当前位置:文档之家› 多环芳烃的种类

多环芳烃的种类

多环芳烃的种类
多环芳烃的种类

参考文献

[1] 王秉栋. 食品卫生检验手册[M]. 上海: 上海科学技术出版社, 2003.

[2] 刘淑琴, 王鹏. 多环芳烃与致癌性[J]. 环境保护, 1995, 9: 42-45.

[3] 段小丽, 魏复盛. 苯并[a]芘的环境污染、健康危害及研究热点问题[J]. 世界科技研究与

发展, 2002, 24(1): 161-171.

[4] 彭华, 李明, 王玲玲等. 河南省主要城市饮用水水源中多环芳烃污染状况的研究[J]. 中

国环境监测, 2004, 20(3): 17-19.

[5] 刘建华, 祁士华, 张干等. 拉萨市拉鲁湿地多环芳烃污染及其来源[J]. 物探与化探, 2003,

27(6): 490-492.

[6] 张根旺. 油脂中多环芳烃污染及其控制[J]. 粮食与油脂, 2007(6): 5-7.

[7] GB/T 5009. 27-2003, 食品中苯并(a)芘的测定[S].

[8] 李进伟, 王兴国, 金青哲. 食用油中苯并芘的来源、检测和控制[J]. 中国油脂, 2011, 36(6):

7-11.

[9] 夏红. 浊点萃取法预浓缩食用油中多环芳烃的研究[J]. 食品科技, 2008(6): 209-212.

[10] 詹铭, 李腾峰, 俞文清. 橄榄油中5种多环芳烃的测定[J]. 上海预防医学杂志, 2008,

20(8): 411-412.

[11] 李春篱, 梁春群, 陈同欢等. 荧光光度法测定食用油中的苯并(a)芘[J]. 化工技术与开发,

2008, 37(2): 26-41.

[12] 王建华, 郭翠, 庞国芳等. GPC净化-同位素稀释内标定量GC-MS对植物油中多环芳烃

的测定[J]. 分析测试报, 2009, 28(3): 267-271.

[13] 田玉霞, 孟橘. 食用油中多环芳烃的研究进展[J]. 中国油脂, 2012, 37(3): 69-73.

[14] 周永生, 罗士平, 孔泳. 固相萃取-气相色谱-质谱联用检测地沟油中胆固醇[J]. 技术与

应用, 2012, 30(2): 207-210.

[15] 邱如斌, 章汝平, 林水东. 恒能量同步荧光法测定食用油中的多环芳烃[J]光谱实验室,

2011, 28(2): 777-781.

[16] 何立芳, 林丹丽, 李耀群. 同步荧光分析法的应用及其新进展[J]. 化学进展, 2004,16(6):

879-885.

[17] Inman E L, Winefordner J D. Anal.chem., 1982, 54:2018-2022.

[18] Kerkhoff M J, Hles L A, Winefodner J D. Anal.chem., 1985, 57:1673-1676.

[19] 何立芳, 林丹丽, 李耀群. 多环芳烃混合物的快速导数-恒能量同步荧光光谱分析[J].

应用化学, 2004, 21(9): 937-940.

[20] Patra D.et al. Ru nanoparticles immobilized on montmorillonite by ionic liquids : a highly

efficientheterogeneous catalyst for the hydrogenation of benzene[J ] Trends in Anal.

Chem.,2002, 21(12): 787.

[21] 李耀群, 时宁, 钱方等. 导数-恒能量同步荧光法同时测定芴、苊、蒽和苝, 高等学校化

学学报, 1997, 418(4): 538-540.

[22] D.Patra, A.K. Ionic Liquid Assisted Immobilization of Rh on Attapulgite[J]. Mishra, Talanta,

2001, 55(2): 143—153.

PAHs 波长差△λ(nm)

特征峰max

SFS

λ(nm)

Per 30 412.4 2,3-BF 40 302.8 Pyr 40 335.6 Bap 40 366.4 BkF 100 308.4 Phe 100 248.2 Chy 100 265.4 Trp 100 258.2 DBA 100 297.6 Flt 200 287.0

污泥中多环芳烃分析方法的综述

当代生态农业 2012年第3、4期 ·135· 污泥中多环芳烃分析方法的综述 付毓 孙红杰 (大连民族学院环境与资源学院,大连116600) 摘要:多环芳烃是列于美国EPA 黑名单上的一组优先污染物,一般指2个或2个以上苯环以稠环形式相连的化合物,如萘、蒽、菲等,由于其特殊的结构,具有致癌、致畸、致突变作用,而且广泛的存在于环境当中,种类繁多且难降解,对人类的危害很大,所以对环境中多环芳烃的测定及分析引起人们的关注,分析测定环境中的多环芳烃越来越重要,本文对污泥中多环芳烃的分析测定方法进行了系统的综述 关键词:污泥;多环芳烃;分析方法 作者简介:付毓(1991-),女,汉,环境工程专业2009级本科生。 通讯作者:孙红杰(1973-),女,辽宁抚顺人,讲师,研究方向为水污染控制工程。E-mail: sunhongjie@https://www.doczj.com/doc/974036697.html, 多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs )大都是无色或淡黄色的结晶,个别颜色较深,具有强疏水性,结构稳定,很难降解,主要来源于煤、石油、木材、烟草、有机高分子化合物等有机物的不完全燃烧[1] ,因此人类的外环境如大气、土壤和水中都不同程度地含有苯并[α]芘等多环芳烃。PHAs 在水体中的浓度很低,土壤中PHAs 的浓度比水中浓度高出几个数量级。随着近年煤炭、石油的开发利用,环境中的多环芳烃在逐年增加,因此越来越多人开始研究环境中的PHAs ,本文系统阐述了污泥中PHAs 的萃取、纯化、定性定量分析方法。 1 萃取 萃取利用化合物在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另外一种溶剂中 而提取出来的过程。多环芳烃的萃取方法有很多种,主要有振荡萃取、索氏抽提器萃取、超声波萃取等。要从样品中萃取PAHs 主要使用溶剂萃取,为此要求萃取剂对PAHs 的溶解度要大。 地表水中的PAHs 一般用氯仿、苯、环己烷等作萃取剂,振荡萃取出来。用二氯甲烷作溶剂时,也有用超声波进行萃取的。此外,也可以将地表水中的PAHs 吸附在聚氨基甲酸酣饱沫上,然后放在索氏提取器中,用二甲亚矾萃取,萃取液加水,再用环己烷进行反萃取。从过滤水中得到的浮游物等样品,多用苯、环己烷-乙醚(4:1)、二氛甲烷等溶剂在索氏提取器中萃取[2] ,本课题组经过四年的跟踪研究表明,对污泥中的多环芳烃的萃取用超声萃取,超声萃取主要是主要通过压电换能器产生的快速机械振动波来减少目

