当前位置:文档之家› 第2.1节条件概率、全概率公式与贝叶斯公式

第2.1节条件概率、全概率公式与贝叶斯公式

第二章条件概率与统计独立性

?条件概率,全概率,贝叶斯公式

?事件独立性

?贝努利试验与直线上的随机游动

?二项分布与泊松分布

2.1 条件概率全概率公式

与贝叶斯公式

一、条件概率

二、全概率公式

三、贝叶斯公式

一、条件概率

?问题1 一个家庭有两个孩子,问两个都是女孩的概率是多少?(假定生男生女是等可能的)

?问题2 一个家庭有两个孩子,已知其中一个是女孩,问另一个也是女孩的概率是多少?(假定生男生女是等可能的)

?问题3 一个家庭有两个孩子,已知老大是女孩,问另一个也是女孩的概率是多少?(假定生男生女是等可能的)

(,,),,()0,,()

(|)()

(|).

P B P B A P AB P A B P B P A B B A Ω∈>∈=

设是一个概率空间且则对任意的记

称为在事件发生的条件下事2件发义生的条 定 2.1.件概率1Ω

A B

AB

说明若事件B 已发生,则为使A 也发生,试验结果必须是既在B 中又在A 中的样本点,即此点必属于AB .由于我们已经知道B 发生,故B 变成了新的样本空间.

从概率的直观意义出发:

若B已经发生,则要使A发生

试验的结果既属于A又属于B,即属于AB。

因此,条件概率应理解为P(AB)在P(B)中的“比重”。

从几何概型的角度出发:如果在单位正方形内等可能的投点,若已知B 发生,这时A 发生的概率为:

B

AB S S P =B

A AB

Ω

ΩΩ=S S S S B AB //)()

(B P AB P =

“条件概率”是“概率”吗?

容易验证,条件概率具有概率的公理化定义中的三个条件

);()()()( )3(212121B A A P B A P B A P B A A P -+= ).

(1)( )4(B A P B A P -=则有

件是两两不相容的事设可加可列性, , , ,: )5(21 B B 1

1().i i i i P A B P A B ∞

==??= ???∑ 3. 性质

(1) :()0;

P A B ≥负非性 (|)1,(|)0P B P B Ω=?=规同时;

(2)范性

2)从加入条件后改变了的情况去算

4. 条件概率的计算

1) 用定义计算:

,)

()

()|(B P AB P B A P P (B )>0

掷骰子

例:A ={掷出2点},B ={掷出偶数点}

P (A |B )=

3

1B 发生后的改变样本空间所含样本点总数

在改变样本空间中A 所含样本点

个数

例掷两颗均匀骰子,已知第一颗掷出6点,问

“掷出点数之和不小于10”的概率是多少? 解法1:

)()()|(B P AB P B A P =解法2: 2

163)|(==B A P 解: 设A ={掷出点数之和不小于10}

B ={第一颗掷出6点}

应用定义

在B 发生后的改变样本空间中计算

21

366363=

=

-=?12121312121()()()()().

n n n P A A A P A P A A P A A A P A A A A 则有

且,0)(121>-n A A A P ,2,,,,21≥n n A A A n 个事件为设推广 则有

且为事件设,0)(,,,>AB P C B A ()()()().

P ABC P A P B A P C AB =).

()()(,0)(A P A B P AB P A P =>则有

设5. 乘法定理

条件概率与乘法公式

1996年,中国围棋大师马晓春在与韩国大师李昌镐争夺围棋世界冠军的五番棋决赛前,马晓春说了这么一句话,他说,如果前面两盘棋能够下成平手,那么他夺冠的概率就有51%.

由于马晓春前一年夺得的两个世界冠军都不是从公认为世界围棋第一人的李昌镐手中赢得的,因此那一年他们两个之间的决赛非常令人期待.果然,前面两盘下成了一比一.

于是,媒体根据此前马晓春的那一句话,开始了乐观的预测.

例一盒子装有4 只产品,其中有3 只一等品,1只二等品.从中取产品两次,每次任取一只,作不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,试求条件概P (B |A ).解.

