复合,造成吸收光子的浪费。 (3)电荷分离:对于单层器件,激子在电极与有机半导体界面处离化,对于双层器件,激子在施主-受主界面形成的p-n结处离化。 (4)电荷传输:在有机材料中,电荷的传输是定域态间的跳跃,而不是能带内的传输,这意味着有机材料和聚合物材料中载流子的迁移率通常都比无机半导体材料的低。 (5)电荷收集:电荷的收集效率也是影响光伏器件功率转换效率的关键因素,金属与半导体接触时会产生一个阻挡层,阻碍电荷顺利地到达金属电极。 等效电路模型 太阳能电池等效电路 无光照时类似二极管特性,外加电压时单向电流I D 称为暗电流;有光照时产生光生电流I L ; R s 、R sh 分别为太阳电池中的串、并联电阻R L 为负载。 (1)恒流源:在恒定光照下,一个处于工作状态的太阳电池,其光电流不随工作状态而变化, 在等效电路中可把它看做恒流源。 (2)暗电流I D :光电流一部分流经负载R L ,在负载两端建立起端电压U,反过来,它又正向 偏置于PN结,引起一股与光电流方向相反的暗电流I D 。 (3)串联电阻R S :由于前面和背面的电极接触,以及材料本身具有一定的电阻率,基区和顶层都不可避免的引入附加电阻。流经负载的电阻经过它们时,必然引起损耗。在等效电路中,他们 的总效果用一个串联电阻R S 表示。 并联电阻R SH 由于电池边沿的漏电和制作金属电极时在微裂纹、划痕等处形成的金属桥漏电等, 使一部分本应通过负载达到电流短路,这种作用的大小可以用一个并联电阻R SH 等效。 决定太阳能电池能量转换效率的三个参数分别是短路电流(I sc )、开路电压(V oc )和填充因子 (FF)。因为电流(I)与太阳能电池的面积(A)成正比例关系,因此一般用电流密度(J)取代电

电压源与电流源及其等效变换

电压源与电流源及其等效变换

————————————————————————————————作者:————————————————————————————————日期:

课题3-5电压源与电流源及其等效变换课型新授 授课日期授课 时数 总课 时数 教具 使用 教学 目标 掌握电源的两种模型(电压源和电流源)教学重点 和难点 电源的两种模型的特点及等效变换方法。 学情分析学生对电动势和内阻串联的模型比较熟悉,对电流源模型不是很清楚,尚需详细讲解 板书设计 两种电源模型的等效变换 二、电流源 通常所说的电流源一般是指理想电流源,其基本特性是所发出的电流固定不变(I s)或是一定的时间函数i s(t),但电流源的两端电压却与外电路有关。 实际电流源是含有一定内阻r S的电流源 图3-19 电流源模型

教学后记

教学过程: 一、 导入新课 1 、什么叫电压源?什么叫电流源? 2、穷举生活中电压源和电流源的实例。 二、讲授新课 两种实际电源模型之间的等效变换 实际电源可用一个理想电压源E和一个电阻r0串联的电路模型表示,其输出电压U与输出电流I之间关系为 U = E-r0I 实际电源也可用一个理想电流源I S和一个电阻r S并联的电路模型表示,其输出电压U与输出电流I之间关系为 U = r S I S -r S I 对外电路来说,实际电压源和实际电流源是相互等效的,等效变换条件是 r0 = r S , E = r S I S 或I S = E/r0 【例】如图3-18所示的电路,已知电源电动势E= 6 V,内阻r0 = 0.2 Ω,当接上R= 5.8 Ω负载时,分别 用电压源模型和电流源模型计算负载消耗的功率和内 阻消耗的功率。

电源的等效变换

第二章电阻电路的等效变换2 讲授板书 1、掌握电压源、电流源的串联和并联; 2、掌握实际电源的两种模型及其等效变换; 3、掌握输入电阻的概念及计算。 1、电压源、电流源的串联和并联 2、输入电阻的概念及计算 实际电源的两种模型及其等效变换 1.组织教学5分钟 3.讲授新课70分钟1)电源的串并联20 2)实际电源的等效变换25 3)输入电阻的计算352.复习旧课5分钟电阻的等效 4.巩固新课5分钟 5.布置作业5分钟