第七章 多环芳烃

第七章 多环芳烃 1、 联苯及其衍生物 2、 稠环芳烃:萘、蒽、菲及其衍生物的结构和化学性质 1、 芳香体系与休克尔规则 基本要求: 1.熟练掌握稠环芳烃萘蒽等衍生物的命名。 2.熟练掌握萘的化学性质及萘环上亲电取代产物的定位规律。 3.掌握H ückel 规则,理解芳香性的概念,能应用H ückel 规则判断环状化合物的芳香性。 分子中含有多个苯环的烃称作多环芳烃。多环芳烃可分如下三种: 联苯和联多苯类:这类多环芳烃分子中有两个或两个以上的苯环直接以单键相联结。 稠环芳烃:这类多环芳烃分子中有两个或两个以上的苯环以共用两个碳原子的方式相互稠合。 多苯代脂肪类:这类多环芳烃可看作是脂肪烃中两个或两个以上的氢原子被苯基取代。 7.1联苯及其衍生物 联苯是两个苯环通过单键直接连接起来的二环芳烃。 其结构为: 联苯为无色晶体,熔点70℃,沸点254℃。不溶于水而溶于有机溶剂。因其沸点高和具有很好的热稳定性,所以工业上常用它作热传导介质(热载体)。 联苯的化学性质与苯相似,在两个苯环上均可发生磺化、硝化等取代反应。联苯环上碳原子的位置采用下列所示的编号来表示: 联苯可看作是苯的一个氢原子被苯基取代,而苯基是邻对位定位基,所以,当联苯发生取代反应时,取代基进入苯的对邻位和对位。但由于邻位上的空间位阻较大,主要生成对位产物。 7.2稠环芳烃 有多个苯环共用两个或多个碳原子稠合而成的芳烃称为稠环芳烃。简单的稠环芳烃如萘、蒽、菲等。稠环芳烃最重要的是萘。 7.2.1萘(naphthalene) 萘的结构:平面结构,所有的碳原子都是sp 2杂化的,是大π键体系。 分子中十个碳原子不是等同的,为了区别,对其编号如下: 萘的一元取代物只有两种,二元取代物两取代基相同时有10种,不同时有14种。 萘的物理性质:萘是白色晶体,熔点80.5℃,沸点218℃,有特殊气味,易升华,不溶于水,易溶于热的气醇及乙醚,常用作防柱剂。萘在染料合成中应用很广,大部分用于制造邻苯二甲酸酐。 12345678109αβααα βββ1、4、5、8位又称为 位αβ2、3、6、7位又称为 位电荷密度αβ>

多环芳烃

多环芳烃、硝基苯等有机污染物去除技术的进展 摘要:目前,污染时当今世界范围所面临的普遍问题。特别是有机的污染是当今更严重的问题。这篇文章主要介绍了多环芳烃和硝基苯类有机污染物去除技术的进展。 关键词:多环芳烃硝基苯去除技术 一、多环芳烃类污染物的研究进展 随着煤、石油在工业生产,交通运输以及生活中被广泛应用,多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)已成为世界各国共同关注的有机污染物。多环芳烃不易溶于水,极易附着在固体颗粒上,所以一般来说,大气、土壤中的大多数多环芳烃处于吸附态。多环芳烃类污染物分布很广,基本上在各种环境介质中都发现了PAH s。因排废气、废水及废物倾倒,多环芳烃对水、大气及土壤产生直接污染。吸附在烟气微粒上的多环芳烃随气流传向周围及更远处,又随降尘、降雨及降雪进入水体及土壤而土壤及地面多环芳烃通过扬尘再次进入大气,通过呼吸及食物链进入动物体产生毒害。 在土壤和沉积物环境中,大多数PAHs因较强的疏水性趋向于分配到土壤或沉积物颗粒上去,并与天然有机物发生相互作用,很少保留在水体当中。当沉积物一旦遭到严重的污染,在与上覆水体发生相互频繁的交换作用时,被污染的沉积物环境还将

成为水体再次污染的潜在来源,造成二次污染。 水环境中PAHs生物降解的程度要靠PAHs的溶解率的大小,正因为大多数PAHs易被吸附分配到土壤或沉积物颗粒上去,使之生物有效性降低而导致其生物降解率大大降低。虽然被吸附于土壤、沉积物上的PAHs因生物有效性降低而减小对环境的毒害,但最终会通过各种因素再次释放到环境之中产生危害。刘凌[12]在研究吸附作用对有机污染物的生物降解过程影响时,发现吸附在土壤颗粒内部的有机污染物,必须通过解吸和扩散过程传输到土壤颗粒外部的水溶液中,然后才能被微生物降解。如果有机污染物的土壤-水吸附分配系数Kd越大,则它存在于土壤水溶液的重量百分比就越小,发生生物降解反应的可能性就越小。Weissenfels等在研究阻碍PAHs生物降解的土壤特性和PAHs吸附与生物降解之间的关系时也发现,PAHs与土壤有机质结合力是PAHs发生生物降解的关键。他在沙和土壤吸附PAHs实验中,观察到沙吸附的PAHs能够很快被微生物降解到检测限以下,而土壤吸附的PAHs则降解很慢,并且有23%的PAHs不可被微生物降解。 二、硝基苯类有机污染物去除技术的进展 硝基芳香族化合物是重要的化工原料,被广泛应用于医药、燃料、农药、塑料等的合成前体,常常在生产和使用过程中被释放到环境中对生态系统造成影响,是一类重要的环境污染物。硝基苯对人与动物有较强的毒害作用,能引起紫绀,刺激皮

