当前位置:文档之家› 水质 总砷的测定 二乙基二硫代氨基甲酸银分光光度法

水质 总砷的测定 二乙基二硫代氨基甲酸银分光光度法

水质 总砷的测定 二乙基二硫代氨基甲酸银分光光度法
水质 总砷的测定 二乙基二硫代氨基甲酸银分光光度法

水质总砷的测定二乙基二硫代氨基甲酸银分光光度法FHZHJSZ0023 水质总砷的测定二乙基二硫代氨基甲酸银分光光度法 F-HZ-

HJ-SZ-0023 水质总砷的测定二乙基二硫代氨基甲酸银分光光度法本方法参照采用 1S06595 水质总砷的测定二乙基二硫代氨基甲酸银分光光度法本方法根据我国实际情况对 ISO 6595 标准方法作如下主要修改 a. 吸收液中的有机碱麻黄碱或吡啶改为三乙醇胺 b. 试份的预处理由高锰酸钾过硫酸钾法改为直接测定和硝酸硫酸加热消解法, 范围 1.1 本方法规定二乙基二硫代氨基甲酸银分光光度法测定水和废水中的砷当试样取最大体积 50mL 时本方法可测上限浓度为含砷

0.50mg/L 用无砷水适当稀释试样也可测定较高浓度的砷1.2 最低检出浓度试样为 50mL 用 10mm 比色皿可检测含砷 0.007mg/L1.3 干扰锑铋干扰测定参见附录 A 铬钴铜镍汞银以及铂它们浓度高达 5mg/L时也不干扰测定, 定义下列定义适用于本方法总砷指单体形态无机和有机化合物中砷的总量, 原理锌与酸作用产生新生态氢在碘化钾和氯化亚锡存在下使五价砷还原为三价三价砷被初生态氢还原成砷化氢胂用二乙基二硫代氨

530nm 处测量吸收基甲酸银三乙醇胺的氯仿液吸收胂生成红色胶体银在波

液的吸光度, 试剂除非另有说明分析时均使用符合国家标准或专业标准的分析纯试剂和蒸馏水或同等纯度的水试剂和水中砷的含量可忽略不计4.1 二乙基二硫代氨基甲酸银C 5 H10 NS2 Ag4.2 三乙醇胺HOCH2 CH3 3 N4.3 氯仿CHCl3 4.4 无砷锌粒1020 目4.5 盐酸HCl 1.19g/mL4.6 硝酸HNO3 1.40g/mL4.7 1/2H2 SO4 2mol/L4.9 氢氧化钠NaOH溶液硫酸H2 SO4 1.84g/mL4.8 硫酸溶液

2mol/L 贮存在聚乙烯瓶中4.10 碘化钾KI溶液 150g/L 将 15g 碘化钾KI溶于水中并稀释到 100mL 贮存在棕色玻璃瓶中此溶液至少一个月内是稳定的4.11 氯化亚锡溶液将 40g 氯化亚锡SnCl2 2H2 O溶于 40mL 盐酸4.5中溶液澄清后用水稀释到 100mL加数粒金属锡保存4.12 硫酸铜溶液 150g/L 将 15g 硫酸铜CuSO4 5H2 O溶于水中并稀释到 100mL4.13 乙酸铅溶液 80g/L 1 将 8g 乙酸铅PbCH3 COO2 3H2 O溶于水中并稀释到 100mL4.14 乙酸铅棉花将 10g 脱脂棉浸于100mL 乙酸铅溶液4.13中浸透后取出风干4.15 吸收液将 0.25g 二乙基二硫代氨基甲酸银4.1用少量氯仿4.3溶成糊状加入 2mL 三乙醇胺4.2 再用氯仿4.3稀释到 100mL 用力振荡使尽量溶解费置暗处 24h 后倾出上清液或用定性滤纸过滤贮于棕色玻璃瓶中贮存在冰箱中是稳定的4.16 砷标准溶液 100.0mg/L 将三氧化二砷AS2 O3 在硅胶上预先干燥至恒重准确称量 0.1320g 溶于 5mL 氢氧化钠溶液4.9中溶解后加入 10mL 硫酸溶液4.8 转移至 1000mL 容量瓶中用水稀释到刻度此标准溶液含砷100.0ìg/mL4.17 砷标准溶液 1.00ìg/L 取 10.00mL 砷标准溶液4.16于 1000mL 容量瓶中用水稀释到刻度注需特别注意本分析方法所用的砷在溶液转移和处置中要特别小心整个操作应在良好的通风环境中进行并严防入口, 仪器一般实验室仪器和5.1 分光光度计 10mm 比色皿5.2 砷化氢发生装置此仪器由下述部件组装而成5.2.1 砷化氢发生瓶容量为 150mL 带有磨口玻璃接头的锥形瓶5.2.2 导气管一端带有磨口接头并有一球形泡内装乙酸铅棉花4.14 一端被拉成毛细管管口直径不大于 1mm5.2.3 吸收管内径为 8mm 的试管带有 5.0mL 刻度注吸收液柱高保持 810cm, 操作步骤6.1 试份取 50mL 试样于砷化氢发生瓶5.2.1中如预料砷的含量超过 0.5mg/L 取适量的试样并用水稀释到 50mL6.2 空白试验在测定的同时应进行空白试验所用试剂及其用量与在测定中

所用的相同包括任何预处理的步骤亦相同但用 50mL 水取代试份6.3 测定6.3.1 预处理除非证明试样的消解处理是不必要的可直接制备试份6.1 加入

4mL 硫酸4.7进行显色6.3.2和测定6.3.3 否则要按下述步骤进行预处理于砷化氢发生瓶5.2.1中加入 4mL 硫酸4.7和 5mL 硝酸4.6 在通风橱内煮沸消解至产生白色烟雾如溶液仍不清澈可再加 5mL 硝酸4.6 继续加热至产生白色烟雾

直至溶液清澈为止其中可能存在乳白色或淡黄色酸不溶物冷却后小心加入 25mL 水再加热至产生白色烟雾赶尽氮氧化物冷却后加水使总体积为 50mL 注在消解破坏有机物的过程中勿使溶液变黑否则砷可能有损失6.3.2 显色6.3.2.1 于砷化氢发生瓶6.3.1中加 4mL 碘化钾4.10 摇匀再加 2mL 氯化亚锡溶液4.11混匀放置 15min6.3.2.2 取 5.0mL 吸收液4.15至吸收管5.2.3中插入导气管5.2.26.3.2.3 加 1mL 硫酸铜溶液4.12和 4g 无砷锌粒4.4于砷化氢发生瓶中并立即将导气管与发生瓶连接保证反应器密闭 26.3.2.4 在室温下维持反应 1h 使胂完全释出加氯仿4.3将吸收体积补足到 5.0mL 注砷化氢剧毒整个反应应在通风橱内或通风良好的室内进行在完

2.5h 内是稳定的应在此期间内进行分光光度测定全释放砷化氢后红色生成物在

6.3.3 光度测定用 10mm 比色皿以氯仿4.3为参比液在 530nm 波长下测量吸收液6.3.2.4的吸光度减去空白试验6.2所测得的吸光度从校准曲线6.4.3上查出试份中的含砷量6.4 校准6.4.1 标准工作溶液的制备往 8 个砷化氢发生瓶5.2.1中分别加入 0 1.00 2.50 5.00 10.00 15.00 20.00 及25.00mL 砷标准溶液4.17 并用水加到

