当前位置:文档之家› 二极管、三极管和MOS管

二极管、三极管和MOS管

二极管、三极管和MOS管
二极管、三极管和MOS管

一、二极管三极管MOS器件基本原理

P-N结及其电流电压特性

晶体二极管为一个由 p 型半导体和 n 型半导体形成的 p-n 结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于 p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流:。

当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流 I0 。当外加的反向电压高到一定程度时, p-n 结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。

双极结型三极管相当于两个背靠背的二极管 PN 结。正向偏置的 EB 结有空穴从发射极注入基区,其中大部分空穴能够到达集电结的边界,并在反向偏置的 CB 结势垒电场的作用下到达集电区,形成集电极电流 IC 。在共发射极晶体管电路中 , 发射结在基极电路中正向偏置 , 其电压降很小。绝大部分的集电极和发射极之间的外加偏压都加在反向偏置的集电结上。

首页 [1][2][3]下一页尾页

由于 VBE 很小,所以基极电流约为 IB= 5V/50 k Ω = 0.1mA 。如果晶体管的共发射极电流放大系数β = IC / IB =100, 集电极电流 IC= β*IB=10mA。在500Ω的集电极负载电阻上有电压降VRC=10mA*500Ω=5V,而晶体管集电极和发射极之间的压降为VCE=5V,如果在基极偏置电路中叠加一个交变的小电流ib,在集电极电路中将出现一个相应的交变电流ic,有c/ib=β,现了双极晶实体管的电流放大作用。

金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。当栅 G 电压 VG 增大时, p 型半导体表面的多数载流子棗空穴逐渐减少、耗尽,而电子逐渐积累到反型。当表面达到反型时,电子积累层将在 n+ 源区 S 和 n+ 漏区 D 之间形成导电沟道。当VDS ≠ 0 时,源漏电极之间有较大的电流 IDS 流过。使半导体表面达到强反型时所需加的栅源电压称为阈值电压 VT 。当 VGS>VT 并取不同数值时,反型层的导电能力将改变,在相同的 VDS 下也将产生不同的 IDS , 实现栅源电压 VGS 对源漏电流 IDS 的控制。

二、MOS管详解

MOS场效应管即金属-氧化物-半导体型场效应管,英文缩写为MOSFET (Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。它也分N沟道管和P沟道管,符号如图1所示。通常是将衬底(基板)与源极S接在一起。根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。

以N沟道为例,它是在P型硅衬底上制成两个高掺杂浓度的源扩散区N+和漏扩散区N+,再分别引出源极S和漏极D。源极与衬底在内部连通,二者总保持等电位。图1(a)符号中的前头方向是从外向电,表示从P型材料(衬底)指身N 型沟道。当漏接电源正极,源极接电源负极并使VGS=0时,沟道电流(即漏极电流)ID=0。随着VGS逐渐升高,受栅极正电压的吸引,在两个扩散区之间就感应出带负电的少数载流子,形成从漏极到源极的N型沟道,当VGS大于管子的开启电压VTN(一般约为+2V)时,N沟道管开始导通,形成漏极电流ID。

首页上一页[1] [2][3]下一页尾页

国产N沟道MOSFET的典型产品有3DO1、3DO2、3DO4(以上均为单栅管),4DO1(双栅管)。它们的管脚排列(底视图)见图2。

MOS场效应管比较“娇气”。这是由于它的输入电阻很高,而栅-源极间电容又非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。因此了厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。管子不用时,全部引线也应短接。在测量时应格外小心,并采取相应的防静电感措施。下面介绍检测方法。

1.准备工作

测量之前,先把人体对地短路后,才能摸触MOSFET的管脚。最好在手腕上接一条导线与大地连通,使人体与大地保持等电位。再把管脚分开,然后拆掉导线。

2.判定电极

将万用表拨于R×100档,首先确定栅极。若某脚与其它脚的电阻都是无穷大,证明此脚就是栅极G。交换表笔重测量,S-D之间的电阻值应为几百欧至几千欧,其中阻值较小的那一次,黑表笔接的为D极,红表笔接的是S极。日本生产的