一、学时:2 二、班级:06电气工程(本)/06数控技术(本) 三、教学内容: [讲授新课]: 第二章电阻电路的等效变换 (电压源、电流源等效变换) §2-5电压源、电流源的串联和并联 电压源、电流源的串联和并联问题的分析是以电压源和电流源的定义及外特性为基础,结合电路等效的概念进行的。 1.理想电压源的串联和并联 (1)串联 图示为n个电压源的串联,根据KVL得总电压为: 注意:式中u sk的参考方向与u s的参考方向一致时, u sk在式中取“+”号,不一致时取“-”号。 根据电路等效的概念,可以用图(b)所示电压为Us的单个电压源等效替代图(a)中的n个串联的电压源。通过电压源的串联可以得到一个高的输出电压。 (2)并联 (a)(b) 图示为2个电压源的并联,根据KVL得: 上式说明只有电压相等且极性一致的电压源才能并联,此时并联电压源的对外 特性与单个电压源一样,根据电路等效概念,可以用(b)图的单个电压源替代(a)图的电压源并联电路。 注意: (1)不同值或不同极性的电压源是不允许串联的,否则违反KVL。 (2)电压源并联时,每个电压源中的电流是不确定的。 2.电压源与支路的串、并联等效 (1)串联 图(a)为2个电压源和电阻支路的串联,根据KVL得端口电压、电流关系为:

电路原理习题答案第二章电阻电路的等效变换练习

第二章电阻电路的等效变换 等效变换”在电路理论中是很重要的概念,电路等效 变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数 不同的电路再端子上有相同的电压、电流关系,因而可以互代换的部分)中的电压、电流和功率。 相代换;(2)代换的效果是不改变外电路(或电路中未由此得出电路等效变换的条件是相互代换的两部分电 路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换” 的思想,熟练掌握“等效变换” 的方法在电路分析中是重要的。 2-1 电路如图所示,已知。若:(1);(2);(3)。试求以上3 种情况下电压和电流。 解:(1)和为并联,其等效电阻, 则总电流分流有 2)当,有

3),有 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压和电流;(2)若电阻增大,对哪些元件的电压、电流有影响?影响如何? 解:(1)对于和来说,其余部分的电路可以用电流源 等效代换,如题解图(a)所示。因此有 2)由于和电流源串接支路对其余电路来说可以等效为 个电流源,如题解图(b)所示。因此当增大,对及的电 流和端电压都没有影响。 但增大,上的电压增大,将影响电流源两端的电压, 因为 显然随的增大而增大。 注:任意电路元件与理想电流源串联,均可将其等效 为理想电压源,如本题中题解图(a)和(b)o但应该注意等效是对外部电路的等效。图(a)和图b) 中电流源两端 的电压就不等于原电路中电流源两端的电压。同时,任意电

第2章电阻电路的等效变换习题及答案解析

第2章 习题与解答 2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 2Ω 3Ω (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω 2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。 a b 8Ω a b 8Ω (a) (b) 题2-2图 解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

8Ω a b (a) (b) 题2-3图 解:(a )开关打开时(84)//43ab R =+=Ω 开关闭合时4//42ab R ==Ω (b )开关打开时(612)//(612)9ab R =++=Ω 开关闭合时6//126//128ab R =+=Ω 2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。 6Ω6Ω (a) (b) 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 1I 21/(16//123//621/(142)3A =++++=)= 从上往下流过3Ω电阻的电流为36 I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126 I 31A 126 = ?=+ 所以 312I I -I =1A = (b )从下往上流过6V 电压源的电流为66 I 4A 1.5 = ==(1+2)//(1+2)

从上往下流过两条并联支路的电流分别为2A 所以 U 22-12=2V =?? 2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。 2Ω (a) (b) 题2-5图 解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥 1 a 所以 111 //11332 ab R =++=Ω()() (b )将图中的两个Y 形变成△形,如图所示 2Ω a b 即得