4mL 硫酸4.7 以下步骤50mL6.4.2 显色与测定于上述砷化氢发生瓶中分别加入

按 6.3.2 和 6.3.3 进行6.4.3 校准曲线的绘制减去试剂空白的吸光度来修正对应的每个标准溶液的吸光度以修正的吸光度为纵坐标与之对应的标准溶液的砷含量ìg为横坐标作图要经常绘制校准曲线至少在每次使用新试剂时要绘制一次, 结果计算 7.1 计算方法砷含量 cmg/L由下式计算 m c V式中 m 校准曲线查得的试份砷含量ìg V 试份体积 mL7.2 结果表示7.2.1 取平行测定结果的算术平均值为测定结果7.2.2 报告砷的含量根据有效数字的规则结果以二位或三位有效数字表示, 精密度和准确度 7 个实验室分析含砷 0.100mg/L 的统一分发标准溶液结果如下8.1 重复性实验室内相对标准偏差为 28.2 再现性实验室间相对标准偏差为 38.3 准确度相对误差为-19 参考文献 GB7485-87 附录 , (补充件) A.1 锑的干扰及其消除锑盐在试验条件下还原生成氢化物又能与吸收液作用产生红色胶体银试份中锑的含量大于 0.1mg/L 时干扰砷的测定加入 2mL 氯化亚锡溶液4.11和 5mL 碘化钾溶液4.10可抑制300ìg 锑盐的干扰如锑浓度很高本方法不适用A.2 硝酸浓度为 0.01mol/L 时开始有负干扰故不适合作保存剂若试份中有硝酸分析前要加硫酸再加热分解之 3A.3 硫化物对测定有干扰可通过乙酸铅棉花去除若棉花变黑应更换A.4 吸收液中的氯仿沸点较低在吸收胂的过程中易挥发损失影响胂的吸收当室温较高时建议将发生瓶和吸收管降温并不断补加氯仿于吸收管中使之尽可能保持一定高度的液层A.5 锌粒的规格粒度对砷化氢的发生有影响表面粗糙的锌粒还原效率高规格以 1020目为宜位度较大应适当增加用量A.6 夏天高温季节还原反应激烈可适当减少硫酸溶液4.7的用量或将砷化氢发生瓶放入冷水中使反应缓和 4

磷钼蓝分光光度法

磷钼蓝分光光度法 1适用范围 本方法适用于炉水中含量在0.02~10.0mg/L磷酸盐的测定。 2方法提要 在酸性溶液中,用过硫酸钾作分解剂,将聚磷酸盐和有机磷转化成正磷酸盐。 正磷酸盐与钼酸铵反应生产黄色的磷钼杂多酸,再用抗坏血酸还原成磷钼蓝,于710nm最大吸收波长处用分光光度法测定。 3仪器 2800分光光度计 4试剂 4.1硫酸溶液:1+35 4.2酒石酸锑钾: AR 4.3过硫酸钾:40g/L 称取20g过硫酸钾,精确至0.5g,溶于500mL水中,贮存于棕色瓶内(保存期一个月)。 4.4抗坏血酸:20g/l 称取10g抗坏血酸,精确至0.5g,称取0.2gEDTA,精确至0.01g,溶于200mL水中,加入8.0mL甲酸,用水稀释至500mL,混匀,贮存于棕色瓶中(有效期一个月)。 4.5钼酸铵:26g/L

称取13g钼酸铵,精确至0.5g,称取0.5g酒石酸锑钾,精确至0.01g,溶于200mL水中,加入230mL硫酸溶液(1+1),混匀,冷却后用水稀释500mL,贮存于棕色瓶中(有效期一个月)。 4.6磷酸盐标准溶液:1mL=0.05mg 4.6.1贮备液: 称取0.7165g于105℃干燥过的磷酸二氢钾,溶于水中,转入1000mL容量瓶,稀释至刻度摇匀,此溶液1mL=0.5mg PO 43-。 4.6.2标准液: 吸取50mL贮备液于500mL容量瓶中,稀释至刻度,此溶液1mL= 0.05mgPO 43-。5分析步骤: 5.1工作曲线的绘制 取7个50mL容量瓶,分别取 0、2. 0、4. 0、6. 0、8. 0、10. 0、12.0mL磷标准溶液,用约20mL水稀释,依次向各瓶中加入2.0mL钼酸铵溶液,3.0mL抗坏血酸溶液,用水稀释至刻度,摇匀,室温下放置10分钟,在710nm,用比色皿,以试剂空白对照,测定各自吸光度,利用仪器建立 A=MC+N线性回归方程,保存方法号。

铈掺杂WO3的表征及其光解水催化性能的研究

收稿日期:2007-01-14。收修改稿日期:2007-04-13。 国家“863” 资助项目(No.2002AA327140)、教育部新世纪优秀人才支持计划(No.NCET.05.0691)。* 通讯联系人。E-mail:cqy@mail.csu.edu.cn 第一作者:杜俊平,男,24岁,硕士研究生;研究方向:无机功能材料。 铈掺杂WO3的表征及其光解水催化性能的研究 杜俊平 陈启元 赵 娟 李 洁* (中南大学化学化工学院,长沙 410083) 摘要:采用固相烧结法制备了掺杂不同量铈的WO3催化材料,并用XRD,XPS,DRS和PL光谱对样品进行了表征,主要考察了铈含量和焙烧温度对WO3的性质及光催化分解水制氧活性的影响,初步探讨了样品的PL光谱与其光催化分解水制氧活性的关系。结果表明,铈的掺杂可以使WO3的光谱响应范围向可见光区拓展。铈的掺杂没有引发新的荧光现象,适量铈的掺杂能够增强催化剂样品的荧光强度。在可见光辐射下进行光催化分解水制氧,于600℃处理的掺杂铈为0.05%(wt)的WO3催化剂的催化活性最高,此时催化剂的析氧速率比未掺杂WO3提高了1.5 ̄1.7倍。研究表明,样品的光催化活性与其PL信号强度顺序一致,即PL信号越强,光催化活性越高。关键词:铈掺杂三氧化钨;光催化;水分解中图分类号:O612.6;O643.36+1 文献标识码:A 文章编号:1001-4861(2007)06-1005-06 WO3DopedwithCe:CharacterizationandPhotocatalyticPropertiesforWaterSplitting DUJun-PingCHENQi-YuanZHAOJuanLIJie* (CollegeofChemistryandChemicalEngineering,CentralSouthUniversity,Changsha410083) Abstract:WO3samplesdopedwithdifferentmassfractionsofCewerepreparedbythesolid-statesinteringmethodandcharacterizedbyXRD,XPS,DRSandPLspectroscopy.TheeffectsofCedoppingamountandcalcinationtemperatureonthepropertiesandphotocatalyticactivityforoxygenevolutionwereinvestigated.TherelationshipbetweenPLspectraandphotocatalyticactivityforoxygenevolutionwasdiscussed.TheresultsshowedthatthedoppingofCemadetheopticresponserangeofWO3samplesexpandedtothevisuallight.ThedoppingofCewouldnotleadtonewPLpeaks,butanappropriateCedoppingcouldincreasethePLintensity.WO3samplesdopedwith0.05%(wt)Cecalcinedat600℃exhibitedexcellentphotocatalyticactivityforwatersplittingtooxygenunderthevisibleradiation,atwhichtherateforoxygenevolutionofCe/WO3was1.5 ̄1.7timeshigherthanthatofundopedWO3.TheresultsalsoshowedthatthephotocatalyticactivityorderofsampleswasthesameasthatoftheirPLintensityi.e.thestrongerthePLintensity,thehigherthephotocatalyticactivity. Keywords:Ce-dopedtungstentrioxide;photocatalysis;waterdecomposition 近年来随着半导体光催化研究的快速发展,三氧化钨作为光解水催化材料引人注目。Gratian等[1]对三氧化钨光催化活性的研究发现,WO3可光解水产氧,可见光辐射下其最佳产氧约为79.9μmol?L-1 ?h-1;Gao等[2]研究了烧结气氛对WO3光解水催化活性的影响,发现通过化学位控制可显著提高WO3光 催化活性的稳定性;Sayama等[3]研究了WO3在Fe3+/ Fe2+组成的氧化还原系统中的光催化性能,发现 WO3可实现H2O的完全光解,该系统在紫外光辐射下其最佳产氧约为75.4μmol?L-1?h-1;Bamwenda等[4]研究了类似的WO3-Ce4+/Ce3+系统,依靠WO3的 作用,同样可实现分步析氧析氢反应的耦合,促进 第6期2007年6月 Vol.23No.6Jun.,2007 无机化学学报 CHINESEJOURNALOFINORGANICCHEMISTRY