芳香烃的化学性质

芳香烃的化学性质(一) 一、苯的稳定性和加成反应 比较苯与环己烯的分子式可知,苯比环己烯少四个氢原子,这相当于增加了两个碳碳双键,或者可以说:苯的不饱和度与环己三烯相当。但1,3-环己二烯失去两个氢变成苯时,不但不吸热,反而放出少量的热,这说明:苯比相应于环己三烯的化合物要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的产生。 因此,尽管苯的 C/H比值等于或大于不饱和烃的 C/H比值,但苯的不饱和性质却很不显著,譬如烯、炔在室温下能迅速与溴、硫酸等亲电试剂发生加成反应,而苯和溴、硫酸等不发生加成反应,在升温和催化剂作用下却很易发生卤化、硝化、磺化、烷基化、酰基化等取代反应。在特殊情况下,苯也能发生加成反应,但奇特的是在发生加成反应时,一般总是三个双键同时发生反应,生成一个环己烷的体系,只在个别情况下,一个双键或两个双键可以单独发生反应。如苯和氯在阳光下反应,就生成六氯代环己烷: 催化加氢也是类似的,一步生成环己烷: 苯的稳定性和加成反应 比较苯与环己烯的分子式可知,苯比环己烯少四个氢原子,这相当于增加了两个碳碳双键,或者可以说:苯的不饱和度与环己三烯相当。但1,3-环己二烯失去两个氢变成

苯时,不但不吸热,反而放出少量的热,这说明:苯比相应于环己三烯的化合物要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的产生。 因此,尽管苯的 C/H比值等于或大于不饱和烃的 C/H比值,但苯的不饱和性质却很不显著,譬如烯、炔在室温下能迅速与溴、硫酸等亲电试剂发生加成反应,而苯和溴、硫酸等不发生加成反应,在升温和催化剂作用下却很易发生卤化、硝化、磺化、烷基化、酰基化等取代反应。在特殊情况下,苯也能发生加成反应,但奇特的是在发生加成反应时,一般总是三个双键同时发生反应,生成一个环己烷的体系,只在个别情况下,一个双键或两个双键可以单独发生反应。如苯和氯在阳光下反应,就生成六氯代环己烷: 催化加氢也是类似的,一步生成环己烷: 二、苯及其同系物的氧化 烯、炔在室温下可迅速地被高锰酸钾氧化,但苯即使在高温下与高锰酸钾、铬酸等强氧化剂同煮,也不会被氧化。只有在五氧化二钒的催化作用下,苯才能在高温被氧化成顺丁烯二酸酐。

多环芳烃的介绍

多环芳烃(PAHs)的介绍 一、简介 PAHs,学名多环芳烃。是石油、煤等燃料及木材、可燃气体在不完全燃烧或在高温处理条件下所产生的一类有害物质,通常存在于石化产品、橡胶、塑胶、润滑油、防锈油、不完全燃烧的有机化合物等物质中,是环境中重要致癌物质之一. 在环境中,有机污染物充斥于各处,多环芳香化合物(PAH)为其大宗,且部分已被证实对人体具有致癌与致突变性。PAH之来源包括:藻类或细菌之生物合成、森林大火、火山爆发,以及火力发电厂、**场焚化场、汽机车与工厂排气等。PAH之种类很多,其中之16种化合物于1979年被美国环境保护署(US EPA)所列管。 PAHs主要包括以下16种同类物质: 1 Naphthalene 萘 2 Acenaphthylene 苊烯 3 Acenaphthene 苊 4 Fluorene 芴 5 Phenanthrene 菲 6 Anthracene 蒽 7 Fluoranthene 荧蒽 8 Pyrene 芘 9 Benzo(a)anthracene 苯并(a)蒽 10 Chrysene 屈 11 Benzo(b)fluoranthene 苯并(b)荧蒽 12 Benzo(k)fluoranthene 苯并 (k)荧蒽 13 Benzo(a)pyrene 苯并(a)芘 14 Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘 15 Dibenzo(a,h)anthracene 二苯并(a, n)蒽 16 Benzo(g,hi)perylene 苯并(ghi)北(二萘嵌苯) 性状:纯的PAH通常是无色,白色,或浅黄绿色的固体。 我们为您提供的测试标准: EPA8270 索氏萃取提取PAHs,其中覆盖了16项PAHs的测试项目!