@2太阳能电池的数学模型

2太阳能电池的数学模型 太阳能电池的数学模型是太阳能电池模拟器系统设计的基础,本章从太阳能电池的工作原理、等效电路出发,详细介绍了太阳能电池数学模型的建模过程,给出了太阳能电池的数学模型,并且对该数学模型进行了仿真,证明了该数学模型的正确性,为下文提出六折线模型拟合太阳能电池的I-V特性曲线奠定了基础。 2.1太阳能电池的工作原理 通常所说的太阳能电池指的是太阳能电池单体,太阳能电池单体是一种能够利用光伏效应将太阳能直接转换为电能的半导体装置,它的转换效率一般可达百分之十五左右。它通常是由大量的PN结串联而成的,整体结构一般是由一个P型半导体作为底座,在上面刻入N 型薄膜,并且通过金属导线把PN结的两端引出。太阳能电池单体是最小的光电转换单位,输出电压和输电电流都很小,一般不可以直接作为电源使用。通常都是将一定数量太阳能电池单体通过串联构成太阳能电池组件来使用。太阳能电池组件的输出电压一般达到24V左右,24V的电压可用来为蓄电池充电,能够应用在各个系统和领域中。当需要进行大功率光伏发电系统时,可以把这些太阳能电池组件通过一定的形式串联或并联起来,形成太阳能电池阵列。太阳能电池阵列能够产生较大的功率,可以用在各个领域中。 太阳能电池发电的原理主要是半导体的光生伏特效应,也称为光伏效应。硅半导体结构如图2-1 a)所示,在图中,硅原子用正电荷来表示,硅原子四周的四个电子用图中的负电荷来表示。当向晶体硅中掺入其他的杂质,如硼、磷等就会形成一个个很小的PN结。当向晶体中掺入硼时,含有杂质硼的晶体硅的内部电子排列如图2-1 (b)所示。图中,硅原子用正电荷来表示,硅原子四周的四个电子用负电荷表示,而图中黄色的就表示掺入的硼原子,由于硼原子的外部只有三个电子,就会吸引硅原子的一个电子过来,这样就会产生如图中蓝色的空穴,这个空穴又会因为没有足够的电子而去吸引别的电子,这样就形成了P ( positive)型半导体。 同样的原理,如图2-1 (c),当掺入的杂质为磷时,因为磷原子的周围有五个电子,磷原子与硅原子结合时就会多出来一个电子,多出来的这一个电子通常在晶体内部是很活跃的,这样就形成了N ( negative)型半导体。 如上面的分析,P型半导体内部含有多余的电子,而同时N型半导体内部含有多余的空穴,当这两种半导体材料结合在一起时,就会在交界处的区域内形成一个特殊的薄层,这个薄层就是PN结。PN结靠近P型半导体的这侧带负电,靠近N型半导体的这侧带正电。这是因为P型半导体内部含有多余的空穴,而N型半导体内部含有多余的电子,当二者结合在一起时就会出现电子和空穴的浓度差,这样就会出现P型半导体的空穴向N型半导体

电工试卷(电路的等效变换、戴维南、叠加原理)

科目:专业基础 适用班级: 班 班级: 姓名: 学籍号: ----------------------------------------------------密-------------------封----------------------线------------------------------------------------------ ―――――――――――考――生――答――题――不――得―――过―――此―――线――――――――――――― 郑州电子信息中等专业学校2013—2014学年上学期 《电工基础》10月考试卷 本试题使用班级:11(2) 1.试将下图电路化简为电流源。 2.试用戴维宁定理,求通过R 1中的电流。 3.用电源等效变换法,将下图电路等效变换成电压源模型或电流源模型。 4.计算下图电路中的电压U 。

班级: 姓名: 学籍号: ----------------------------------------------------密-------------------封----------------------线------------------------------------------------------ ―――――――――――考――生――答――题――不――得―――过―――此―――线――――――――――――― 5.已知下图电路中,Us 1=Us 2=10V ,R 1=R 2=R 3=10欧,试用戴维宁定理求I 3。 6.将下图化为最简形式 7.求下图所示电路中的电流I 。 8.如下图,已知Us 1=40V ,Us 2=20V ,Us 3=18V ,R 1=4欧,R 2=2欧,R 3=3欧,试用支路电 流法求解各支路上的电流。

电阻电路的等效变换习题解答第2章

第二章(电阻电路的等效变换)习题解答 一、选择题 1.在图2—1所示电路中,电压源发出的功率为 B 。 A .4W ; B .3-W ; C .3W ; D .4-W 2.在图2—2所示电路中,电阻2R 增加时,电流I 将 A 。 A .增加; B .减小; C .不变; D .不能确定 3.在图2—3所示电路中,1I = D 。 A .5.0A ; B .1-A ; C .5.1A ; D .2A 4.对于图2—4所示电路,就外特性而言,则 D 。 A . a 、b 等效; B . a 、d 等效; C . a 、b 、c 、d 均等效; D . b 、c 等效 5.在图2—5所示电路中,N 为纯电阻网络,对于此电路,有 C 。 A .S S I U 、 都发出功率; B .S S I U 、都吸收功率; C .S I 发出功率,S U 不一定; D .S U 发出功率,S I 不一定 二、填空题 1. 图2—6(a )所示电路与图2—6(b )所示电路等效,则在图2—6(b )所示电路 中,6=S U V ,Ω=2R 。