4;3,2,1,号为二等品为一等品将产品编号则试验的样本空间为

号产品第号第二次分别取到第表示第一次以,),(j 、i 、j i )},

3,4(),2,4(),1,4(,,)4,2(),3,2(),1,2(),4,1(),3,1(),2,1{( =Ω

)},

4,3(),2,3(),1,3(),

4,2(),3,2(),1,2(),4,1(),3,1(),2,1{(=A )},

2,3(),1,3(),3,2(),1,2(),3,1(),2,1{(=AB 由条件概率的公式得

)

()

()(A P AB P A B P =

129126=.3

2=

例某种动物由出生算起活20岁以上的概率为0.8, 活到25岁以上的概率为0.4, 如果现在有一个20岁的这种动物, 问它能活到25岁以上的概率是多少?

设A 表示“能活20 岁以上”的事件; B 表示“能活25 岁以上”的事件,

则有

,8.0)(=A P 因为.)

()

()(A P AB P A B P =,4.0)(=B P ),

()(B P AB P =.

21

8.04.0==)

()()(A P AB P A B P =所以解

例五个阄, 其中两个阄内写着“有”字, 三个阄内不写字, 五人依次抓取,问各人抓到“有”字阄的概率是否相同?

解.

5,4,3,2,1=i 则有,

5

2

)(1=A P )()(22Ω=A P A P ))

((112A A A P =抓阄是否与次序有关?

,

""的事件人抓到有字阄第表示设i A i

333121212()()(())

P A P A P A A A A A A A =Ω= )

()()(321321321A A A P A A A P A A A P ++=42534152?+?=,5

2=)()()()(121121A A P A P A A P A P +=)(2121A A A A P =)()(2121A A P A A P +=

)()()(213121A A A P A A P A P =)()()(213121A A A P A A P A P +)()()(213121A A A P A A P A P +324253314253314352??+??+??=,52=依此类推.

5

2

)()(54==A P A P 故抓阄与次序无关.

波利亚罐模型

=121.,,,,-b r c n n n n n 罐中有只黑球只红球每次自袋中

任取一只球观察其颜色然后放回并再放入只与所取出的那只球同色的球若在袋中连续取球次试求前面次摸出黑球,后面次摸出红球的概率.

例 解1(1,2,,)""

i A i n i = 设为事件第次取到黑球11(1,2,,)""

j A j n n n j =++ 为事件第次取到红球

因此所求概率为

11(1)22(1)b n c b b c b c

b r b r

c b r c b r n c

+-++=????+++++++- 此模型被波利亚用来作为描述传染病的数学模型.121211211122()()()()().

n n n n n P A A A P A P A A P A A A A P A A A A ---=?

211(1)(1)(1)r n c r r c

b r n

c b r n c b r n c

+-+???

+++++++- 当c=0时,对应有放回模型,当c=-1时,对应不放回模型,此模型是一般摸球模型

全概率公式和贝叶斯公式

单位代码:005 分类号:o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号:0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete,discusses the two commonly used methods of events,and some practical applications.Full probability formula is one of the important full probability formula of calculation,it provides an effective complex events of the way the full probability of a complex events,full probability calculation problem change numerous will Jane.And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula;Bayes formula;Complete event group;

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有: P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1,B2,.... 满足 1.B1,B 2....两两互斥,即B i ∩ B j = ?,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....; 2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分 设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事

全概率公式与贝叶斯公式解题归纳

全概率公式与贝叶斯公式解题归纳 来源:文都教育 在数学一、数学三的概率论与数理统计部分,需要用到全概率公式及其贝叶斯公式来解题. 这类题目首先要区分清楚是“由因导果”,还是“由果索因”,因为全概率公式是计算由若干“原因”引起的复杂事件概率的公式,而贝叶斯公式是用来计算复杂事件已发生的条件下,某一“原因”发生的条件概率. 它们的定义如下: 全概率公式:设n B B B ,,,21 为样本空间Ω的一个划分,如果()0,i P B > 1,2,,i n =L ,则对任一事件A 有 )|()()(1 i n i i B A P B P A P ∑==. 贝叶斯公式 :设n ,B ,,B B 21 是样本空间Ω的一个划分,则 .,,2,1,)|()() |()()|(1n i B A P B P B A P B P A B P n j j j i i i ==∑= 例1 从数字1, 2, 3, 4中任取一个数,记为X ,再从1,…,X 中任取一个数,记为Y ,则(2)P Y == . 解 由离散型随机变量的概率分布有: (1)(2)(3)(4)14P X P X P X P X ========. 由题意,得 (21)0,(22)12,P Y X P Y X ====== (23)13,(24)14P Y X P Y X ======,则根据全概率公式得到