16种常见多环芳烃的物理性质

16种常见多环芳烃的 物理性质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

萘英文名称NAP Naphthalene分子量 128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密 度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C

芳香烃的知识点总结

第五节苯芳香烃 ●教学目的: 1、使学生了解苯的组成和结构特征,掌握苯的主要化学性质。 2、使学生了解芳香烃的概念。 3、使学生了解甲苯、二甲苯的某些化学性质。 ●教学重点:苯的主要化学性质以及与分子结构的关系,苯的同系物的主要化学性质。 ●教学难点:苯的化学性质与分子结构的关系。 ●教学方法:探索推理,实验验证 教学过程: [引入] 前面我们已经学习了三大类有机物:烷烃、烯烃、炔烃。今天我们开始学习另一大类有 机物——芳香烃,它的代表物是苯。那么苯是怎样被发现的呢? 以前人们在没有使用电灯前用的是煤油灯,而且是用塑料桶装的,每次煤油用完了之后, 桶底都留有一种油状物质,人们不知道这是什么。著名科学家法拉第及法国的日拉尔等化学 家对此进行研究,用了五年的时间终于发现和提出了这种油状物质,它就是苯。[展示实 物苯] 二、苯分子的结构 当法拉第提炼出苯后,化学家们就对苯的成分进行了研究,发现它可以燃烧,且生成物 为CO2和H2O,于是确定苯由C、H元素组成。后又通过实验数据得出了苯中C%=12/13, H%=1/13,即得出C、H个数比为1:1,即最简式为CH。最后人们还发现1mol苯的质量刚 好是3mol乙炔的质量,由此确定苯的摩尔质量为78g/mol,于是推出苯的分子式:C6H6 接下来的任务是研究苯的分子结构,为此,化学家们进行了很多实验,假设,探索。 首先,根据分子式C6H6,不符合饱和结构C n H2n+2(不饱和度为4),肯定苯是高度不饱 和结构。根据当时的“有机物分子呈链状结构”来假设: 等等 若是以上结构,则都将能发生氧化反应,会使酸性KMnO4溶液褪色。 [实验] 1、取1苯于试管中,加入2酸性KMnO4溶液,振荡。 2、取1苯于试管中,加入2溴水,振荡。 [现象] 苯不能使酸性KMnO4溶液和溴水褪色。(苯在溴水中发生萃取现象)于是推翻以上假设。 一时,苯的结构式问题成了令科学家们一筹莫展的难题,也逼迫链状结构理论的提出者——36岁的德国化学家凯库勒不得不对自己的工作进行反思。 一个冬天的夜里,凯库勒坐在书桌前思考苯的结构,他画了很多图,然而百思不得其解, 他只好停笔,煨着火炉休息,他面对炉中飘忽不定的火苗陷入了沉思,不知不觉进入了梦乡, 朦胧之中凯库勒仿佛觉得有一些碳原子在自己面前跳起舞来,高贵优雅,突然间这些碳原子

多环芳烃(PAHs)的形成和分布来自煤层燃烧:

多环芳烃(PAHs)的形成和分布来自煤层燃烧: 内蒙古乌兰察布褐煤为例,中国北方 刘淑琴a,?, 王改红a, 张尚军a, 梁杰a, 陈峰b, 赵柯a a 中国矿业大学和科技(北京), 化学和环境工程北京100083,中国 b国家重点实验室的燃煤的碳能源,廊坊065001,中国 摘要 煤田火灾是危害环境和人类健康结果的释放多环芳烃化合物。在实验室用管式炉模拟中国北方内蒙古乌兰察布煤田的褐煤在不完全燃烧过程,以及16名美国环境保护机构的优先污染物多环芳烃的烟气进行吸收和分析。结果表明,在与其他燃烧方法PAH 排放明显增加,燃烧不完全的结果:这是归因于两个和三个苯环的物种形成,如萘,苊,和苊。苯并[a]芘,二苯并[a,h]蒽,和二苯并(a, n)蒽做出大的贡献的毒性当量(TEQ),虽然他们占PAHs的一小部分。随温度增加,总的PAH产量的峰值出现在800°C在1立方米/公斤空气/煤比的产量为923.41毫克/公斤。当空气/煤比的增加,多环芳烃的量随氧含量变化。在2立方米/公斤,486.07毫克/公斤的最小的PAH产量发生在800°C 的最大浓度最有毒的物种,苯并[a]芘,二苯并[a,h]蒽,被发现。提高煤粒从0.25到20毫米的结果无论在产量和的PAH物种的毒性当量显著增长量。 关键词:多环芳香烃不完全燃烧褐煤煤田火灾毒性当量值 1 介绍 中国仍然是一个最大的煤炭生产商和用户在世界(Dai等人。,2011)。高的煤炭生产量 在中国煤炭的使用导致了对大量的关注煤的燃烧和使用有毒物质释放(傣族任,2006;

戴等人,2011)。煤田火灾是重大灾害中国。每年,在煤田煤层自燃火灾不仅造成煤炭资源的巨大损失,而且给引发许多环境问题,包括空气污染,水质量恶化,生态灾害(elick奥基夫,2011;等人。,2011;席尔瓦等人,2011)。 煤田火灾有很大的不良影响空气污染,和影响空气变得严重一旦火灾成为表面火灾。破碎地层作为烟囱,污染气体的排放到环境中。从煤田火灾释放的污染物主要由气体如CO、CO2、SO2、NOx、饱和和不饱和碳氢化合物、氢硫化物和其他光敏氧化剂和悬浮粉尘的重要问题(豪尔等人,2011;元和史密斯,2011)。 悬浮颗粒物来自煤炭燃烧或煤的形成植物冷杉可能包含一些有毒的微量元素,矿物质,或有毒的有机化合物,在上述的阈值限制水平这对人类的健康造成不良影响(Dai 等人,2005;pone et al等人。2007;stracher和泰勒,2004;田等人,2008)。火灾区域有高硫酸化和降尘率。在冬季燃煤形成烟雾和微粒影响能见度。煤田火灾的大量由于燃烧煤排放CO和CO2(卡拉等人,2009;豪尔等人,2011;kuenzer等人,2007;奥基夫等人,2011)。由于穷人住宅区取暖的不完全燃烧煤产生的CO,有毒气体具有停留时间长和高扩散性。如CO,H2,乙烯气体的生产,和丙烯在很大程度上取决于燃烧温度,和这些气体可以作为在一个煤矿火灾状态指示器。二氧化硫和三氧化硫硫氧化物的排放占主导地位从火灾区。产生有害硫氧化物,对结合颗粒湿度有影响。SO2的释放量取决于煤的硫含量,一般是较高的地区火灾增加了黄铁矿氧化而比火灾的。SO2具有低停留时间和可能有助于经典的烟雾酸雨的形成。氮氧化物形成的煤的高温氧化。在所有的氮氧化物,90–95%是没有,这是相当稳定,但能在空气中够与碳氢化合物的光化学反应自由基,形成1 -(2-吡啶偶氮)-2-萘酚(PAN)和烟雾。另外,不可与空气中的湿气反应形成硝酸。 煤炭燃烧产生大量的饱和与不饱和碳氢化合物。在高温下,各种各样的碳氢化合物