生活饮用水中碘化物的检测方法

生活饮用水中碘化物的检测方法 本方法规定了用砷铈催化分光光度法测定生活饮用水及其水源水中碘化物的含量。 本方法适用于生活饮用水及其水源水中碘化物的测定。 本方法检测范围:0—100ug/L(I-),检测限为2ug/L(取样量 1.0mL)。 1. 原理 利用碘对砷铈氧化还原反应的催化作用: H3AsO3 + 2Ce4+ + H2O → H3AsO4 + 2Ce3+ + 2H+ 反应中黄色的Ce4+被还原成无色的Ce3+,碘含量越高,反应速度越快,剩余的Ce4+则越少。控制反应温度和时间,在一定波长下测定体系中剩余的Ce4+的吸光度,求出碘含量。 2. 仪器 超级恒温水浴箱:30℃0.2℃ 数显分光光度计:1cm比色杯 玻璃试管:15 mm120 mm或15 mm150 mm 秒表 3. 试剂(本方法所使用的试剂纯度除特别指明外均为分析纯)浓硫酸(H2SO4,优级纯) 氢氧化钠(NaOH,优级纯) 三氧化二砷(As2O3) 氯化钠(NaCl,优级纯) 硫酸铈铵(Ce(NH4)4(SO4)4·4H2O) 碘化钾(KI,优级纯) 去离子水(H2O,应符合GB/T 6682二级水规格,电导率s/cm)4. 溶液配制 硫酸溶液[c(H2SO4)= mol/L]:取140 mL浓硫酸缓慢加入到700 mL去离子水中,冷却后用水稀释至1L。 亚砷酸溶液 [c(H3AsO3)= mol/L]:称取10.0 g三氧化二砷(As2O3)、25.0 g氯化钠和2.0 g氢氧化钠置于1L的烧杯中,加水约500 mL,加热至完全溶解后冷至室温,再缓慢加入200 mL mol/L硫酸溶液(),冷至室温后用水稀释至1L,贮于棕色瓶中

食品中总砷及无机砷的测定

食品中总砷及无机砷的测定 1.原理 食品试样经湿消解或干灰化后,加入硫脲使五价砷预还原为三价砷,再加入硼氢化钠或硼氢化钾使还原生成砷化氢,由氩气载入石英原子化器中分解为原子态砷,在特制砷空心阴极灯的发射光激发下产生原子荧光,其荧光强度在固定条件下与被测液中的砷浓度成正比,与标准系列比较定量。 2.试剂 2.1氢氧化钠溶液(2g/L)。 2.2硼氢化钠(NaBH。)溶液(10g/L):称取硼氢化钠10.O g,溶于2 g/L氢氧化钠溶液1000mL中,混匀。此液于冰箱可保存10天,取出后应当日使用(也可称取14g硼氢化钾代替10g硼氢化钠)。 2.3硫脲溶液(50g/L)。 2.4硫酸溶液(1+9):量取硫酸100 mL,小心倒入水900 ml。中,混匀。 2.5氢氧化钠溶液(100g/L)(供配制砷标准溶液用,少量即够)。 2.6砷标准储备液:含砷0.1 mg/mI。精确称取于100℃干燥2h以上的三氧化二砷(As203)0.1320g,加100g/L氢氧化钠10mL,溶解,用适量水转入1 000mI.容量瓶中,加(1+9)硫酸25mI,用水定容至刻度。 2.7砷使用标准液:含砷1μg/mL。吸取1.00 mL砷标准储备液于100 mL容量瓶中,用水稀释至刻度。此液应当日配制使用。 2.8湿消解试剂:硝酸、硫酸、高氯酸。 2.9千灰化试剂:六水硝酸镁(150g/L)、氯化镁、盐酸(1+1)。 3仪器 原子荧光光度计。 4分析步骤 4.1试样消解 4.1.1湿消解:固体试样称样1 g~2.5 g,液体试样称样5 g~10 g(或mI。)(精确至小数点后第二位),置人50mL~100mL锥形瓶中,同时做两份试剂空白。加硝酸20mI~40mI,硫酸1.25 mL,摇匀后放置过夜,置于电热板上加热消解。若消

磷钼蓝分光光度法测定海水中的活性磷酸盐无机磷精选文档

磷钼蓝分光光度法测定海水中的活性磷酸盐无 机磷精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

磷钼蓝分光光度法测定海水中的活性磷酸盐无机磷 1 适用范围和应用领域 本法引自海洋监测规范,适用于海水中活性磷酸盐的测定。 水样经 μm 滤膜过滤后贮于聚乙烯瓶中。若样品采集后不能立即分析,则应快速冷冻至-20℃保存,样品熔化后立即分析。 2 方法原理 在酸性介质中,活性磷酸盐与钼酸铵反应生成磷钼黄,用抗坏血酸还原为磷钼蓝后,于882 nm 波长测定吸光值。 3 试剂及其配制 除非另作说明,所用试剂均为分析纯,水为二次水或等效纯水。 硫酸溶液:c (H 2SO 4)= mol/L 在搅拌下将300 mL 硫酸(H 2SO 4,ρ=1.84 g/mL)缓缓加到600 mL 水中。 3.2 酒石酸锑钾-钼酸铵混合溶液 钼酸铵溶液: 溶解28 g 钼酸铵〔(NH 4)6Mo 7O 24·4H 2O 〕于200 mL 水中。溶液变混浊时,应重配。 酒石酸锑钾溶液: 溶解6 g 酒石酸锑钾(C 4H 4KO 7Sb·2 1H 2O)于200 mL 水中 ,贮于聚乙烯瓶中。溶液变混浊时,应重配。 混合溶液: 搅拌下将45 mL 钼酸铵溶液加到200 mL 硫酸溶液中,加入5 mL 酒石酸锑钾溶液,混匀。贮于棕色玻璃瓶中。溶液变混浊时,应重配。 抗坏血酸溶液 溶解20 g 抗坏血酸(C 6H 8O 6)于200 mL 水中,盛于棕色试剂瓶或聚乙烯瓶。在4℃避光保存,可稳定1个月。 磷酸盐标准贮备溶液:ρp = mg/mL 称取1.318 g 磷酸二氢钾(KH 2PO 4),优级纯,在110~115℃烘1~2 h)溶于10 mL 硫酸溶液及少量水中,全量转入1 000 mL 量瓶,加水至标线,混匀,加1 mL 三氯甲烷(CHCl 3)。此溶液 mL 含 mg 磷。置于阴凉处,可以稳定半年。 磷酸盐标准使用溶液:ρp = μg/mL 量取 mL 磷酸盐标准贮备溶液至100 mL 量瓶中,加水至标线,混匀,加两滴三氯甲烷(CHCl 3)。此溶液 mL 含 μg 磷。有效期为一周。 4 仪器及设备