2.图2—7(a )所示电路与图2—7(b )所示电路等效,则在图2—7(b )所示电路中,1=S I A ,Ω=2R 。 3.在图2—8所示电路中,输入电阻Ω=2ab R 。 4.在图2—9所示电路中,受控源发出的功率是30-W 。 5.在图2—10所示电路中,2A 电流源吸收的功率是20-W 。 三、计算题 1.对于图2—11所示电路,试求:1).电压1U 、2U ;2).各电源的功率, 并指出是吸收还是发出。

电路的等效变换及应用

电路的等效变换及应用 王 永 强 等效电路是电路分析中一个很重要的概念,应用它通过等效变换,可以把多元件组成的电路化简为只有少数几个元件组成的单回路或一对节点的电路,甚至单元件电路。它是化繁为简、化难为易的钥匙。下面将介绍无源二端电阻串、并联网络的等效,无源三端网络T 形和π形的等效变换以及简单有源二端网络的等效变换。希望能提高大家求解电路题和解决实际问题的能力。 一、无源二端电阻串、并联网络的等效 单个二端元件是二端网络最简单的形式。无论是二端元件还是二端网络均有用各自的端钮间电压和端钮上电流所表示的伏安关系。 1、 n 个电阻串联所组成的二端网络N 1 如图1所示,根据KVL ,其端钮上伏安关系为: u =(R 1+R 2+···+R n ) i =Ri 故得等效二端网络N 2,如图2所示,其等效电阻: R=R 1+R 2+···+R n N 1和N 2等效,则外接同一电压u ,两者吸收相同的功率,即 P=( R 1+R 2+···+R n )i 2=Ri 2 电阻串联存在着分压规律,分压公式为: u k =u R R k 2、n 个电导的并联所组成的二端网络 如图3所示,根据KCL ,其端钮上伏安关系为: i =(G 1+G 2+···+G n )u=Gu 故得等效二端网络N 2,如图4所示,其等效电导为: G = G 1+G 2+···+G n N 1和N 2等效,则外接同一电流i ,两者吸收相同的功率: P =(G 1+G 2+···+G n )u 2

电导并联存在着分流规律,分流公式为: i k =i ×G G k 3.应用举例及化简要领 例:求图5所示的二端电阻网络的等效电阻R af (图中各电阻均为1Ω)。 解:所求电路为正六面体,具有结构对称性。设一电流从a 端流入,可看出节点c 、d 、e 和b 、g 、h 分别等电位,原图可转化为图6,进而由串并联转化为图7,图8。得: R af =Ω6 5 由以上举例分析可见,无源二端电阻网络的结构很灵活,解题时应注意以下几点: (1) 研究电路结构是否对称; (2) 让一电流从待求端口流进和流出,弄清连接关系及等电位点; (3) 电位相等的节点重合或用短路线连通; (4) 无电流的支路开路,阻值不计。 这样就能对复杂电阻网络进行正确的等效化简。 二、无源三端网络T 形和π形的等效变换 二端网络的等效原则可在三端网络推广。如图9所示:图a (T 形),图b (π形)。

电路的等效变换.