16种常见多环芳烃的物理性质

萘英文名称NAP Naphthalene分子量128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C 菲PHE Phenanthrene 分子量:178.23性状描述:类白色粉状结晶体。物理参数密度:1.179 g/mL(25°C) 熔点:101°C 沸点:340°C 折射率:1.59427 蒽ANT Anthracene 分子量178.22物理性状带有淡蓝色荧光的白色片状晶体或浅黄色针状结晶。(纯品为白色带紫色荧光) 相对密度 1.25(27℃);1.283(25℃),熔点217,沸点342,闪点196.1,121.1(闭式)(以上均为℃),蒸汽压[1] 0.13kPa/145℃不溶于水、难溶于

多环芳烃来源和性质

多环芳烃来源和性质 自然源 主要包括燃烧(森林大火和火山喷发)和生物合成(沉积物成岩过程、生物转化过程和焦油矿坑内气体),未开采的煤、石油中也含有大量的多环芳烃 人为源 PAHs人为源来自于工业工艺过程、缺氧燃烧、垃圾焚烧和填埋、食品制作及直接的交通排放和同时伴随的轮胎磨损、路面磨损产生的沥青颗粒以及道路扬尘中,其数量随着工业生产的发展大大增加,占环境中多环芳烃总量的绝大部分;溢油事件也成为PAHs人为源的一部分。在自然界中这类化合物存在着生物降解、水解、光作用裂解等消除方式,使得环境中的PAHs含量始终有一个动态的平衡,从而保持在一个较低的浓度水平上,但是近些年来,随着人类生产活动的加剧,破坏了其在环境中的动态平衡,使环境中的PAHs大量的增加。因此,如何加快PAHs在环境中的消除速度,减少PAHs对环境的污染等问题,日益引起人们的注意。 多环芳烃大部分是无色或淡黄色的结晶,个别具深色,熔点及沸点较高,蒸气压很小,大多不溶于水,易溶于苯类芳香性溶剂中,微溶于其他有机溶剂中,辛醇-水分配系数比较高。多环芳烃大多具有大的共扼体系,因此其溶液具有一定荧光。一般说来,随多环芳烃分子量的增加,熔沸点升高,蒸气压减小。多环芳烃的颜色、荧光性和溶解性主要与多环芳烃的共扼体系和分子苯环的排列方式有关.随p电子数的增多和p电子离域性的增强,颜色加深、荧光性增强,紫外吸收光谱中的最大吸收波长也明显向长波方向移动;对直线状的多环芳烃,苯环数增多,辛醇-水分配系数增加,对苯环数相同的多环芳烃,苯环结构越“团簇”辛醇-水分配系数越大。 多环芳烃化学性质稳定.当它们发生反应时,趋向保留它们的共扼环状系,一般多通过亲电取代反应形成衍生物并代谢为最终致癌物的活泼形式。其基本单元是苯环,但化学性质与苯并不完全相似.分为以下几类 ⑴具有稠合多苯结构的化合物 如三亚苯、二苯并 [e,i]芘、四苯并 [a,c,h,j]葱等,与苯有相似的化学稳定性, 说明:电子在这些多环芳烃中的分布是和苯类似的。 图1x电子分布与苯类似的多环芳烃 ⑵呈直线排列的多环芳烃 !

多环芳烃(PAHs)

TPE材料出口的环保指令和认证(二) (二) PAHs规定:多环芳烃(PAHs)是指具有两个或两个以上苯的一类有机化合物。多环芳烃是分子中含有两个以上苯环的碳氢化合物,包括萘、蒽、菲、芘等150余种化合物。英文全称为polycyclic aromatic hydrocarbon,简称PAHs。有些多环芳烃还含有氮、硫和环戊烷,常风的多环芳烃具有致癌作用的多环芳烃多为四到六环的稠环化合物。国际癌研究中心(IARC)(1976年)列出的94种对实验动物致癌的化合物。其中15种属于多环芳烃,由于苯并[a]芘是第一个被发现的环境化学致癌物,而且致癌性很强,故常以苯并(a)芘作为多环芳的代表,它占全部致癌性多环芳烃1%-20%。多环芳烃主(PAHs)要的十八种化合物为:萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、茚并(1,2,3-cd)芘、二苯并(a,h)蒽和苯并(g,h,i)苝、1-甲基奈、2-甲基奈。 目前确定的PAHs常见的16种同类物质主要包括: 1) Naphthalene 萘9) Benzo(a)anthracene 苯并(a)蒽 2) Acenaphthylene 苊烯10) Chrysene 苣 3) Acenaphthene 苊11) Benzo(b)fluoranthene 苯并(b)荧蒽 4) Fluorene 芴12) Benzo(k)fluoranthene 苯并(k)荧蒽 5) Phenanthrene 菲13) Benzo(a)pyrene 苯并(a)芘