3SK系列产品,S极与管壳接通,据此很容易确定S极。

3.检查放大能力(跨导)

将G极悬空,黑表笔接D极,红表笔接S极,然后用手指触摸G极,表针应有较大的偏转。双栅MOS场效应管有两个栅极G1、G2。为区分之,可用手分别触摸G1、G2极,其中表针向左侧偏转幅度较大的为G2极。

目前有的MOSFET管在G-S极间增加了保护二极管,平时就不需要把各管脚短路了。

三、分类及特点

场效应晶体管(FET)简称场效应管,它属于电压控制型半导体器件,具有输入电阻高(108~109Ω)、噪声小、功耗低、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。

场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。

按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。

首页上一页[1][2] [3]尾页

二极管和三极管原理

实用文案 二极管图 三极管工作原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基 本原理。 穂压二郴皆 表亍拆号.込6口 ZD,D 齐于特是-□ . “ 光硕二概苛葩光电接収二巒炭:?t_很首 駅亍咼号:U.VT 車示帝号 :Q,vr ■J'L hL H九世总 NPMSl三极普 表示持号:Q.VT 亵示符冒o 福压二Hi育 靑示時耳一口 艇谭二松苛隨谨二機営 净恃至二娜苗 潮看得■ : LED 翼台SflJ世 光嗽三慨営电接收三世 斫將号:LED

一、电流放大 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流 lb ;把从集电极C流至发射极E的电流叫做集电极电流lc。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的B倍,即电流变化被放大了B倍,所以我们把B叫做三极管的放大倍数(B一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流lb 的变化,lb 的变化被放大后,导致了lc 很大的变化。如果集电极电流lc 是流过一个电阻R 的,那么根据电压计算公式U=R*l 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、偏置电路三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V )。当基极与发射极之间的电压小于0.7V 时,基极电流就可以认为是0 。但实际中要放大的信号往往远比0.7V 要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因

二极管、三极管最通俗的解释

二极管与三极管讲解 有些人在学习电子技术的时候对PN结、二极管、三极管不太了解,看书吧,讲的太深奥,不太明白,我用通俗的语言给大家讲一讲,希望能帮助大家,也许我讲的不怎么正确,但是我感觉基本思路是正确的,等你学的透彻以后再根据自己的见解纠正我的错误。 一、PN结 N型半导体:掺入少量杂质磷元素(或锑元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,磷原子外层的五个外层电子的其中四个与周围的半导体原子形成共价键,多出的一个电子几乎不受束缚,较为容易地成为自由电子。于是,N型半导体就成为了含电子浓度较高的半导体,其导电性主要是因为自由电子导电。 P型半导体:掺入少量杂质硼元素(或铟元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,硼原子外层的三个外层电子与周围的半导体原子形成共价键的时候,会产生一个“空穴”,这个空穴可能吸引束缚电子来“填充”,使得硼原子成为带负电的离子。这样,这类半导体由于含有较高浓度的“空穴”(“相当于”正电荷),成为能够导电的物质。(空穴可以移动)二、扩散运动 PN结中间相接触的部分,P带负电,N带空穴(正点),相互结合,PN结中间部分中和成不带电,但是P为负离子,N为正离子,所以形成了内部电场,方向由N指向P促使漂移运动产生。 三、漂移运动 在内部电场的作用下,N型半导体与P型半导体不接触部分的空穴(N和P都不是绝对的只有空穴和电子,而是相对来说的。空穴可以移动,带正电)在电场作用下向P运动,相反,P中的电子向N运

动,这就是漂移,因为N中的空穴很少,P中的电子很少,所以漂移运动不是很明显。 四、二极管 如果在PN结外部接一个正向电压,负极接N,正极接P,那么就加强了扩散运动,所以通过PN结的电流更容易,反之就为漂移运动,所以电流不能顺利通过,(反向截止),这样就产生了二极管。 五、二极管压降 压降的意思是:电压的损失,也就是通过二极管的时候,有电压损失,也就是正向偏置的时候,二极管可以看成一个小电阻。在这个小电阻的两端就是二极管的压降。 六、三极管 ;;;;;;;; 至于三极管、放大电路、整流、滤波、二极管的伏安特性曲线,三极管输入输出曲线等等,如果你感觉以上写的对你有帮助,就请加我QQ(912853255),我把你想要的部分用通俗的语言写出来。然后发给你。