电路的等效变换 执教:金陵中学:范世民 一、 教学目标 1、 知识与技能: 方法,学会看懂电路。 2、 过程与方法: 通过对比较复杂的组合电路的简化,了解电路等效变换的 列举法、感受假设、理想化方法、归纳法、等效法等科学 方法在电路分析中的应用,体验科学方法对解决实际问题的重要性。 3、 价值观与情愿态度:生活中离不开用电器,用电器工作状态是受电路控 制的,电路的设计,离不开对电路的分析与计算。明白电路的基本规律已经成为 现代生活和科技的基础,增强创新意识。 二、 学情分析:看懂电路——能确定电路中各用电器间的串、 并联关系是正 确分析和计算简单电路的前提,是关键。对电路进行等效变换就是在不改变电路 中各用电器上的电压和电流的前提下对电路进行改画, 关系一目了然。 由于学生已了解了串、并联电路的特点和基本规律, 已有的知识与技能引导学生对实际电路进行分析和设计, 以使用电器间的串、并联 想化方法、归纳法、等效法等科学方法在电路分析中的应用, 的 方法。 三、 教学重、难点 重点:学会用电路等效变换的方法看懂电路。 难点:节点电流法。 四、 教学过程设计 1、导入 展示电吹风和电冰箱电路图,说明生活中离不 开用电器,用电器工作状态是受电路控制的,电路 的设计,离不开对电路的分析与计算。 引例1、请同学们用学过的串联和并联电路 的特点,求如图所示电路中电压表和电流表的示数。 已知 ab 间的电压为 24V ,R 2=R 3=2R 1=2O Q, R 4=3O Q 。 所以,可充分利用学生 感受列举法、假设、理 感悟电路等效变换 Ri 引例2: P.47示 例。 请学生对 其中一个电路作计算。 与

电路的简化和等效变换

第一部分电路的等效变化 在处理较复杂的混联电路问题时,常常因不会画等效电路图,难以求出等效电阻而直接影响解题。为此,向同学们介绍一种画等效电路图的方法《快速三步法》。 快速三步法画等效电路图的步骤为: ⑴ 标出等势点。依次找出各个等势点,并从高电势点到低电势点顺次标清各等势点字母。 ⑵ 捏合等势点画草图。即把几个电势相同的等势点拉到一起,合为一点,然后假想提起该点“抖动”一下,以理顺从该点向下一个节点电流方向相同的电阻,这样逐点依次画出草图。画图时要注意标出在每个等势点处电流“兵分几路”及与下一个节点的联接关系。 ⑶ 整理电路图。要注意等势点、电阻序号与原图一一对应,整理后的等效电路图力求规范,以便计算。 例1、图1所示电路中,R1=R2=R3=3Ω,R4=R5=R6=6Ω,求M、N两点间的电阻。 解:该题是一种典型的混联电路,虽然看上去对称、简单,但直接看是很难认识各个电阻间的联接关系的,因此必须画出等效电路图。下面用快速三步法来解。 1.在原电路图上标了等势点a、b、c。 2.捏合等势点画草图。从高电势点M点开始,先把两个a点捏合到一起,理 顺电阻,标出电流在a点“兵分三路”,分别经R1、R2、R3流向b点; 再捏合三个b点,理顺电阻,标出电流在b点“兵分三路”,分别经R4、R5、R6流向c点;最后捏合c点,电流流至N点。(见图2)

3.整理电路图如图3所示。从等效电路图图3可以清楚地看出原电路各电 阻的联接方式,很容易计算出M、N两点间的电阻R=3Ω。 ◆练习:如图4所示,R1=R3=4Ω,R2=R5=1Ω,R4=R6=R7=2Ω,求a、d两点间的电阻。 解:(1)在原电路图上标出等势点a、b、c、d (2)捏合等势点画草图,首先捏合等势点a,从 a点开始,电流“兵分三路”,分别经R2流向b 点、经R3和R1流向d点;捏合等势点b,电流 “兵分两路”,分别经R5流向c点,经R4流向d点;捏合等势点c, 电流“兵分两路”,分别经R6和R7流向d点。 (3)整理电路如图7所示