6) Anthracene 蒽14) Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘 7) Fluoranthene 荧蒽15) Dibenzo(a,h)anthracene 二苯并(a,n)蒽 8) Pyrene 芘16) Benzo(g,hi)perylene 苯并(ghi) 北(二萘嵌苯) 多环芳烃(PAHs)常存在于原油,木馏油,焦油, 染料,塑料,橡胶,润滑油,防锈油,脱膜剂,汽油阻凝剂,电容电解液,矿物油,柏油等石化产品中,还存在于农药,木炭,杀菌剂,蚊香等日常化学产品中。 PAHs通常是作为塑料添加剂进入生产环节中,如塑料粒子在挤塑的时候,和模具之间存在黏着,此时要加入脱模剂,而脱模剂中可能含有PAHs。 由此目前多环芳烃PAHs的检测范围: ●电子、电机等消费性产品 ●橡胶制品、塑料制品、汽车塑料、橡胶零件 ●食品包装材料、玩具、容器材料等 ●其它材料等 各国对多环芳香烃(PAHs)的法规要求:到目前为止,各国家地区通过书面法律或法令确定下来的有:欧盟 76/769/EEC;德国German:GS认证、LFGB;美国US:EPA;中国:GB,GB/T,GHZ。根据德国技术设备及消费

多环芳烃

多环芳烃 多环芳烃(Polycyclic Aromatic Hydrocarbons PAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是重要的环境和食品污染物.迄今已发现有200多种PAHs,其中有相当部分具有致癌性,如苯并[α]芘,苯并[α]蒽等.PAHs广泛分布于环境中,可以在我们生活的每一个角落发现,任何有有机物加工,废弃,燃烧或使用的地方都有可能产生多环芳烃.出口产品中多环芳烃。 PAHs主要包括16种同类物质: 16种常见多环芳香烃 1.NAP Naphthalene 萘 2 .ANY Acenaphthylene 苊烯 3.ANA Acenaphthene 苊 4.FLU Fluorene 芴 5.PHE Phenanthrene 菲 6.ANT Anthracene 蒽 7.FLT Fluoranthene 荧蒽 8.PYR Pyrene 芘 9.BaA Benzo(a)anthracene 苯并(a)蒽 10.CHR Chrysene 屈 11. BbF Benzo(b)fluoranthene 苯并(b)荧蒽 12. BKF Benzo(k)fluoranthene 苯并(k)荧蒽 13.BaP Benzo(a)pyrene 苯并(a)芘 14.IPY Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘 15.DBA Dibenzo(a,h)anthracene 二苯并(a, n)蒽 16.BPE Benzo(g,hi)perylene 苯并(ghi)北(二萘嵌苯) 1. 多环芳烃的分布 人类在工农业生产,交通运输和日常生活中大量使用的煤炭,石油,汽油,木柴等燃料,可产生多环芳烃的污染.每公斤燃料燃烧所排出的苯并[α]芘量分别约为:煤炭67~137mg,木柴61~125mg,原油40~68mg,汽油12~50.4.因此,人类的外环境如大气,土壤和水中都不同程度地含有苯并[α]芘等多环芳烃.多环芳烃在大气的污染为其直接进入食品—落在蔬菜,水果,谷物和露天存放的粮食表面创造了条件.食用植物也可以从受多环芳烃污染的土壤及灌溉水中聚集这类

什么是PAHs多环芳烃

什么是PAHs多环芳烃?PAHs多环芳烃是什么意思? 多环芳香烃:. German: Polyzyklischer Aromatischer Kohlenwasserstoffe (PAK) . English: Polycyclic Aromatic Hydrocarbons (PAHs) 也称为:polyaromates, polyaromatic hydrocarbons 是100多种化学结构式的总称 性状:纯的PAH通常是无色,白色,或浅黄绿色的固体 多环芳烃化合物(POLYCYCLIC AROMA TIC HYDROCARBONS) 是一组化学物质,他们是由未经完全燃烧的煤. 油和气、垃圾,或是其他有机物质形成的。多环芳烃可由自然过程或与人类活动相关的确行为造成。有超过100种.10,000个不同的多环芳烃化合物。绝大多数的多环芳烃在环境中不是单独存在,它们往往是两个或更多的多环芳烃的混合物。它们还可以在一些物质中,如原油,煤,杂芬油,和焦油(沥青)等。 一家化学实验室在ALDI-NORD超市出售的一款1000瓦售12欧元的角磨中发现了有毒物质。这款产品有良好的性能。但在电源线中发现了5种致癌物,在手柄和外壳中发现了致敏物质。大约在2005年6月中,有人在一款ALDI-NORD销售的锤子的手柄上发现散发出一股浓烈的化学气味,经过测试发现了高浓度的多环芳香烃(PAHs)。这个骇人的结果迫使这款角磨不得不送到化学实验室里做化学分析,也发现含有害物质。物品测试机构今后会对所有被怀疑含有PAHs物质的产品进行化学检测。 16种常见多环芳香烃 1 Naphthalene 萘 2 Acenaphthylene 苊烯 3 Acenaphthene 苊 4 Fluorene 芴 5 Phenanthrene 菲 6 Anthracene 蒽 7 Fluoranthene 荧蒽 8 Pyrene 芘 9 Benzo(a)anthracene 苯并(a)蒽 10 Chrysene 屈 11 Benzo(b)fluoranthene 苯并(b)荧蒽 12 Benzo(k)fluoranthene 苯并(k)荧蒽 13 Benzo(a)pyrene 苯并(a)芘 14 Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘 15 Dibenzo(a,h)anthracene 二苯并(a, n)蒽 16 Benzo(g,hi)perylene 苯并(ghi)北(二萘嵌苯) 多环芳香烃的危害 强致癌物质 损伤生殖系统 易导致皮肤癌,肺癌,上消化道肿瘤,动脉硬化,不育症 德国政府最新规定