氧化铈在催化剂中的作用

稀土催化材料在汽车尾气净化中的作用 目前国外广泛开发应用于汽车尾气净化的催化剂基本上是由铂(Pt),铑(Rh)等贵金属组成的,目前, 普遍使用的铂铑基贵金属三元催化剂主要通过Pt 的氧化作用净化HC , CO , 通过Rh 的还原作用净化NO x 。该催化剂虽具有活性高、净化效果好、寿命长等优点,但是造价也较高,尤其是Pt、Rh等受到资源限制。为了缓解Pt特别是Rh的供应与需求之间的矛盾,广泛使用价格相对便宜的钯(Pd), 开发了Pt,Rh和Pd组成的催化剂以及钯催化剂。 人们发现用稀土代替部分贵重金属制成的催化剂成本低,而且能获得满意 的净化效果。 稀土汽车尾气净化催化剂所用的稀土主要是以氧化铈、氧化镨和氧化镧的混合物为主,其中氧化铈是关键成份。由于氧化铈的氧化还原特性,有效地控制排放尾气的组分,能在还原气氛中供氧,或在氧化气氛中耗氧。二氧化铈还在贵 金属气氛中起稳定作用,以保持催化剂较高的催化活性。所以开发稀土少贵金属的汽车尾气净化剂,是取稀土之长补贵金属贵属之短,生产出具有实用性的汽车尾气净化剂。其特点是价格低、热稳定性好、活性较高、使用寿命长,因此在汽车尾气净化领域备受青睐。 稀土元素外层电子结构相似,稀土元素间的催化性能差别比较小,总的催化活性比不上外层电子结构的过渡元素及贵金属元素。在现行的实用工业催化剂中,稀土一般只用作助催化剂或催化剂中的一种活性组分,很少作为主体催化剂。 作为贵金属催化剂的助剂,稀土能够提高和改变催化剂的性能,其助剂的作用远远大于传统意义上的碱金属或碱土金属元素。我国的机动车排放污染严重,然而我国贵金属贫乏而稀土资源丰富,因此稀土应用于机动车尾气处理在我困得到广泛的应用。 稀上在机动车尾气净化催化剂中主要是具有储氧和催化作用,将其加入催化剂活性成组中,能提高催化剂的抗铅、硫中毒性能和耐高温稳定性,并能改善催化剂的空燃比工作特性。 稀土在TWC中的应用 稀土氧化物特有的性质早已引起了国内外催化剂研究工作者的广泛关注,然而到目前为止稀上氧化物多用作催化剂载体和助剂。稀土在催化剂中的作用主要有以下几方面。 1.汽车尾气净化催化剂活性成分 汽车尾气中的主要有害成分为碳氧化合物(Hc)、一氧化碳(CO)和氮氧化物(NO),在净化器中的化学反应包括氧化和还原反应。因此,需要找出一种能使氧化和还原两类反应同时进行的三元催化剂,使催化剂在汽车排气管内借助于排气温度和空气中氧的浓度,对尾气中的CO、HC和NO同时起氧化还原作用,使其转化成无害物质C02、H20和N2。Ce、La稀土催化活性的研究结果表明:Ce02的引入明显提高了CO和NO的催化转化活性。因此,可用稀土氧化物完全或部分代替贵 金属来担当催化剂的活性组分,催化还原Co、HC和No。 2提高催化剂的抗中毒能力

测定砷含量的几种方法

此处介绍银盐法、氢化物原子荧光光度法、氢化物发生原子吸收光谱法。 一、银盐法 1.原理 样品经消化后,以碘化钾、氯化亚锡将高价砷还原为三价砷,然后与锌粒和酸产生的新生态氢生成砷化氢,经银盐溶液吸收后,形成红色胶态物,在510nm处比色,与标准系列比较定量。最低检出量为0.2mg/kg。 2.适用范围 标准方法(GB/T5009.11-1996),适用于各类食品中总砷的测定。 3.试剂 除另有规定,所用的试剂为分析纯试剂,水为蒸馏水或同等纯度水。 (1)硝酸。 (2)硫酸。 (3)盐酸。 (4)硝酸+高氯酸混合液(4+1):量取80ml硝酸,加20ml高氯酸,混匀。(5)硝酸镁溶液(150g/L):称取15g硝酸镁〖Mg(NO3)2·6H2O〗溶于水中,并稀释至100ml。 (6)氧化镁。 (7)碘化钾溶液(150g/L):称取15g碘化钾溶于水中,并稀释至100ml,储于棕色瓶中。 (8)酸性氯化亚锡溶液:称取40.0g氯化亚锡(SnCl2·2H2O),加盐酸溶解并稀释至100.0ml,加入数颗金属锡粒。 **氯化亚锡(SnCl2)又称二氯化锡,白色或半透明晶体,带二个分子结晶水(SnCl2·2H2O)的是无色针状或片状晶体,溶于水、乙醇和乙醚。氯化亚锡试剂不稳定,在空气中被氧化成不溶性氯氧化物,失去还原作用,为了保持试剂具有稳定的还原性,在配制时,加盐酸溶解为酸性氯化亚锡溶液,并加入数粒金属锡粒,使其持续反应生成氯化亚锡及新生态氢,使溶液具有还原性。 氯化亚锡在本实验的作用为将As5+还原为As3+;在锌粒表面沉积锡层以抑制产生氢气作用过猛。 (9)盐酸溶液(1+1):量取50ml盐酸,小心倒入50ml水中,混匀。 (10)乙酸铅溶液(100g/L)。 (11)乙酸铅棉花:用100g/L乙酸铅溶液浸透脱脂棉后,压除多余溶液,并使疏松,在100℃以下干燥后,储存于玻璃瓶中。 **乙酸铅棉花塞入导气管中,是为吸收可能产生的硫化氢,使其生成硫化铅而滞留在棉花上,以免吸收液吸收产生干扰,硫化物和银离子生成灰黑色的硫化银,但乙酸铅棉花要塞得不松不紧为宜。 (12)无砷锌粒。 不同形状和规格的无砷锌粒,因其表面积不同,与酸反应的速度就不同,这样生成的氢气气体流速不同,将直接影响吸收效率和测定结果。一般认为蜂窝状锌粒3g,或大颗粒锌粒5g均可获得良好结果。也有人认为大小颗粒的锌粒混合使用则效果满意。一般确定标准曲线与试样均用同一规格的锌粒为宜。 (13)氢氧化钠溶液(200g/L)。 (14)硫酸溶液(6+94):量取6.0ml硫酸,小心倒入94ml水中,混匀。 (15)二乙氨基二硫代甲酸银-三乙醇胺-三氯甲烷溶液:称取0.25g二乙氨基二硫代甲酸银〖(C2H5)2NCS2Ag〗置于乳钵中,加少量三氯甲烷研磨,移入100ml