最新第2章 电阻电路的等效变换

第2章电阻电路的等效变换 主要内容: 1.等效变换概念; 2.电阻的串联、并联、混联等效变换与 形连接、Y形连接之间的等效变换; 3.实际电源的两种等效模型及独立电源的串并联等效变换; 4.无源单口网络的等效电路; 学习要求: 本章内容以第一章阐述的元件特性、基尔霍夫定律为基础,等效变换的思想和几种等效变换对所有线性电路都具有普遍意义,在后面章节中都要用到。具体要求做到: 1.深刻理解电路等效变换概念; 2.掌握电阻不同连接方式下的等效变换方法; 3.掌握实际电源的两种等效模型及独立电源不同连接方式下的等效变换; 4.理解无源单口网络的等效电路,熟练掌握其等效电阻的求取方法; 本章重点: 1. 电路等效的概念; 2. 电阻的串、并联; 3. 实际电源的两种模型及其等效变换。 本章难点: 1. 等效变换的条件和等效变换的目的; 2. 含有受控源的一端口电阻网络的输入电阻的求解。 计划课时:6 引言 1.电阻电路 仅由电源和线性电阻构成的电路称为线性电阻电路(或简称电阻电路)。 2.分析方法 (1)欧姆定律和基尔霍夫定律是分析电阻电路的依据; (2)对简单电阻电路常采用等效变换的方法,也称化简的方法。 本章着重介绍等效变换的概念。等效变换的概念在电路理论中广泛应用。所谓等效变换,是指将电路中的某部分用另一种电路结构与元件参数代替后,不影响原电路中未作变换的任何一条支路中的电压和电流。在学习中首先弄清等效变换的概念是什么?这个概念是根据什么引出的?然后再研究各种具体情况下的等效变换方法。 2.1 电路等效变换概念 一、单口网络 1.单口网络:又称二端网络或一端口网络,它指向外引出两个端钮,且从一个端子流入的电流等于从另一端子流出的电流的任意复杂电路。

电路的等效变换

电路的等效变换 解电学问题的关键是分清电路的结构,判断电路的连接方式。但对较复杂的电路,初学者往往感到无从下手,本文结合具体实例谈谈等效电路简化的一种有效方法:综合法──支路电流法和等电势法的综合。 一、简化电路的原则 (1)无电流(电势差)的支路可去除; (2)等电势的各点化简时可合并; (3)理想电流表可认为短路,理想电压表可认为断路; (4)电路稳定时,电容器“断直流,通交流”。 二、简化电路的具体方法 1.支路电流法:电流是分析电路的核心。从电源正极出发顺着电流的走向,经各电阻外电路巡行一周至电源的负极,凡是电流无分叉地依次流过的电阻均为串联,凡是电流有分叉地依次流过的电阻均为并联。 例1 试判断图1中三灯的连接方式。 解析:由图1可以看出,从电源正极流出的电 流在A点分成三部分。一部分流过灯L1,一部分流过灯 L2,一部分流过灯L3,然后在B点汇合流入电源的负极, 从并联电路的特点可知此三灯并联。 支路电流法,关键是看电路中哪些点有电流分叉。 此法在解决复杂电路时显得有些力不从心。 2.节点法:在识别不规范的电路的时侯,不论导 线有多长,只要其中没有电源、用电器等,导线两端点 均可以看成是同一点(节点)。将已知电路中各节点(电 路中三条或三条以上支路的交叉点,称为节点)编号, 按电势由高到低的顺序依次用1、2、3……数码标出来 (接于电源正极的节点电势最高,接于电源负极的节点 电势最低,等电势的节点用同一数码)。然后按电势的 高低将各节点重新排布,再将各元件跨接到相对应的两 节点之间,即可画出等效电路。 例2 判断图2各电阻的连接方式。 解析:(1)将节点标号,四个节点分别标上1、2。 (2)将各个节点沿电流的流向依次排在一条直线上。 (3)将各个电路元件对号入座,画出规范的等效电 路图,如图3所示。 (4)从等效电路图可判断,四个电阻是并联关系。

第二章电路的等效变换习题详解

第二章 电路的等效变换习题解答 2-1解: 总电流 121224 1.6(1416)(119)31416119 1416 1.60.9614161191.60.960.6491690.96160.64 1.6.V I A I A I A U I I V = =+++ ++++=?=+++=-==-=?-?=-即电压表读数为 则 16V 2-2解: ⑴ 500 1500 1500100400I = ==?-=2 ()A UV

⑵ 500 1.36(500-100)800100(500-100800)(500-100)800 1.36363.6(500-100800)I V = =?+ +?=?=+2 A U ⑶ 2500 52;1000.2 I I ≈≈ ≈>>+电流表会被烧坏 AA 2-3解: 设两电阻分别为R1、R2则有 120 120 16 30,10 1030=++112212 1212 解得 3 = = =或=,=RRRRRRRRRRΩΩ ΩΩ 2-4解: 根据已知条件有 2 33 333320(5)1202030;13.32030 30 51815020302013.3 13.35181302013.3 R R R R R V R V ? =+==?==?+=+?==?+=+SS 得 或 时 () 时 ()  ΩΩ ΩUΩU  2-5解: 图a: 1235////1//1//24 4.4ab R R R R =+=+=RΩ 图b: 4312 11 ( )//2//223ab R R G G =++=+=RΩ 图c: 1234////0.51 1.5ab R R R R =+=+=RΩ