二极管和三极管的结构与基本性能

第一节 三极管的结构与基本性能 一、理想二极管的正向导通特性 二极管对电流具有单向导通的特性,硅材料二极管的正向导通电流与正向电压之间的关系曲线如图1.1.1所示。 图1.1.1 理想二极管的正向导通特性 (一)导通电压与导通通电流之间的对应关系 二极管在正向电压为0.4V 左右时微弱导通,0.7V 左右时明显导通。导通电压与导通电流之间的变化关系是,导通电压每变化9mV ,导通电流会变化倍。 (二)二极管正向导通电压与导通电流之间的对应关系 )9(002 mV U U n n I I -?= (1.1.1) 或)18(002mV U U n n I I -?= (1.1.2) 或)(log 290 20I I mV U U n n ?+= (1.1.3) U 0为二极管正向导通时的某静态电压,U n 为二极管在U 0的基础上变化后的电压。 I 0为二极管加上正向导通电压U 0时的正向导通电流,I n 为二极管与U n 相对应的正向导通电流。 例如:某二极管的在导通电压U 0=0.700V 时,导通电流为I 0=1mA ,求导通电压分别变化到U n1=0.682V 、U n2=0.691V 、U n3=0.709V 、U n4=0.718V 时的导通电流I n1、I n2、I n3、I n4。 解:根据)9(002mV U U n n I I -?= mA mA I mV V V n 5.021)97.0682.0(1=?=-

mA mA I mV V V n 707.021)97.0691.0(2=?=- mA mA I mV V V n 414.121)97.0709.0(3=?=- mA mA I mV V V n 221)97.0718.0( 4=?=- 由此可见,只要知道二极管的某个导通电压和相对应的导通电流,就可以计算出二极管的正向导通曲线上任何一点的参数。 (三)二极管的正向导通时的动态电阻 1、动态电阻的概念 动态电阻r d 的概念指的是电压的变化量与对相应的电流变化量之比。 I U r d ??= (1.1.4) 二极管正向导通之后,既有导通电压的参数,又有相应的导通电流的参数,但正向导通电阻却不能简单地等于导通电压与导通电流之比。 例如:假设二极管的正向导通电压U 0=0.7V 、静态电流I 0=1mA ,如果认为二极管正向导通电阻就等于导通电压与导通电流之比的话,此时的电阻应当为U 0/I 0=0.7V/1mA=700Ω。照此推论,当导通电压U n =1.4V 时,相应的导通电流应当是I n =2mA 。而实际的结果是,当正向导通电压U n 达到0.718V 时(增加18mV),电流I n 就已经增加到2mA 了。 由此可见,二极管正向导通后有两种电阻: 一是直流电阻,就是正向导通电压与相对应的正向导通电流之比。 二是动态电阻,就是二极管正向导通曲线中某一点的电压微变量与相应的电流微变量之比,即该点斜率的倒数,见图1.1.1中各Q 点的不同斜率。 2、二极管正向导通后的动态电阻的粗略计算 已知Q 0点U 0=0.7V 、I 0=1mA ,Q 4点U 4=0.718V 、I 4=2mA , 则Q 0点的动态电阻:Ω≈--≈??=46.25707.0414.1691.0709.000 0mA mA V V I U r Q Q dQ Q 4点的动态电阻:Ω≈--≈??=73.12414.1828.2709.0727.044 4mA mA V V I U r Q Q dQ 3、二极管正向导通后的动态电阻的微分计算 由于二极管导通电压与电流变化是非线性关系,所以上述计算不够精确,若对)18(002mV U U n n I I -?=进行微分,可以求得n I 的导数: 根据动态电阻的定义,可知二极管动态电阻)(Ωd r 为'n I 的倒数,故有: )18(0' 02182ln mV U U n n mV I I -??= (1.1.5) )18(0'02182ln 11)(mV U U n d n mV I I r -??==Ω