水中硅酸盐含量的测定

水中硅酸盐硅含量的测定方法 水中硅的测定有重量法和比色法两种,重量法适用于硅含量较高(20毫克/升以上)的水样,比较精确,但甚繁杂,一般都采用钼酸盐比色法(钼黄法或硅钼蓝法)。 一、原理 在PH值近乎1.2的酸性溶液中,钼酸铵能与活性硅酸盐反应生成黄色的硅钼酸,其成分大致是 SiO2·12MoO3·nH2O。因为硅酸标准溶液配制相当麻烦,加上此硅钼酸溶液的黄色与适当PH条件下铬酸钾溶液的黄色相似,故测定时往往用铬酸钾溶液作永久性标准色阶。 水中磷酸盐也能与钼酸铵反应,生成黄色物质(磷钼酸),对本测定有干扰。加入草酸可促使磷钼酸分解消除干扰,亦可用计算法进行校正。每毫克P2O5应从所测的硅酸数值中减去0.5毫克。 用硫酸酸化可减低单宁(或鞣酸)的干扰。铁离子形成黄色[FeCl6]3-络离子,对本测定也有干扰,但一般水中铁的含量不会超过20毫克/升,对本测定影响极小。 水的混浊与颜色对本测定的干扰,可作重叠比色以抵消灌用磷酸钙胶状沉淀褪色,也可用氧化褪色法消除之。 普通玻璃的主要成分是硅酸盐,用玻璃瓶装试剂与水样,会使溶液中硅酸盐增加。故本法参与钼黄反应的试剂和水样,应尽量用塑料瓶或里面涂蜡的玻璃瓶盛装。 二、试剂 1、10%钼酸铵溶液称取10克分析纯钼酸铵[(NH4)6Mo7O24·4H2O]溶于少量纯水,并稀释到100毫升,若所得溶液混是,可滴加浓氨水直至澄清为止。 2、1:1盐酸将等体积的分析纯浓盐酸与纯水混合。

3、铬酸钾溶液称取(在105℃烘干的)铬酸钾0.630克,溶于纯水中,全部转入1000毫升容量瓶内,并稀释至刻度(T=0.10毫克SiO2/毫升)。 4、1%硼砂溶液称取10克硼砂(Na2B4O7·10H2O)溶于少量纯水中,并稀释到1升。 5、10%草酸溶液称取10克草酸(H2C2O4·2H2O)溶于少量纯水中,并稀释到100毫升。 三、测定步骤 1、水样的处理若水样有色或混浊影响测定时,最好和不吸附硅酸盐的磷酸钙胶状沉淀来褪色。处理如下:在200毫升容量瓶中用移液管加入100毫升水样,加1毫升2.5%磷酸二氢钠溶液,摇匀,再加1毫升10%氯化钙溶液和1毫升2.5%氢氧化铵溶液。用纯水将溶液稀释到刻度,混匀后静置20分钟,用干滤纸过滤,取滤液50毫升(相当于25毫升水样)进行分析。 若用上述方法尚不能使水样褪色,则可进一步将滤液氧化:在100毫升滤液中,加数毫升1:1盐酸和少许固体过硫酸铵,加热煮沸至溶液颜色褪去。若还不褪色,可再加少许过硫酸铵再煮沸。待溶液冷却后,取50毫升此溶液进行比色。 2、色阶的配标准制取8支50毫升比色管分别按下表加入铬酸钾溶液,并在各管中分别加入25毫升硼砂溶液,用纯水稀释到50毫升,充分摇匀。放置5-10分钟,加1.5毫升草酸溶液(若确知没有磷酸盐则可不加),充分摇匀。放置2分钟后,即与模拟标准色阶进行目视综合比色,15分钟内要比色完。 四计算 硅酸盐(毫克SiO2/升)= V S/V x*C S*f 式中:V S、C S为等色时标准管的体积(毫升)及浓度(毫克SiO2/升); V x为等色时水样管的体积(毫升); f为水样的体积校正因数。

土壤中总砷的分光光度法测定

土壤中总砷的分光光度法测定 相关背景:砷是世界卫生组织确定的高毒致癌物质,从上世纪初就开始受到科学家们的广泛关注。在农业生产中,砷主要是通过工业“三废”、农业利用等方式进入土壤,施用含砷的农药、化肥、有机肥等是土壤中砷的重要来源之一。砷进入土壤后,可被土壤胶体吸附固定,使其有效性降低。有机态砷进入土壤后,不仅被土壤吸附固定,也可在土壤微生物的作用下,并通过一系列的土壤过程,发生形态和价态的转化。农业生产与人类生活息息相关,研究不同形态砷在土壤中的转化及对植物砷有效性的影响,对提高农产品质量,预防设施土壤中砷含量超标等具有很重要的意义。由环保部牵头制定的《全国土壤环境保护“十二五”规划》已进入国务院审批程序,国家发改委批准了“‘十二五’重金属污染防治规划”,将“土壤与场地污染治理与修复”列入“十二五”社会发展科技领域国家科技计划项目指南。 依据标准:1997年12月8日,国家环境部发布GB/T 17135-1997 《土壤质量总砷的测定硼氢化钾-硝酸银分光光度法》。 检测方法简介: 土壤样品经氧化分解后,使不同形式的砷转化为可溶态砷离子,硼氢化钾(钠)在酸性的溶液中产生新生态氢,使五价砷还原为三价砷,三价砷还原成气态砷化氢,再用硝酸-硝酸银-聚乙烯醇-一算溶液为吸收液,银离子被砷化氢还原成单质银,使溶液成黄色,在400nm 分光光法测定。(10mm光程) 赛默飞世尔科技有限公司(ThermoFisher)的紫外可见分光光度计产品完全能够满足上述检测需要,并且可以为客户提供方法建立的工作,以方便有此需求的客户快速使用仪器,达到单位检测要求。请您联系赛默飞世尔科技有限公司(8008105118,4006505118),或者咨询我们当地的代理商。

海水一活性硅酸盐的测定一硅钼蓝分光光度法

FHZDZHS0036 海水活性硅酸盐的测定硅钼蓝分光光度法 F-HZ-DZ-HS-0036 海水一活性硅酸盐的测定一硅钼蓝分光光度法 1 范围 本方法适用于硅酸盐含量较低的海水的测定。 2 原理 活性硅酸盐在酸性介质中与钼酸铵反应,生成黄色的硅钼黄,当加入含有草酸(消除磷和砷的干扰)的对甲替氨基苯酚-亚硫酸钠还原剂,硅钼黄被还原为硅钼蓝,于812nm波长测定其吸光度。 3 试剂 为取得好的结果,使用优级纯等硅含量低的试剂。试剂溶液及纯水用塑料瓶保存,可降低空白值,本法中所用水均指无硅蒸馏水或等效纯水。 3.1 硫酸,1+3:在搅拌下,将1体积硫酸(ρ1.84g/mL,优级纯)缓慢地加入3体积水中,冷却后盛于聚乙烯瓶中。 3.2 钼酸铵(酸性)溶液:称取2.0g钼酸铵[(NH4)6Mo7O24·4H2O],溶于70mL水,加6mL盐酸(ρ1.19g/mL)稀释至100mL(如浑浊应过滤),贮于聚乙烯瓶中。 3.3 草酸溶液,100g/L:称取10g草酸(H2C2O4·2H2O,优级纯),溶于水,稀释至100mL,过滤,贮于聚乙烯瓶中。 3.4 对甲替氨基酚(硫酸盐)-亚硫酸钠溶液:称取5g对甲替氨基酚(米吐尔)[(CH3NHC6H4OH)2·H2SO4],溶于240mL水,加3g亚硫酸钠