电流源与电压源的等效变换

第十五周(第 1、2 讲) 【教学过程】: 导入新课: 电路中的电能都是由电源来提供的,对负载来说,电源是电压的提供者,也可以看成是电流的提供者。 讲授新课: 一、电压源 为电路提供一定电压的电源可以用电压源来表征 1、理想电压源(恒压源):电源内阻为零,并能提供一个恒定不变的电压。所 以也称恒压源。如图1-a所示。 2、恒压源的两个特点:(1)提供给负载的电压恒定不变;(2)提供给负载的 电流可任意。 3、实际电压源:可以用一个电阻(相当于内阻)与一个理想的电压源串联来 等效。它提供的端电压受负载影响。如图1-b虚线框内所示。 图 1 二、电流源 为电路提供一定电流的电源可用电流源来表征。 1、理想电流源(恒流源):电源的内阻为无穷大,并能提供一个恒定不变的电 源。所以也称为恒流源。如图2-a所示。 2、恒流源的两个特点:(1)提供给负载的电流是恒定不变的;(2)提供给负

载的电压是任意的。 3、实际电流源:实际上电源的内阻不可能为无穷大,可以把理想电流源与一 个内阻并联的组合等效为一个电流源。如图2-b 所示。 图 2 三、两种电源模型的等效变换 讨论问题:两种电源模型的等效变换的条件是什么? 对外电路,只要负载上的电压与流过的电流是相等的,则两个不同的电源等效。 ;;00S S S S S r I E r E r E I r r ?=??=== 或者: (1)电压源等效为电流源: 0r E I S = 0r r s = (2)电流源等效为电压源: s S r I E = s r r =0 即:内阻相等,电流源的恒定电流等于电压源的短路电流:或电压源的恒定电压等于电流源的开路电压。 要注意一个理想电压源是不能等效变换为一个理想电流源的,反之也一样。只有电流源和电压源之间才能等效变换。但是这种等效变换是对外电路而言的,电源内部并不等效。 例题讲解:76页例1

电源的等效变换练习题

电源的等效变换 一. 填空题 1.电源可分 和 . 2.实际电压源的电路模型由 与 二者联而成,我们把内阻R 0=0的电压源叫做 或 . 3.实际电流源的电路模型由 与 二者联而成。我们把内阻R 0=0的电压源叫做, 或 . 4.恒压源与恒流源 等效变换.只有 电压源与 电流源之间才能等效变换,条件是 ,公式是 和 .这里的所谓“等效”,是对 电路 而言的,对于 电路并不等效。 5.恒压源是输出 不随负载改变;恒流源的输出 不随负载改变。 6.理想电压源不允许 ,理想电流源不允许 ,否则可能引发事故。 二.选择题 1.理想电压源是内阻为( ) A .零 B.无穷大 C.任意值 2.实际电流源是恒流源与内阻( ) 的方式 A.串联 B.并联 C.混联 3.若一电压源U S =5V,r S =1Ω,则I S ,r S 为( ) A. 5A,1Ω B.1/5A,1 Ω C.1Ω, 5A. 4.电压源与电流源等效变换时应保证( ) A.电压源的正极端与电流源的电流流出端一致 B.电压源的正极端与电流源的电流流入端一致 C.电压源与电流源等效变换时不用考虑极性 5.多个电压源的串联可简化为( ) A.一个电压源 B.一个电流源 C.任何电源即可 三.判断题 1.电压源是恒压源与内阻串联的电路( ) 2.恒流源是没有内阻的理想电路模型( ) 3.电压源与电流源等效变换时不需要重要重要条件( ) 4.理想电压源与理想电流源可等效 变换( ) 5.电压源与电流源等效变换是对外电路等效( ) 四.计算题 1.如图电源U S =6V ,r 0=0.4Ω,当接上R=5.6Ω的负载电阻时,用电压源与电流源两种方法,计算负载电阻上流过电流的大小. 2.如图,E 1=17V,R 1=1Ω,E 2=34V .R 2=2Ω,R 3=5Ω.试用电压源与电流源等效变换的方法求流过R 的电流 R1R2 R3 E2 E1

相关主题
文本预览
相关文档 最新文档