多环芳烃

多环芳烃(PAHs)是环境常见的污染物之一,其来源于有机物热解和不完全燃烧, 在空气、水、土壤中广泛分布。由于食品产地环境受到污染, 致使PAHs在食 品中存在,同时加工方式不同, 也会影响食品中PAHs的含量。长期食用含有PAHs的食物对健康将产生潜在威胁[2-5]。不同国家和地区, 烹饪方法和饮 食习惯不同,从食品中摄入的PAHs量也不相同。 不同食品中含有不同种类和浓度的多环芳烃,其主要来源有以下3方面: (1)自 然界天然存在的,如植物、细菌、藻类的内源性合成,使得森林、土壤、海洋 沉积物中存在多环芳烃类化合物; (2)环境污染造成的,现代工业生产和其它许 多方面要使用和产生多环芳烃类化合物;这些物质难免会有一些排放到食品的 生产环境如水源、土壤、空气、海洋中,从而对食品造成污染,这是目前食品 中多环芳烃最主要的来源;(3)食品加工和包装过程中产生的,如食品的烤、炸、熏制和包装材料、印刷油墨中多环芳烃污染,这也是食品中多环芳烃的重要来源。目前,各类食品已检测出20余种PAHs,其中以熏烤类食品污染最严重:如熏 肉吉有屈、苯并[b]荧蒽、苯并[e]芘、苯并[k]荧蒽、苯并[a]芘、1,2,5,6- 二苯并蒽、茚[1,2,3-cd]并芘等PAHs。王绪卿评价了14种熏烤肉中PAHs的污 染水平,并在19份腊昧肉中全部测出屈、苯并[e]芘、苯并[k]荧蒽,其中9份 样品苯并[a]芘量为0.34~27.56μg/kg。另据报道,尼日利亚各种熏烤鱼中均 含有PAHs。比较了现代烤炉与传统烤炉熏烤物中13种PAHs含量,前PAHs<4.5μg/kg。后者苯并[a]芘为0.2~4.1μg/kg(湿质量)。食用植物油及其加热产 物中均含有PAHs[6-7],而且加热后PAHs含量显著增加。实验表明,食用植物油 加温后B(a)P含量是加温前的2.33倍,1,2,5,6-二苯并蒽为4.17倍,而且油烟 雾中其含量更高,厨房空气气态样品中PAHs种类与含量均大于颗粒物,说明厨 房空气中PAHs可能主要是由于食品,特别是动植物蛋白以热油烹炸过程中形成。近年来在各种酒样中也发现了PAHs,但这方面研究尚待深入,Moret等在所有白 酒和啤酒中都检出苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、1,12-苯并苝、 茚[1,2,3-cd]并芘以及芴、苯并a蒽、1,2,5,6-二苯并蒽,其PAHs总量<0.72 μg/kg。目前, 各种蔬菜亦受到不同程度PAHs污染, 其来源可能是根系吸 收及叶面吸附。国际癌症研究机构(IARC,1973)曾报道西红柿中苯并[a]芘为 0.2pg/kg,王爱玲等测定白菜和西红柿中苯并[a]芘分别为1.310~12.316μ g/kg和0.841~4.335μg/kg[8]。在食品制作的过程中,有许多制作方法是不可

多环芳烃的处理方法探究

多环芳烃的处理方法探究 摘要:本文介绍了多环芳烃检测技术的现状,包括分光光度法、反相高效液相色谱法、固相微萃取、超临界流体,介绍了多环芳烃降解技术的方法,最后总结了多环芳烃的污染现状,并对其发展前景进行了展望。 关键词:多环芳烃;灵敏度;降解 Stdy on the processing method of polycyclic aromatic hydrocarbons Abstract:This paper introduces the Polycyclic aromatic hydrocarbons the present situation of detection technology,including spectrophotometry,reverse phase high performance liquid chromatography(HPLC)method,solid phase microextraction and supercritical fluid,this paper introduces the methods of polycyclic aromatic hydrocarbons degradation technology,finally summarizes the pollution status of polycyclic aromatic hydrocarbons,and its development prospect were also discussed. Key words:rate Polycyclic aromatic hydrocarbons;sensitivity;the degradation 多环芳烃(PAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,迄今已发现有400多种PAHs,其中有相当部分具有致癌性,占被发现致癌物质总数的三分之一。其中16种PAHs(萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、茚苯(1,2,3-cd)芘、二苯并(a,n)蒽、苯并(ghi)北)由于存在显著的致畸、致癌、致突变作用,被美国环保署列为优先控制污染物。目前,中国只将7种列为优先污染控制物。 多环芳烃大部分是无色或淡黄色的结晶,个别具深色,熔点及沸点较高,蒸气压很小,大多不溶于水,易溶于苯类芳香性溶剂中,微溶于其他有机溶剂中。多环芳烃大多具有大的共扼体系,因此其溶液具有一定荧光。一般说来,随多环芳烃分子量的增加,熔沸点升高,蒸气压减小。多环芳烃的颜色、荧光性和溶解性主要与多环芳烃的共扼体系和分子苯环的排列方式有关。 PAHs的来源包括自然源和人为源两大类。其中,自然源又分为:燃烧类(森林大火和火山喷发);生物合成(沉积物成岩过程、生物转化过程、焦油矿坑内气体)。人为源分为:流动源(交通、香烟);固定源(垃圾焚烧、家庭燃烧、工业活动、其它)。多环芳烃在大气中、水体中、土壤和作物中,食品中和人体中均有相应的分布、迁移与转化。 因此,多环芳烃对于人类健康有着巨大的影响,PHAs的激素作用,造成的致癌、致畸、致突变(肺癌,阴囊癌,呼吸道癌);基因毒性(对DNA合成的抑制作用);对免疫系统的破坏(烹饪油烟冷凝物对小鼠免疫系统的影响,对T淋巴细胞的破坏比B淋巴细胞更明显);破坏造血和淋巴系统(能使脾、胸腺和隔膜淋巴结退化,抑制骨骼的形成,动物实验)。因此,对于多环芳烃进行有效的处理,并对其处理效果进行探究是有着极其重要的。