(2)(1)(21)(2)(22)P Y P X P Y X P X P Y X =====+=== (3)(23)(4)(24)P X P Y X P X P Y X +===+=== 111113(0).423448 =?+++= 例2 12件产品中有4件次品,在先取1件的情况下,任取2件产品皆为正品,求先取1件为次品的概率. 解 令A={先取的1件为次品},则,A A 为完备事件组,12(),(),33 P A P A = =令B={后取的2件皆为正品},则2821128(),55C P B A C ==2721121(),55C P B A C == 由贝叶斯公式得 128()()()2355().128221()()()()()5 355355 P A P B A P AB P A B P B P A P B A P A P B A ?====+?+? 若随机试验可以看成分两个阶段进行,且第一阶段的各试验结果具体结果怎样未知,那么:(1)如果要求的是第二阶段某一个结果发生的概率,则用全概率公式;(2)如果第二个阶段的某一个结果是已知的,要求的是此结果为第一阶段某一个结果所引起的概率,一般用贝叶斯公式,类似于求条件概率. 熟记这个特征,在遇到相关的题目时,可以准确地选择方法进行计算,保证解题的正确高效.

最新全概率公式和贝叶斯公式练习题

1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以

全概率公式和贝叶斯公式练习题

例题讲解: 例题 1.市场上某产品由三家厂家提供,根据以往的记录,这三个厂家的次品率分别为,0.020.,0.01,0.03,三个厂家生产的产品所占的市场份额分别0.15,0.8,0.05.产品出厂后运到仓库,见面后再进入市场,设这三个厂家的产品在仓库是均匀混合 (1)在仓库中随机的取一个产品,求它的次品的概率。 (2)在仓库中随机的取一个产品,发现为次品,如果你是管理者,该如何追究三个厂家的责任? 例题2 保险公司把被保险人分成三类”谨慎的”,”一般的”和”冒险的”,统计资料表明,上述三种人在一年内发生事故的概率依次为,0. 5. 0.15. 和0.30. 如果”谨慎的”被保险人占20%”一般的”,被保险人占50%,”冒失的”被保险人占30%,确认一个被保险人在一年内出事故的概率。

练习: 1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133 P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以 70411482110621)|()()|()()(2211=?+?= +=A B P A P A B P A P B P (2) 12 72414)(== B P

对全概率公式和贝叶斯公式的理解

对全概率公式和贝叶斯公式的理解 我该怎么来理解这2个公式呢?打个比方,假设学校的奖学金都采取申请制度,只有满足一定的条件你才能拿到这比奖学金。那么有哪些原因能够使你有可能拿到奖学金呢?1、三好学生,拿到奖学金的概率是p(A1)=0.3。 2、四好学生,拿到奖学金的概率是p(A2)=0.4。3、五好学生,拿到奖学金的概率是p(A3)=0.5。4、六好学生,拿到奖学金的概率是p(A4)=0.6。这些学生只能是三好四好五好六好学生种的一种,不能跨种类。这个学校学生是三好学生的概率是p(B1)=0.4,四好学生的概率是p(B2)=0.3,五好学生的概率是p(B3)=0.2,六好学生的概率是p(B4)=0.1。现在问题出来了,一个学生能够拿到奖学金的概率是多少? 慢慢来分析,导致一个学生拿到奖学金的方式有哪些?这个学生是三好学生,刚好他又凭借三好学生的身份申请到了奖学金 p1=p(A1)*p(B1|A1)=0.4*0.3=0.12;这个学生是四好学生,刚好凭借他四好学生的身份拿到了奖学金,p2=p(A2)*p(B2|A2)=0.3*0.4=0.12;这个学生是五好学生,刚好凭借他五好学生的身份拿到奖学金,p3=p(A3)*p(B3|A3)=0.2*0.5=0.10;这个学生是六好学生,刚好凭借他六好学生的身份拿到了奖学金, p4=p(A4)*p(B4|A4)=0.1*0.6=0.06。四种方式都能导致一个学生拿到奖学金,那么拿到奖学金的概率为p=p1+p2+p3+p4=0.4.所以这么理解全概率公式:导致一个事件发生的原因有很多种(各种原因互斥),那么这个事件发生的概率就是每种原因引起该事件发生的概率的总和。 一个学生已经拿到了奖学金,这个学生是三好学生的概率是多少? p=p1/(p1+p2+p3+p4)=0.3。怎么理解呢?一个事件已经发生了,有很多原因都能导致这个事件发生。那么其中的一种原因导致该事件发生的概率是多少?这就是贝叶斯概率公式解决的问题。就正如一本书现在已经被别人借走了(事件已经发生),已知只有可能是张三,李四,王五这3个人借走(事件发生的所有原因)。那么这本书被张三借走的概率会是多大呢? 现在是不是已经理解了这2个公式呢。