(Na2SO3),溶解后稀释至250mL,贮于棕色试剂瓶中,并密封保存于冰箱中,此溶液可稳定一个月。 3.5 还原剂:将100mL对甲替氨基酚-亚硫酸钠溶液和60mL草酸溶液混合,加120mL硫酸(1+3),搅匀,冷却后稀释至300mL,贮于聚乙烯瓶中,此溶液临用时配制。 3.6 硅标准溶液 3.6.1 硅酸盐标准溶液系列(国家海洋局第二海洋研究所配制生产) 硅酸盐标准也可按下述方法自行配制,但必须定期用二所标准溶液校准。 3.6.2 用氟硅酸钠配制,300mg/L硅:将氟硅酸钠(Na2SiF6,优级纯)在105℃烘1h,取出置于干燥器中冷却至室温,称取2.0087g氟硅酸钠置于塑料烧杯中,加入约600mL水。用磁力搅拌至完全溶解(需半小时)移入1000mL容量瓶中,加水并稀释至刻度,摇匀。此溶液1.00mL 含300.0μg硅.贮于塑料瓶中,有效期一年。 3.6.3 用二氧化硅配制,300mg/L硅:称取0.6418g研细至200目二氧化硅(光谱纯)或色层用硅胶(SiO2高纯,经1000℃灼烧1h)于铂坩埚中,加4g无水碳酸钠(Na2CO3)混匀。在960℃~1000℃高温炉中融熔1h,取出冷却后用热水溶解,移入1000mL容量瓶中。用水稀释至刻度,摇匀。移入干燥的聚乙烯瓶中,此溶液1.00mL含300.0μg硅,有效期一年。 1 3.6.4 硅标准使用溶液,15.0μg/mL:移取5.00mL硅标准溶液(300.0

二氧化铈催化氧化

不同形貌的二氧化铈催化氧化CO 摘要:本文主要介绍了不同形貌的CeO2在去除CO方面的影响和机理,不同形貌的纳米 晶体表面暴露的晶面不同,使其表面活性有着显著的差异,表面主要暴露高活性晶面的CeO2纳米材料将对CO显示出更优的催化性能,CeO2形貌不同也会导致与负载金属的相互作用不同,继而导致金属/氧化铈催化剂体系具有不同的CO催化氧化性能。最后,对CeO2纳米材料形貌效应的研究和应用进行了展望。 关键字: 二氧化铈形貌效应催化氧化机理CO 1.引言 CO是一种主要的空气污染物,它所引起的一系列环境问题已成为全世界各国的工作重点之一,如何实现低温下消除CO已成为研究的热点[1],用催化氧化法来消除CO是研究的主要方面。目前CO 催化剂大致可分为贵金属和非贵金属两大类,非贵金属催化剂价格低廉,热稳定性好,但是低温活性较差,随着研究的不断深入,非贵金属催化剂的低温活性不断得到提高,已接近贵金属催化剂。Ce02是一种廉价而用途极广的材料,由于Ce有+3和+4两个化合价,不但能表现出比较高的储、放氧能力,并且能增强过渡金属氧化物的分散,并提高过渡金属的稳定性,其作为催化剂活性组分、催化助剂或催化剂载体表现出了良好的效果[2]。 2.氧化铈形貌对CO催化氧化的影响 2.1 二氧化铈催化氧化机理 由于Ce3+和Ce4+间具有较低的电极电动势,而Ce02材料具有半开放的萤石晶体结构,所以Ce02可以在保持其晶体结构稳定的前提下,在外界环境贫氧时,释放02;而当环境富氧时,吸收02,这种储放氧的能力使用储氧量来描述能力的强弱,由于Ce02材料具有这样的能力,因此CeO2可以使得多相催化过程中气相中的氧物种。通过CeO2的呼吸作用使02转移至固体表面,从而促进了催化过程的进行,其表面及体相的晶格氧原子能够直接参与反应并被消耗,同时形成氧空位,因此,表面氧空位是氧化铈催化材料的重要参数和活性物种。虽然已有报道CeO2在CO氧化反应中可直接用作催化剂[3,4],但是,与单独作为催化剂相比,CeO2 更多的是用作催化剂的载体,与其他氧化物相比,CeO2用作催化剂载体时,不仅可以对负载的金属起到分散、塑型及稳定作用[5],还能够在反应过程中提供活性氧直接参与体系的氧化还原过程。 2.2 二氧化铈催化氧化CO的形貌效应 对CeO2 的催化性能的研究主要集中在尺寸和形貌上,纳米CeO2的活性会显著提高,其原因是CeO2的比表面积和缺陷浓度(如氧空位)显著增加,从而提高了对CO氧化反应的催化活性,但是CeO2表面的氧空位形成能受其尺寸效应外,也与形貌密切相关[6,7]。 CeO2纳米晶体通常会暴露出{111}、{110}和{100}三个低指数的晶面,不同形貌的CeO2纳米晶体表面暴露的晶面不同,如{ 111} 、{ 110} 和{ 100} 晶面,各晶面的表面稳定性、氧空位构造能及与表面分子的交换能均不同,使其表面活性有着显著的差异。理论计算研究表明[8],CeO2的{ 100}晶面具有最高的表面活性,{ 110} 次之,{ 111} 最低,{111}晶面上产生氧空穴所需要的能量要远高于{110}和{100}晶面,表面主要暴露高活性晶面的CeO2纳

尿中碘的测定 第1部分:砷铈催化分光光度法(标准状态:现行)

I C S11.020 C61 中华人民共和国卫生行业标准 W S/T107.1 2016 代替W S/T107 2006 尿中碘的测定第1部分:砷铈催化 分光光度法 D e t e r m i n a t i o no f i o d i n e i nu r i n e P a r t1:A s3+-C e4+c a t a l y t i c s p e c t r o p h o t o m e t r y 2016-04-28发布2016-10-31实施

前言 W S/T107‘尿中碘的测定“拟分部分发布,分为以下两个部分: 第1部分:砷铈催化分光光度法; 第2部分:电感耦合等离子体质谱法三 本部分为W S/T107的第1部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分代替W S/T107 2006‘尿中碘的砷铈催化分光光度测定方法“三 本部分与W S/T107 2006相比,主要技术变化如下: 修改了亚砷酸溶液和硫酸铈铵溶液的使用浓度,三氧化二砷使用量减少至原方法的四分之一; 增加了直接取样消化测定300μg/L~1200μg/L浓度范围尿碘的方法步骤; 修改了0μg/L~300μg/L浓度范围尿碘测定方法的测定波长; 修改二增加了方法特性二质量保证和控制要点; 增加了附录A,其中增加了300μg/L~1200μg/L范围尿碘测定的不同温度对应的反应时间表三 本部分起草单位:福建省厦门市疾病预防控制中心二天津医科大学内分泌研究所二中国疾病预防控制中心营养与健康所二安徽省疾病预防控制中心二陕西省地方病防治研究所三 本部分主要起草人:张亚平二阎玉芹二刘列钧二孙毅娜二李卫东二华基礼二黄嫣红二李秀维二赵立胜三本部分所代替标准的历次版本发布情况为: W S/T107 1999; W S/T107 2006三