第十四章半导体二极管和三极管

第十四章半导体二极管和三极管 物体按导电性分为: 导体,绝缘体,半导体 半导体:导电性介于导体和半导体之间。半导体材料的原子结构比较特殊。其外层电子不象导体那样容易挣脱。也不象绝缘体束缚很紧,这就决定了它的导电性介于导体和半导体之间。 14-1半导体的导电特性 常见的半导体材料有硅、锗、硒及许多金属的氧化物和硫化物等。半导体材料多以晶体的形式存在。半导体材料的特性: 1.纯净半导体的导电能力很差; 2.温度升高一一导电能力增强; 3.光照增强一一导电能力增强; 4.掺入少量杂质一一导电能力增强。) 一、本征半导体(纯净半导体) 最常用的半导体为硅(Si)和锗(Ge)。它们的共同特征是四价元素,每个原子最外层电子数为4。 提纯的硅材料可形成单晶------ 单晶硅相邻原子由外层电子形成共价键 在共价键结构中,原子最外层虽然具有8个电子而处于较为稳定的状态,但是共价键 中的电子还不象绝缘体中的价电子被束缚的那样紧,在获得一定能量后,即可挣脱原子核的束缚,成为自由电子。这里的能量可以是热能或光能,因此半导体的导电能力在不同的条件下有很大的差别。利用这种特性可做成各种热敏元件或光敏元件。 价电子受到激发,形成自由电子并留下空穴。自由电子和空穴同时产生,半导体中的 自由电子和空穴都能参与导电——半导体具有两种载流子。 载流子: 自由电子:电子挣脱共价键的束缚成为自由电子。空穴:共价键中留下的空位。

'lifr 在外电场作用下,半导体内电流形成过程: 有空穴的原子(带正电),可以吸引相邻原子中的价电子,填补这个空穴。好象空穴在运动,而空穴运动的方向与价电子运动的方向相反,因此空穴运动相当于正电荷的运动, 因此在外电场(外加电压)作用下,半导体中出现两部分电流: 电子电流:自由电子定向运动形成的。 空穴电流:价电子递补空穴形成的。 电子--空穴对产生与复合的动态过程: 由于物质总是在不停地运动着,一方面不断有价电子挣脱束缚成为自由电子。同时出现相同数量的空穴,另一方面自由电子在运动中又会和空穴复合,成为价电子,在一定条件下,这种运动会达到相对平衡,即电子--空穴对的产生与复合的过程仍在不断进行,但 电子--空穴对的数目基本不变。 二、杂质半导体(N型半导体和P型半导体) 由于掺入杂质元素的不同,掺杂半导体可分为两大类一N型半导体和P型半导体。 1.N型半导体杂质:磷P五价元素,原子最外层有五个价电子。磷原子与周围的四个硅原子形成共价键后,磷原子的外层电子数将是9,比稳定结构多一个价电子。多出的一个电子受原子核 的束缚很小,因此很容易成为自由电子。 在N型半导体中:多数载流子:自由电子少数载流子:空穴 N型半导体主要靠电子导电,所以又称为电子半导体,简称N型半导体。 2.p型半导体 杂质:硼B三价元素,原子最外层有三个价电子。 硼原子与周围的四个硅原子形成共价键时,因缺少一个电子而形成一个空穴。在P型半导体中:多数载流子:空穴。少数载流子:自由电子 P型半导体主要靠空穴导电,所以又称为空穴半导体,简称P型半导体。

半导体二极管和三极管分析

第7章半导体二极管和三极管 7.1 半导体的基本知识 7.2 PN结 7.3 半导体二极管 7.4 稳压二极管 7.5 半导体三极管

第7章半导体二极管和三极管 本章要求: 一、理解PN结的单向导电性,三极管的电流分配和 电流放大作用; 二、了解二极管、稳压管和三极管的基本构造、工 作原理和特性曲线,理解主要参数的意义;三、会分析含有二极管的电路。