全概率公式和贝叶斯公式

单位代码: 005 分类号: o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号: 0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete, discusses the two commonly used methods of events, and some practical applications. Full probability formula is one of the important full probability formula of calculation, it provides an effective complex events of the way the full probability of a complex events, full probability calculation problem change numerous will Jane. And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula; Bayes formula; Complete event group;

全概率公式与贝叶斯公式

全概率公式与贝叶斯公式

全概率公式与贝叶斯公式 1. 完备事件组(或样本空间Ω的划分)n 个事件满足: 12B ,B ,,B n B B ,,1,2,,i j i j n =Φ= (1) 两两互不相容. (2) 和事件为必然事件. 1 B n k k ==Ω ∑ΩB 2 B 1B n …

2. 全概率公式 则对任一事件A ,有1 ()P(B )(/B ) n k k k P A P A ==∑设为完备事件组,且12B ,B ,,B n P(B )0,1,2,,k k n >= ①取合适的完备事件组,从导致该事件 发生的各种条件、原因着手;②各B k 的概率及有关条件概率易于计算. 类比集合分类计数思想,可得到一种计算复杂事件概率的方法.运用公式的关键 全概率公式与贝叶斯公式

证明: 由完备事件组的性质可知 1 B B ,,1,2,,B i j n k k i j n ==Φ==Ω ∑ 1 1B B ,(B )(B )n n k k i j k k A A A A A A ===Ω===Φ∑∑1 1 ()(B )(B ) n n k k k k P A P A P A ====∑∑1 (B )(/B )n k k k P P A ==∑(由乘法公式)

()i P B A = 1 ()()()(),1,2,,i i n k k k P B P A B P B P A i n B ==∑ 3. 贝叶斯公式 设为完备事件组,则 12B ,B ,,B n 利用条件概率公式与全概率公式可得到贝叶斯公式.P(A)>0,P(B )0,1,2,,k k n >= 其中:全概率公式与贝叶斯公式 ()()i P AB P A 已知结果A ,分析导致出现此结果的第i 个原因B i 发生的概率.

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)生存分析贝叶斯概率公式全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10 万个家庭,没有孩子的家庭有1000 个,有一个孩子的家庭有9 万个,有两个孩子的家庭有6000 个,有 3 个孩子的家庭有3000 个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X ,它可取值0,1,2,3,其中取0 的概率为0.01,取 1 的概率为0.9,取 2 的概率为0.06,取 3 的概率为0.03,它的数学期望为 0×0.01+1×0.9+2×0.06+3×0.03 等于 1.11,即此城市一个家庭平均有小孩 1.11 个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一 个家庭,最有可能它家的孩子为 1.11 个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为 80 的正态分布,即平均分是80 分,由正态分布的图形知 x=80 时的函数值最大,即随机变量在 80 附近取值最密集,也即考试成绩在 80 分左右的人最多。 下图为概率密度函数图(F(x)应为f(x) ,表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X2分布、t 分布、F 分布 抽样分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution):例子抛硬币 1、重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定 伯努利试验) 2、

贝叶斯公式与全概率公式的运用

1-3 全概率公式与贝叶斯公式的运用举例一、全概率公式 A1,A2…A i是一个完备事件组并且P A i>0i=1,2,3…n,则对任意事件B有 P(B)=P A i P(B|A i) n i=1 全概率公式针对的是某一个过程中已知条件求出最后结果的概率,解题步骤如下: ①找出条件事件里的某一个完备事件组,分别命名为A i ②命名目标的概率事件为事件B ③带入全概率公式求解 下面是具体实例对全概率公式的运用 1、甲盒子里面有4个红球3个白球,乙口袋有2个红球,5个白球,从甲口袋随机拿出一个球放到乙口袋,然后从一口袋中随机拿一个球,求这个球是红球的概率。 解:①完备事件组命名A1=“甲口袋里拿出的是红球” A2="甲口袋里拿出的是白球” ②目标事件B=“从乙里面取出红球” ③全概率公式求解 P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=4 7×3 8 +3 7 ×2 8 =9 28 2、甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解:①完备事件组命名A1=“取到的袋子是甲袋” A2="取到的袋子是乙袋” ②目标事件B=“从袋子里面取出白球” ③全概率公式求解 P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=1 2×5 12 +1 2 ×4 6 =13 24 3、某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、 三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率. 解:①完备事件组命名A i=“选到的射手是i级射手” ②目标事件B=“射手通过选拔赛” ③全概率公式求解 P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)+P(A4)P(B|A4) =1 4×9 10 +1 4 ×7 10 +1 4 ×1 2 +1 4 ×1 5 =23 40