钼蓝分光光度法之单水氢氧化锂和硅的测定

1 范围 本方法适用于工聚氯化铝业级单水氢氧化锂中质量分数0.00050%~0.050%硅的测定。 2 原理 试料以盐酸分解,在弱酸性介质中硅与钼酸铵形成硅钼黄杂多酸,以硫酸-草酸消除磷、砷的干扰,用抗坏血酸将硅钼黄还原为硅钼蓝。于分光光度计波长800nm处测量其吸光度。 3 试剂 3.1盐酸,1+1,优级纯。 3.2硫酸,3+97,优级纯。 3.3硫酸,33+67 优级纯。 3.4氨水,1+5,超纯。 3.5钼酸铵溶液,50g/L,必要时过滤。 3.6草酸溶液,50g/L,优级纯。 以上试剂均需贮存于塑料瓶中。 3.7抗坏血酸溶液,20g/L,用时现配。 3.8硅标准贮存溶液,100μg / mL: 称取0.2140g预先在1000℃灼烧1h并在干燥器中冷却至室温的二氧化硅,置于盛有1g无水碳酸钠(优级纯)的铂坩埚中,加入3g无水碳酸钠,在950~1000℃高温炉中熔融至熔体为亮红色并清澈透明,取出冷却,放入聚四氟乙烯烧杯中,用热水浸出,加热至溶液清亮,冷却,移入1000mL容量瓶中,以水稀释至刻度,混匀,立即移入塑瓶中。此溶液1mL含100μg硅。 3.9硅标准溶液,10μg / mL: 移取25.00mL100μg /mL硅标准贮存溶液,置于250mL容量瓶中,以水稀释至刻度,混匀,立即移入塑料瓶中。此溶液1mL含10μg硅。 3.10硅标准溶液,1μg / mL: 移取10.00mL10μg /mL硅标准溶液,置于100mL容量瓶中,以水稀释至刻度,混匀,立即移入塑料瓶中。此溶液1mL 含1μg硅。用时现配。 3.11对硝基酚指示剂溶液,1g/L。 用乙醇配制。

在线水质总砷分析仪

系统概述: 经过预处理的水样由注射泵注入到特殊反应器后首先与还原剂进行反应,将水样中所有形态的砷同意还原成三价砷,接着又将三价砷全部转化成气态胂,通过液气转化将所有待测砷逐出到比色池中,比色池中的特性显色剂可以和气态胂发生灵敏的显色反应,比色池溶液颜色的改变程度与待测水样中的总砷含量成正比,通过光写比色法测量溶液颜色变化程度就可以计算出水样中总砷的含量。利用逐出比色技术不但可降低总砷的检测限,同时可消除各种物质尤其磷对总砷测量的干扰。慕迪生产的T8000-As在线水质总砷分析仪可用于各种行业水中砷溶度的在线自动检测。 系统特点: 逐出比色技术不但降低了水中砷含量的检测限,同时可消除各种干扰物质,尤其磷对水中砷检测的干扰; 所有反应时间均可调整,确保测定过程及结果满足国家标准和相关行业标准; T8000-As在线水质总砷分析仪可调定量取样装置,确保仪器通过调整试剂用量和取样量来准确测量各种水样; 试剂取用采用非接触式注射泵,避免试剂直接腐蚀试剂泵,可延长核心部件寿命、减低用户的使用成本; 全进口器件及分析流路设计和试剂配方保证了极高的测量重现性,目前测量重现性可达到5%; 全自动运行,无需人员值守,可实现自动调零、自动校准、自动测量、自动清洗、自动维护、自动保护、自动恢复等智能化功能; 在线监测方式多样化,可实现人工随时测量、自动定测量、自动周期性测量等测定方式;自动漏液预警功能,当出现试剂泄漏时,仪器自动预警,提示用户进行维护。 技术参数: 测量原理:钼酸盐/抗坏血酸比色法; 比色计:660nm或880nm; 测量类型:循环测量; 测量间隔:可任意设定; 测量时间:约30分钟; 测量范围:0-0.5/1/5ppm,其它量程亦可; 低检出限:0.005mg/l; 重现性:2%; 信号输出:标准4—20mA模拟输出,最大负载400欧姆或0—5V,其它RS485或RS232可选; 信号输入:1路分析,1路校正; 样品和废液的输送:无压;样品温度:10-30℃; 药剂更换:3~4周根据运行温度有所改变; 环境温度:5—40℃; 防护等级:IP55; 供电电源:220VAC; 重量:70kg(不包括药剂); 尺寸:500 mm x 1650 mm x 320 mm。

磷钼蓝分光光度法测定水中的磷

磷钼蓝分光光度法 1 适用范围和应用领域 适用于海水中活性磷酸盐的测定 2 方法原理 在酸性介质中,活性磷酸盐与钼酸铵反应生成磷钼黄,用抗坏血酸还原为磷钼蓝后,于882 nm波长测定吸光值。 3 试剂及其配制 3.1硫酸溶液[c(H 2SO4)=6.0 mol/L] 在搅拌下将300 mL硫酸(H 2 SO4,ρ=1.84 g/mL)缓缓加到600 mL水中。酒石酸锑钾-钼酸铵混合溶液 3.2 钼酸铵溶液:溶解56 g钼酸铵〔(NH 4) 6 Mo 7 O 24 ·4H 2 O〕于400 mL水中。溶 液变混浊时,应重配。 3.3酒石酸锑钾溶液:溶解12 g酒石酸锑钾(C 4H 4 KO 7 Sb·1/2H 2 O)于400 mL水中, 贮于聚乙烯瓶中。溶液变混浊时,应重配。 3.4混合溶液: 搅拌下将45 mL钼酸铵溶液加到200 mL硫酸溶液中,加入5 mL 酒石酸锑钾溶液,混匀。贮于棕色玻璃瓶中。溶液变混浊时,应重配。 3.5 抗坏血酸溶液:溶解20 g抗坏血酸(C 6H 8 O 6 )于200 mL水中,盛于棕色试 剂瓶或聚乙烯瓶。在4℃避光保存,可稳定1个月。 3.6 磷酸盐标准贮备溶液:(0.300 mg/mL -P)称取1.318 g磷酸二氢钾(KH 2PO 4 ), 优级纯,在110~115℃烘1~2 h)溶于10 mL硫酸溶液及少量水中,全量转入1 000 mL量瓶,加水至标线,混匀,加1 mL三氯甲烷(CHCL 3 )。此溶液1.00 mL 含0.300 mg磷。置于阴凉处,可以稳定半年。 3.7 磷酸盐标准使用溶液:(3.00 μg/mL-P)量取1.00 mL磷酸盐标准贮备溶 液至100 mL量瓶中,加水至标线,混匀,加两滴三氯甲烷(CHCL 3 )。此溶液1.00 mL含3.00 μg磷。有效期为一周。 4 仪器及设备 仪器及设备如下 ---分光度计:配5cm测定池; ---量筒:容量10ml、50ml、100ml、250ml、500ml

磷钼蓝分光光度法

磷钼蓝分光光度法 1 适用范围 本方法适用于炉水中含量在0.02~10.0mg/L磷酸盐的测定。 2 方法提要 在酸性溶液中,用过硫酸钾作分解剂,将聚磷酸盐和有机磷转化成正磷酸盐。正磷酸盐与钼酸铵反应生产黄色的磷钼杂多酸,再用抗坏血酸还原成磷钼蓝,于710nm最大吸收波长处用分光光度法测定。 3 仪器 2800分光光度计 4 试剂 4.1 硫酸溶液:1+35 4.2 酒石酸锑钾:AR 4.3 过硫酸钾:40g/L 称取20g过硫酸钾,精确至0.5g,溶于500mL水中,贮存于棕色瓶内(保存期一个月)。 4.4 抗坏血酸:20g/l 称取10g抗坏血酸,精确至0.5g,称取0.2gEDTA,精确至0.01g,溶于200mL 水中,加入8.0mL甲酸,用水稀释至500mL,混匀,贮存于棕色瓶中(有效期一个月)。 4.5 钼酸铵:26g/L 称取13g钼酸铵,精确至0.5g,称取0.5g酒石酸锑钾,精确至0.01g,溶于200mL水中,加入230mL硫酸溶液(1+1),混匀,冷却后用水稀释500mL,贮存于棕色瓶中(有效期一个月)。 4.6 磷酸盐标准溶液:1mL=0.05mg 4.6.1贮备液: 称取0.7165g于105℃干燥过的磷酸二氢钾,溶于水中,转入1000mL容量 3-。 瓶,稀释至刻度摇匀,此溶液1mL=0.5mg PO 4 4.6.2 标准液: 3-。 吸取50mL贮备液于500mL容量瓶中,稀释至刻度,此溶液1mL=0.05mgPO 4