环境中多环芳烃的研究进展

环境中多环芳烃的研究进展 摘要:多环芳烃(PAHs)是一类已被证实具有难降解性,“三致”作用且易在生物体内富集的碳氢化合物,它广泛存在于大气、水、动植物和土壤中。本文论述了多环芳烃的性质和来源,研究了它在各介质中的迁移转化,着重阐述了它的监测分析方法的研究进展,包括预处理方法,各种仪器监测以及生物监测的原理及方法,也论述了环境中多环芳烃的降解方法,涉及到物理降解、化学降解以及微生物降解。 关键词:PAHs 来源迁移仪器监测生物监测微生物降解 一、多环芳烃的定义、性质及来源 多环芳烃从广义上说上讲是指分子中含有2个或2个以上苯环的化合物,而狭义的多环芳烃是指若干个苯环稠合在一起或是由若干个苯环和环戊二烯稠合在一起组成的稠环芳香烃类[1]。它是煤、石油、木材、烟草、有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物。它是最早发现且数量最多的致癌物,也是环境中最早发现且数量最多的致癌物。目前已经发现的致癌性多环芳烃及其衍生物已超过400种,每年排放到大气中的多环芳烃约几十万t[2]。美国环保局提出的129种“优先污染物”中,多环芳烃类化合物有16种。 多环芳烃具有强疏水性,其水溶性随分子量的增加而减小。但是当溶液中存在其它有机化合物时,它们可与这些有机物形成胶体,使水溶性发生很大的变化;另外,由于其由两个或两个以上苯环构成,结构稳定,不易被降解,且随分子量的增加降解性降低,故具有强吸附性,此外它还具有难降解性、毒性以及生物蓄积性,多环芳烃最突出的特性是具有强致癌性、致畸性及致突变性,当PAHs与-N02、-0H、-NH2等发生作用时,会生成致癌性更强的PAHs衍生物。另外,PAHs 很容易吸收太阳光中可见(400-760nm)和紫外(290-400nm)区的光。对紫外辐射引起的光化学反应尤为敏感。另外可在其生成、迁移、转化和降解过程中,可直接通过呼吸道、皮肤、消化道进入人体和动物体,并且可以间接通过食物链的放大作用进入人体和动物,又由于其亲脂性及难降解性,易在生物体内蓄积,对人体及动物健康产生危害。 环境中的PAHs除极少量来源于生物体(某些藻类、植物和细菌)内合成,森林草原自然起火,火山喷发等自然本底外,绝大部分由人为活动污染造成,主要来自于两方面:首先是煤、石油和木材及有机高分子化合物的不完全燃烧,即热解成因[3]。随着生活水平的提高及基础设施的完备,交通污染源也逐渐成为多环芳烃污染非常重要的一部分;此外,我国是燃煤大国,在北方城市,使用煤炉取暖的情况很普遍,而在煤炉排放的废气中,致癌性PAHs浓度可达1000ug/m3,另外,家庭炉灶每年所产生的PAHs的含量也相当多,以居室厨房内做饭时由于欠氧燃烧产生的为例,其中BaP含量可达559ug/m3,超过国家卫生标准近百倍;在食品制作过程中,若油炸时温度超过200°C以上,就会分解放出含有大量PAHs的致癌物;吸烟所引起的居室环境的污染,已引起国内外的关

芳烃的性质

实验15 芳烃的性质 一、实验目的 1. 1.掌握芳烃的化学性质,重点掌握取代反应的条件。 2. 2.了解游离基的存在及化学检验方法。 3. 3.掌握芳烃的鉴别方法。 二、实验仪器与药品 苯、甲苯、二甲苯、KMnO 4、10%H 2 SO 4 、20%Br/CCl 4 、10%NaOH、氨水、萘、浓HNO 3 、甲 醛、CCl 4、AlCl 3 三、实验步骤 1.高锰酸钾溶液氧化 ①①苯、甲苯各0.5ml ③0.5ml10% H 2SO 4 ②1滴0.5% KMnO 4 ④水浴60-700C △ 观察现象? 2.芳烃的取代反应 (1)(1)溴代 ①光对溴代反应的影响 光照 a.2ml(苯、甲苯、二甲苯) b. Br/CCl 4 避光 观察现象? ②催化剂对溴代反应的影响 在试管中加入3ml苯,0.5ml20%Br/CCl 4 ,再加入少量Fe粉,三个烧杯中分别加入10%NaOH,无离子水,氨水水浴加热整个试管,使之微沸,观察现象?反应毕,将反应液到入盛有10ml水的小烧杯中,观察现象? (2)磺化 四支试管分别加入苯、甲苯、二甲苯各1.5ml及萘0.5g,分别加入浓硫酸溜2ml,水浴750C △,振荡,反应物分成两份,一份到入10ml水小烧杯,另一份到入10ml饱和NaCl中,观察现象? (3)硝化 a.一硝基化物 3ml浓HNO 3在冷却下逐滴加入4ml浓H 2 SO 4 冷却振荡,然后见混酸分成两份,分别在冷

却下滴加1ml苯、甲苯充分振荡,水浴数分钟,再分别倾入10ml冷水中,观察现象? b.二硝基化合物 加入2ml浓HNO 3,在冷却下逐滴加入4ml浓H 2 SO 4 ,冷却,逐滴加1.5ml苯,在沸水 中加热10min,冷却,到入40ml冷水烧杯中,观察现象? 3.芳烃的显色反应 a.甲醛—硫酸试验 将30mg固体试样(液体试样则用1-2滴)溶于1ml非芳烃溶剂,取此溶液1-2滴加到滴板上,再加一滴试剂,观察现象? b.无水AlCl 3-CHCl 3 试验 取1支干燥的试管,加入0.1-0.2g无水AlCl 3,试管口放少许棉花,加热使AlCl 3 升华,并 结晶在棉花上,取升华的AlCl 3 粉末少许置于点滴板孔内,滴加2-3滴样品(用氯仿溶解)即可观察到特征颜色的产生。

相关主题
文本预览
相关文档 最新文档