对于元器件,重点放在特性、参数、技术指标和正确使用方法,不要过分追究其内部机理。讨论器件的目的在于应用。 学会用工程观点分析问题,就是根据实际情况,对器件的数学模型和电路的工作条件进行合理的近似,以便用简便的分析方法获得具有实际意义的结果。 对电路进行分析计算时,只要能满足技术指标,就不要过分追究精确的数值。 器件是非线性的、特性有分散性、RC 的值有误差、工程上允许一定的误差、采用合理估算的方法。

7.1 半导体的基本知识 半导体的导电特性: (可做成温度敏感元件,如热敏电阻)。 掺杂性:往纯净的半导体中掺入某些杂质,导电 能力明显改变(可做成各种不同用途的半导 体器件,如二极管、三极管和晶闸管等)。 光敏性:当受到光照时,导电能力明显变化 (可做 成各种光敏元件,如光敏电阻、光敏二极 管、光敏三极管等)。 热敏性:当环境温度升高时,导电能力显著增强

7.1.1 本征半导体 完全纯净的、具有晶体结构的半导体,称为本征半导体。 晶体中原子的排列方式 硅单晶中的共价健结构 共价健 共价键中的两个电子,称为价电子。 Si Si Si Si 价电子

Si Si Si Si 价电子 价电子在获得一定能量(温度升高或受光照)后,即可挣脱原子核的束缚,成为自由电子(带负电),同时共价键中留下一个空位,称为空穴(带正电)。 本征半导体的导电机理这一现象称为本征激发。 空穴温度愈高,晶体中产 生的自由电子便愈多。 自由电子 在外电场的作用下,空穴吸引相邻原子的价电子来填补,而在该原子中出现一个空穴,其结果相当于空穴的运动(相当于正电荷的移动)。

第一章 半导体二极管 三极管和场效应管

第4章半导体二极管及其应用 电子电路区别于以前所学电路的主要特点是电路中引入各种电子器件。电子器件的类型 很多,目前使用得最广泛的是半导体器件——二极管、稳压管、晶体管、绝缘栅场效应管等。 由于本课程的任务不是研究这些器件内部的物理过程,而是讨论它们的应用,因此,在简单 介绍这些器件的外部特性的基础上,讨论它们的应用电路。 4.1 PN结和半导体二极管 4.1.1 PN结的单向导电性 我们在物理课中已经知道,在纯净的四价半导体晶体材料(主要是硅和锗)中掺入微量三价(例如硼)或五价(例如磷)元素,半导体的导电能力就会大大增强。这是由于形成了有传导电流能力的载流子。掺入五价元素的半导体中的多数载流子是自由电子,称为电子半导体或N型半导体。而掺入三价元素的半导体中的多数载流子是空穴,称为空穴半导体或P型半导体。在掺杂半导体中多数载流子(称多子)数目由掺杂浓度确定,而少数载流子(称少子)数目与温度有关,并且温度升高时,少数载流子数目会增加。 在一块半导体基片上通过适当的半导体工艺技术可以形成P型半导体和N型半导体的交接面,称为PN 结。PN结具有单向导电性:当PN结加正向电压时,P端电位高于N端,PN结变窄,由多子形成的电流可以由P区向N区流通,见图4-1 (a),而当PN结加反向电压时,N端电位高于P端,PN结变宽,由少子形成的电流极小,视为截止(不导通),见图4-1 (b)。 4.1.2半导体二极管 半导体二极管就是由一个PN结加上相应的电极引线及管壳封装而成的。由P区引出的电极称为阳极,N区引出的电极称为阴极。因为PN结的单向导电性,二极管导通时电流方向是由阳极通过管子内部流向阴极。二极管的种类很多,按材料来分,最常用的有硅管和锗管两种;按结构来分,有点接触型,面接触型和硅平面型几种;按用途来分,有普通二极管、整流二极管、稳压二极管等多种。

相关主题
文本预览
相关文档 最新文档