全概率公式和贝叶斯公式

3.全概率公式和贝叶斯公式 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第一章第§5的条件概率中的全概率公式和贝叶斯公式 【教材分析】:前面讲到的条件概率是概率论的基本概念,下一节的独立性和条件概率关系紧密,而乘法公式、全概率公式和贝叶斯公式是与条件概率有密切关系的公式,因此掌握此概念及计算公式为后续学习打下基础。 【学情分析】: 1、知识经验分析 前一节已经学习了条件概率和乘法公式,学生已经掌握了事件的概率的基本计算方法。 2、学习能力分析 学生虽然具备一定的基础知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】: 1、知识与技能 掌握全概率公式和贝叶斯公式以及计算。 2、过程与方法 由本节内容的特点,教学中采用启发式教学法,应用实际问题逐步推导出全概率公式和贝叶斯公式。 3、情感态度与价值观 通过学习,培养学生学习数学的良好思维习惯和兴趣,树立学生善于创新的思维品质和严谨的科学态度。 【教学重点、难点】: 重点:掌握全概率公式和贝叶斯公式并会适当的应用。 难点:全概率公式和贝叶斯公式各自的适用条件及不同的情形。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】: 一、问题引入 引例:三个罐子分别编号为 1, 2,3,1号装有 2 红 1 黑球, 2号装有 3 红 1 黑球,

3号装有 2 红 2 黑球。 某人从中随机取一罐,再从中任意取出一球,求取得红球的概率。 解:记 i B ={ 球取自i 号罐 } i =1, 2, 3; A ={ 取得红球 },显然 A 的发生总是伴随着 123B B B ,,之一同时发生,即123+A AB AB AB =+,且123,,AB AB AB 两两互斥。 123()()+()()P A P AB P AB P AB =+3 1 ()(|)i i i P B P A B ==∑P (A |B 1)=2/3, ()23 4 P A B = ()312 P A B = 代入数据计算得:()0.639P A = 【设计意图】:让学生感受到数学与生活“零距离”,从而激发学生学习数学的兴趣,使学生获得良好的价值观和情感态度。 二、全概率公式 1、全概率公式: 定义 3 若 n 个事件 12......n B B B , 满足 1 n i i B S ==U , i j B B =Φ(),,1,2,i j i j n ≠=L ,则称 12......n B B B , 为 S 的一个划分, 或称其是一 个完备事件组。 定理 设 12......n B B B ,是 S 的一个划分,且 ()0,1,2,....i P B i n >= 则对任一事件 A S ?,有1 ()()(|)n i i i P A P B P A B ==∑ 例1有一批同一型号的产品,已知其中由一厂生产的占 30% ,二厂生产的占 50% ,三厂生产的占 20%,又知这三个厂的产品次品率分别为2% , 1%,1%,问从这批产品中任取一件是次品的概率是多少? 解: 设事件A 为“任取一件为次品”, 摂,1,2, 3.i B i i =事件为任取一件为厂的产品123, B B B S =U U ,,1,2,3.i j B B i j =?=由全概率公式得