5 分析步骤: 5.1 工作曲线的绘制 取7个50mL 容量瓶,分别取0、2.0、4.0、6.0、8.0、10.0、12.0mL 磷标准溶液,用约20mL 水稀释,依次向各瓶中加入2.0mL 钼酸铵溶液,3.0mL 抗坏血酸溶液,用水稀释至刻度,摇匀,室温下放置10分钟,在710nm ,用比色皿,以试剂空白对照,测定各自吸光度,利用仪器建立A=MC+N 线性回归方程,保存方法号。 5.2 分析步骤 取10mL 水样于150mL 锥形瓶中,加入1.0mL 硫酸溶液(1+35),5.0mL 过硫酸钾溶液,用水调节体积至25mL ,放置于电炉上缓慢加热煮沸至溶液快蒸干为止,取出后冷却至室温,定量转移至50mL 容量瓶中,加入2.0mL 钼酸铵溶液,3.0mL 抗坏血酸溶液,用水稀释至刻度,摇匀,室温下放置10分钟。在710nm ,用比色皿以不加试液的的空白调零,测定。 6计算 水样中总磷含量以X (mg/l )表示: V m L mg PO 50)/(34?=- m ——从标准曲线上查得或按回归方程算得的PO 43-的含量,mg/L ; V ——吸取水样体积,mL 。 7允许差 两次平行测定结果之差不能大于0.3mg/L ,取算术平均值为测定结果。

海水—无机磷的测定—磷钼蓝萃取分光光度法

FHZDZHS0067 海水无机磷的测定磷钼蓝萃取分光光度法 F-HZ-DZ-HS-0067 海水—无机磷的测定—磷钼蓝萃取分光光度法 1 范围 本方法适用于海水中活性磷酸盐的测定。 2 原理 在酸性介质中,活性磷酸盐与钼酸铵反应生成磷钼黄,以抗坏血酸还原为磷钼蓝,用醇类有机溶剂萃取,于波长700nm处测定吸光度。 硫化物含量大于1mg/L时,对本法有明显的影响,此时,在水样酸化后,通氮气10min,将硫化氢驱除,可消除干扰。 砷酸盐含量大于0.5mg/L时,对本法有明显影响。通常海水中砷含量约0.003mg/L,其影响可忽略不计。 硅酸盐含量大于 1.4mg/L时,对本法有影响。河口水和大洋深层水中硅酸盐含量常大于1.4mg/L,应进行校正。 3 试剂 除非另作说明,本法所用试剂均为分析纯,水为二次蒸馏水或等效纯水。 3.1 正已醇[CH3(CH2)5OH]。 3.2 无水乙醇(C2H5OH)。 3.3 硫酸溶液,1+2。 3.4 钼酸铵溶液:溶解28g钼酸铵[(NH4)6Mo7O24·4H2O]于200mL水中。溶液变混浊时,应重配。 3.5 酒石酸锑钾溶液:溶解6g酒石酸锑钾(C4H4KO7Sb·1/2H2O)于200mL水中,贮存于聚乙烯瓶中,溶液变混浊时,应重配。 3.6 混合溶液:搅拌下将45mL钼酸铵溶液加到200mL硫酸(1+2)中,加入5mL酒石酸锑钾溶液,贮存于棕色玻璃瓶中,溶液变混浊时,应重配。 3.7 抗坏血酸溶液:溶解20g抗坏血酸(C6H8O6)于200mL水中,贮于棕色试剂瓶或聚乙烯瓶。在4℃避光保存,可稳定一个月。 3.8 磷酸盐标准溶液 3.8.1 磷酸盐标准贮备溶液,0.300mg/mL-p:称取1.3181g磷酸二氢钾(KH2PO4,光谱纯,预先在110℃~115℃烘1h~2h,置于干燥器中冷却至室温)溶于10mL硫酸(1+2)中,移入1000mL 容量瓶,用水稀释至刻度,摇匀。加1mL三氯甲烷(CHCl3)。此溶液1.00mL含0.300mg磷。 3.8.2 磷酸盐标准使用溶液,3.00μg/mL-P∶移取1.00mL磷酸盐标准贮备溶液(300μg/mL)于100mL容量瓶中,加水并稀释至刻度,摇匀。加两滴三氯甲烷(CHCl3)。此溶液1.00mL含3.00μg磷。有效期为一周。

砷的测定法

砷的测定法 1 范围 本标准规定了本公司牙膏、化妆品、蜡制品、香料中总砷的测定。 本标准适用于本公司牙膏、化妆品、蜡制品、香料中总砷的检测。 2 引用标准 本标准等同采用GB7917.2—87。 3 二乙氨基二硫代甲酸银分光光度法 3.1 方法提要 经灰化或消解后的试样,在碘化钾和氯化亚锡的作用下,样液中五价砷被还原为三价。三价砷与新生态氢生成砷化氢气体。通过用乙酸铅溶液浸泡的棉花去除硫化氢干扰,然后与溶于三乙醇胺一氯仿中的二乙氨基二硫代甲酸银作用,生成棕红色的胶态银,比色定量。钴、镍、汞、银、铂、铬和钼可干扰砷化氢的发生,但正常情况下,化妆品中含量不会产生干扰。锑对测定有明显干扰. 3.2 试剂 3.2.1 去离子水或同等纯度的水:将一次蒸馏水经离子交换净水器净化,贮存于全玻璃瓶或聚乙烯瓶中。 注:试剂的配制,提纯和分析步骤中均用此水。 3.2.2 硝酸(密度1.42g/ml):分析纯。 3.2.3 硫酸(密度1.84g/ml):分析纯。 3.2.4 硫酸(1+1)。 3.2.5 硫酸(1mol/L)。 3.2.6 氢氧化钠(20%)。 3.2.7 酚酞指示剂(0.1g乙醇溶液):称取0.1g酚酞,溶于50ml95%乙醇,加水至100ml。 3.2.8 氧化镁:分析纯。 3.2.9 硝酸镁(10%)。 3.2.10 盐酸(1+1)。 3.2.11 碘化钾(15%)。 3.2.12 氯化亚锡溶液(40%):称取40g氯化亚锡(分析纯),溶于40ml浓盐酸(分析纯)中,加水至100ml溶液中,可放入金属锡粒数颗。 3.2.13 无砷锌粒:10~20目。 3.2.14 乙酸铅溶液(10%)。 3.2.15 乙酸铅棉花:将脱脂棉浸入10%乙酸铅溶液,2h后取出,晾干,并使膨松。 3.2.16 二乙氨基二硫代甲酸银(DDC—Ag)溶液:称取0.25gDDC—Ag,用少许氯仿溶解。加入1.0ml 三乙醇胺,再用氯仿稀释至100ml。必要时可过滤。置于棕色瓶内,于冰箱中存放。 3.2.17 氯仿:分析纯。 3.2.18 三乙醇胺。

相关主题
文本预览
相关文档 最新文档