刘涛--全概率公式与贝叶斯公式--教学设计电子教案

刘涛--全概率公式与贝叶斯公式--教学设 计

概率论与数理统计教学设计

1.引导课题…………3分钟

钟) (i ),,,1,2,i j B B i j i j n φ=≠=L (ii )1n i i B S =?= 则称1,2,n B B B L 为样本空间S 的一个划分。 若1,2,n B B B L 是样本空间的一个划分,那么,对每次试验,事件1,2,n B B B L 中必有一个且仅有一个发生。 在新的结论下,划分(完备事件组) 可以不这样要求,只要满足如下即可: (1)1n i i B A ==U (2)B 发生当且仅当B 与1,2,...n A A A 之 一同时发生,此处并不要求1n i i A S ==U 事实上,只要1n i i B A =?U 即可。 2.全概率公式 设试验E 的样本空间为S ,A 为E 的事 件,1,2,n B B B L 为S 的一个划分,且()0(1,2,),i P B i n >=L 则1()(|)()n i i i P A P A B P B ==∑ 称为全概率公式。 证明:因为 1212()n n A AS A B B B AB AB AB ==???=??L L 由假设()0(1,2,),i P B i n >=L 且 ()(),,,1,2,i j AB AB i j i j n φ=≠=L 故:1()(|)()n i i i P A P A B P B ==∑ 再次回到体育彩票问题,使用全概率公式具体 求解第一人和第二人分别摸到奖卷的概率。 教师给予引导,回归到刚提出的问题上,对日常生活中买体育彩票这个事件的样本空间进行划分。为给出全概率公式做准备。 通过对概率公式的讲 解,具体解

全概率公式和贝叶斯公式

全概率公式和贝叶斯公式 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有: P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A1A2...An-1) (3)全概率公式 1. 如果事件组B1,B2,.... 满足 1.B1,B 2....两两互斥,即Bi∩ Bj= ?,i≠j ,i,j=1,2,....,且P(Bi)>0,i=1,2,....; 2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分 设B1,B2,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(Bi),P(A|Bi) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...Bn,这样事件A就被事件AB1,AB2,...ABn分解成了n部分,即A=AB1+AB2+...+ABn, 每一Bi发生都可能导致A发生相应的概率是P(A|Bi),由加法公式得 P(A)=P(AB1)+P(AB2)+....+P(ABn)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(PBn) 3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。 解:设..... P(A)=25%*5%+4%*35%+2%*40%=0.0345 (4)贝叶斯公式 1.与全概率公式解决的问题相反,贝叶斯公式是建立在条件概率的基础上寻找事件发生的原因(即大事件A已经发生的条件下,分割中的小事件Bi的概率),设B1,B2,...是样本空间Ω的一个划分,则对任一事件A(P(A)>0),有 上式即为贝叶斯公式(Bayes formula),Bi常被视为导致试验结果A发生的”原因“,P(Bi)(i=1,2,...)表示各种原因发生的可能性大小,故称先验概率;P(Bi|A)(i=1,2...)则反映当试验产生了结果A之

贝叶斯公式与全概率公式的运用

1-3 全概率公式与贝叶斯公式的运用举例 一、全概率公式 是一个完备事件组并且P则对任意事件有 P(B)= 全概率公式针对的是某一个过程中已知条件求出最后结果的概率,解题步骤如下: ①找出条件事件里的某一个完备事件组,分别命名为 ②命名目标的概率事件为事件B ③带入全概率公式求解 下面是具体实例对全概率公式的运用 1、甲盒子里面有4个红球3个白球,乙口袋有2个红球,5个白球,从甲口袋随机拿出一个球放到乙口袋,然后从一口袋中随机拿一个球,求这个球是红球的概率。 解:①完备事件组命名“甲口袋里拿出的是红球”甲口袋里拿出的是白球” ②目标事件B=“从乙里面取出红球” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|= 2、甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. ? 解:①完备事件组命名“取到的袋子是甲袋”取到的袋子是乙袋” ②目标事件B=“从袋子里面取出白球” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|= 3、某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率. ? 解:①完备事件组命名“选到的射手是级射手” ②目标事件B=“射手通过选拔赛” ③全概率公式求解 P(B)=P()P(B|+ P()P(B|+ P()P(B|+ P()P(B| = = 二、贝叶斯公式 是一个完备事件组并且P则对任意事件有

全概率公式和贝叶斯公式练习题汇编

1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133 P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以

全概率公式和贝叶斯公式练习题

For personal use only in study and research; not for commercial use 1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB , 由全概率公式() ()() ()()P B P A P B A P A P B A , 由题意 () ,(|),() ,(|)b b c a b P A P B A P A P B A a b a b c a b a b c 所以 ()() ()() ()() b b c ab b P B a b a b c a b a b c a b 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 11111222 0.02()()3()0.80. 21()()()()0.020.01 33 P A P B A P A B P A P B A P A P B A 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球;(2) 合并两只袋,从中随机取一球,该球是红球。 解(1) 记B {该球是红球},1 A {取自甲袋},2 A {取自乙袋},已知 10/6) |(1A B P ,14/8) |(2A B P ,所以 70 4114 82110 62 1) |()() |()() (2211A B P A P A B P A P B P (2) 12 724 14) (B P

相关主题
文本预览
相关文档 最新文档